City of Winnipeg Community Energy Investment Roadmap Appendices

Table of Contents

Appendix A:

Appendix B:

Appendix C:

Appendix D:

GPC tables	92

Appendix A: Data, Modelling Scope, Method, and Process

December 2021

Contents

Contents ·····
Summary·····
Accounting and Reporting Principles ······
I. Modelling Scope ·····
1.Geographic Boundary
2.Time Scope ·····
3.Emissions Scope ·····
4.Emissions Factors
5.Model Assumptions ·····
II. Modelling Method ·····
1.About CityInSight ·····
2.Model Structure ·····
3.Stocks and Flows
4.Sub-Models ·····
5.Energy and GHG Emissions Accounting
6.Financial Accounting
7.Inputs and Outputs ·····
8.Spatial Disaggregation ·····
III. Modelling Process ·····
IV. Addressing Uncertainty
Appendix A1: Model Assumptions

•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
•	•	•	•		• •	•	•	•	•	•			•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•••	4
•	•	•	•			•	•	•	•	•		•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•••	4
•	•	•	•		• •	•	•	•	•	•			•	•	•	•	•				•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	• ;	5
•		• •									• •			•				•••				•		•	•												•		•		5
•				•		•	•			•	• •							• •				• •			•			•											•		6
•				•		•	•			•	• •							• •				• •			•			•											•		6
•														•				• •				•			•														•	•	8
											• •			•				•••				•			•												•		•	1	0
•	•	•	•		• •	•	•	•	•	•			•	•	•	•	•				•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	•	1	1
•											• •							•••				•			•												•		•	•]	1
•											• •							•••				•			•												•		•	1	3
•											• •							•••				•			•												•		•	1	4
•											• •							•••				•			•												•		•	1	4
•											• •							•••				•			•												•		•	1	9
•											• •							•••				•			•												•		•	2	21
•											• •							•••				•			•												•		•	2	3
•																		• •				•			•														•	2	4
•	•	•	•			•	•	•	•	•			•	•	•	•	•				•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•		2	5
•	•	•	•			•	•	•	•	•			•	•	•	•	•				•	•	•	•				•	•	•	•	•	•	•	•	•	•	•		2	6
•	•	•	•			•	•	•	•				•	•	•	•	•				•	•	•	•				•	•	•	•	•	•	•	•	•	•	•		2	7

Summary

This Data, Methods, and Assumptions (DMA) Manual details the modelling approach used to provide community energy and emissions benchmarks and projections and provides a summary of the data and assumptions used in scenario modelling. The DMA makes the modelling elements fully transparent and illustrates the scope of data required for future modelling efforts.

Accounting and Reporting Principles

This municipal greenhouse gas (GHG) inventory baseline development and scenario modelling approach correlates with the Global Protocol for Community-Scale GHG Emissions Inventories (GPC). The GPC provides a fair and true account of emissions via the following principles:

Relevance: The reported GHG emissions shall appropriately reflect emissions occurring as a result of activities and consumption within the municipal boundary. The inventory will also serve the decisionmaking needs of the municipality, taking into consideration relevant local, subnational, and national regulations. Relevance applies when selecting data sources and determining and prioritizing data collection improvements.

Completeness: The inventory will account for all emissions sources within the inventory boundary. Any exclusions of sources shall be justified and explained.

Consistency: Emissions calculations shall be consistent in approach, boundary, and methodology.

Transparency: Activity data, emissions sources, emissions factors, and accounting methodologies require adequate documentation and disclosure to enable verification.

Accuracy: The calculation of GHG emissions should not systematically overstate or understate actual GHG emissions. The accuracy should be enough to give decision makers and the public reasonable assurance of the integrity of the reported information. Uncertainties in the quantification process should be reduced to the extent possible and practical.

I. Modelling Scope

1. GEOGRAPHIC BOUNDARY

The geographic boundary of the modelling assessment is the municipal boundary of the City of Winnipeg (Figure 1).

Figure 1. City of Winnipeg boundaries that will be used in the modelling process.¹

¹Winnipeg Urban Structure. Our Winnipeg. Retrieved in 2021.

The forecasts of energy use and emissions will extend to

The emissions assessed are those from the stationary

energy (buildings), transportation, and waste sectors.

Community Greenhouse Gas Emissions Inventories

(GPC) Scope 1 and 2 and some aspects of Scope 3

emissions. Refer to Table 1 and Table 2 for GPC scope

definitions and a list of included GHG emission sources

The inventory will include Global Protocol for

baseline year until the 2050 target year. The first

simulation period/year is 2016.

3. EMISSIONS SCOPE

2050.

by scope.

2. TIME SCOPE

The assessment will cover the years from 2016 (base year) to 2050 (target year).

The year 2016 will be used as a base year within the model. The rationale for using this as the base year is that:

- Census data is a key data source for the model. At the time of modelling, the most recent census year for which data is available is 2016.
- The model requires a calibration of a base year system state (known as the initial conditions) using as much observed data as possible to develop an internally consistent snapshot of the city.

One-year increments are modelled from the 2016

Table 1. GPC scope definitions.

SCOPE	DEFINITION
1	All GHG emissions from sources located within the municipal boundary.
2	All GHG emissions occurring from the use of grid-supplied electricity, heat, steam, and/or cooling within the municipal boundary.
3	All other GHG emissions that occur outside the municipal boundary as a result of activities taking place within the boundary.

Table 2. Sources included in the Winnipeg model.

	SCOPE 1	SCOPE 2	SCOPE 3	NOTES
Stationary energy				
Residential buildings	Y	Y		
Commercial and institutional buildings and facilities	Y	Y		
Manufacturing industries and construction	Y	Y		
Energy industries	Y	Y		
Energy generation supplied to the grid				Additional renewable electricity is included beyond what is currently included in emissions factors projections.
Agriculture, forestry, and fishing activities	Y	Y		
Non-specified sources				NA
Fugitive emissions from mining, processing, storage, and transportation of coal				NA

	SCOPE 1	SCOPE 2	SCOPE 3	NOTES
Fugitive emissions from oil and natural gas systems	Y			
Transportation				
On-road	Y	Y		
Railways	Y	Y		
Waterborne navigation				NA
Aviation				NA
Off-road	Y	Y		
Waste				
Disposal of solid waste generated in the city			Y	
Disposal of solid waste generated outside the city				NA
Biological treatment of waste generated in the city			Y	
Biological treatment of waste generated outside the city				NA
Incineration and open burning of waste generated in the city				NA
Incineration and open burning of waste generated outside the city				NA
Wastewater generated in the city	Y		Y	
Wastewater generated outside the city				NA
Industrial processes and product use (IPPU)				
Industrial processes	Y			
Product use				NA
Agriculture, forestry, and other land use (AF	OLU)			
Livestock	Y			
Land	Y			
Aggregate sources and non-CO ₂ emissions sources on land	Y			
Other Scope 3			Y	

4. EMISSIONS FACTORS

Table 3. Emissions accounting framework and global warming potential.

CATEGORY	BASELINE DATA/ASSUMPTION	SOURCE
Emissions accounting	g framework	
Accounting framework	Global Protocol for Community-Scale GHG Emission Inventories (GPC)	Global Protocol for Community-Scale GHG Emission Inventories (GPC)
Emissions scope	Scope 1, 2, and partial Scope 3	See GPC emissions scope table for Scope 3 items included.
Sectors	Stationary energy (buildings) Transportation Waste	See GPC emissions scope table for sectors and subsectors included.
Boundary	Municipal boundary of the City of Winnipeg	City of Winnipeg
Reporting	GPC BASIC and partial BASIC+	Global Protocol for Community-Scale GHG Emission Inventories (GPC)
Transportation methodology	GPCinduced activity method	Global Protocol for Community-Scale GHG Emission Inventories (GPC)
Baseline year	2016	N/A
Projection year	2050	N/A
Global warming pote	ential (GWP)	
Greenhouse gases	$CO_2 = 1$ $CH_4 = 34$ $N_2O = 298$	Myhre, G. et al., 2013: Anthropogenic and Natural Radiative Forcing. Table 8.7. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Table 4. Emissions factors for fuels in the Winnipeg model.

CATEGORY	BASELINE DATA/ASSUMPTIONS	SOURCE
Emissions fac	tors	
Natural gas	49 kg CO ₂ e/GJ	Environment and Climate Change Canada. National Inventory Report 1990–2015: Greenhouse Gas Sources and Sinks in Canada. Part 2. Tables A6-1 and A6-2.

CATEGORY	BASELINE DATA/ASSUMPTIONS
Electricity	2016:
	CO ₂ : 28.9 g/kWh
	CH ₄ : 0.007 g/kWh
	N ₂ O: 0.001 g/kWh
	2050:
	CO_2 : 82.32 g/kWh
	CH_4 : 0.02 g/kWh
	N ₂ O: 0.00 g/ kWh
Gasoline	g/L
	CO_2 : 2316
	$CH_4: 0.32$
	N ₂ U: 0.66
Diesel	g/L
	CO_2 : 2690.00
	$CH_4: 0.07$
F	
FueloII	g/L Desidential
	CU_{2} . 2300 CH : 0.026
	$N_{4} = 0.020$
	Commercial
	CO_: 2753
	CH4: 0.026
	N ₂ O: 0.031
	Industrial
	CO ₂ : 2753
	CH ₄ : 0.006
	N ₂ O: 0.031
Wood	kg/GJ
	Residential
	CO ₂ : 299.8
	CH ₄ : 0.72
	N ₂ O: 0.007
	CU_2 : 299.0
	$C\Pi_4$. U.72
	$N \cap O \cap O$
	N ₂ O: 0.007 Industrial
	N ₂ O: 0.007 Industrial CO: 466.8
	$N_2O: 0.007$ Industrial $CO_2: 466.8$ CH : 0.0052

SOURCE

National Energy Board. (2016). Canada's Energy Future 2016. Government of Canada. Retrieved from https:// www.neb-one.gc.ca/nrg/ntgrtd/ftr/2016pt/nrgyftrs_ rprt-2016-eng.pdf

NIR Part 2 Table A6–12 Emission Factors for Energy Mobile Combustion Sources

NIR Part 2 Table A6–12 Emission Factors for Energy Mobile Combustion Sources

Environment and Climate Change Canada. National Inventory Report 1990–2015: Greenhouse Gas Sources and Sinks in Canada. Part 2. Table A6–4 Emission Factors for Refined Petroleum Products

Environment and Climate Change Canada. National Inventory Report 1990–2015: Greenhouse Gas Sources and Sinks in Canada. Part 2. Table A6–56 Emission Factors for Biomass

CATEGORY	BASELINE DATA/ASSUMPTIONS	SOURCE
Propane	g/L Transport CO_2 : 1515.00 CH_4 : 0.64 N_2O : 0.03 Residential CO_2 : 1515.000 CH_4 : 0.027 N_2O : 0.108 All other sectors CO_2 : 1515.000 CH_4 : 0.024 N_2O : 0.108	NIR Part 2 Table A6–3 Emission Factors for Natural Gas Liquids Table A6–12 Emission Factors for Energy Mobile Combustion Sources
Waste/ wastewater	Wastewater $CH_4: 0.48 \text{ kg CH4/kg BOD}$ $N_2O: 3.2 \text{ g/(person * year)}$ from advanced treatment 0.005 g/g N from wastewaterdischargeLandfill emissions (waste) arecalculated from first order decay ofdegradable organic carbon depositedin landfillderived emission factor in 2016 = 0.015kg CH ₄ /tonne solid waste (assuming70% recovery of landfill methane),.05 kg CH ₄ /tonne solid waste notaccounting for recovery	CH4 wastewater: IPCC Guidelines Vol 5 Ch 6, Tables 6.2 and 6.3. We use the MCF value for anaerobic digester. N ₂ O from advanced treatment: IPCC Guidelines Vol 5 Ch 6 Box 6.1 N ₂ O from wastewater discharge: IPCC Guidelines Vol 5 Ch 6 Section 6.3.1.2 Landfill emissions: IPCC Guidelines Vol 5 Ch 3, Equation 3.1

5. MODEL ASSUMPTIONS

The modelling assessment uses a series of data assumptions to model the three scenarios: businessas-usual, business-as-planned, and net-zero scenarios. Appendix A details the data assumptions used in the City of Winnipeg's energy and emissions assessment.

II. Modelling Method

1. ABOUT CITYINSIGHT

CityInSight is an integrated, spatially-disaggregated energy, emissions, and finance model developed by Sustainability Solutions Group and whatlf? Technologies. The model enables bottom-up accounting for energy supply and demand, including renewable resources, conventional fuels, energy-consuming technology stocks (e.g. vehicles, heating systems, dwellings, and buildings), and all intermediate energy flows (e.g. electricity and heat).

CityInSight incorporates and adapts concepts from the system dynamics approach to complex systems analysis. Energy and GHG emissions are derived from a series of connected stock and flow models. The model accounts for physical flows (e.g. energy use, new vehicles, and vehicle kilometres travelled) as determined by stocks (e.g. buildings, vehicles, and heating equipment). For any given year within its time horizon, CityInSight traces the flows and transformations of energy from sources through energy currencies

(e.g. gasoline and electricity) to end uses (e.g. personal vehicle use and space heating), energy costs, and GHG emissions. The flows evolve based on current and future geographic and technology decisions/assumptions (e.g. EV uptake rates). An energy balance is achieved by accounting for efficiencies, conservation rates, and trade and losses at each stage in the journey from source to end use. The characteristics of CityInSight are described in Table 5.

The model is spatially explicit. All buildings,

transportation, and land-use data are tracked within the model through a GIS platform and by varying degrees of spatial resolution. Where applicable, a zone-type system can be applied to break up the city into smaller configurations. This enables consideration of the impact of land-use patterns and urban form on energy use and emissions production from a baseline year to future dates using GIS-based platforms. CityInSight's GIS outputs can be integrated with city mapping systems.

Table 5. Characteristics of CityInSight.

CHARACTERISTIC	RATIONALE
Integrated	CityInSight is designed to model and account for all sectors that relate to energy and emissions at a city scale while capturing the relationships between sectors. The demand for energy services is modelled independently of the fuels and technologies that provide the energy services. This decoupling enables exploration of fuel switching scenarios. Physically feasible scenarios are established when energy demand and supply are balanced.
Scenario-based	Once calibrated with historical data, CityInSight enables the creation of dozens of scenarios to explore different possible futures. Each scenario can consist of either one or a combination of policies, actions, and strategies. Historical calibration ensures that scenario projections are rooted in observed data.
Spatial	The configuration of the built environment determines people's ability to walk and cycle, the accessibility of transit, the feasibility of district energy, etc. Therefore, CityInSight includes a full spatial dimension that can include as many zones —the smallest areas of geographic analysis—as are deemed appropriate. The spatial component to the model can be integrated with City GIS systems, land-use projections, and transportation modelling.
GHG reporting framework	CityInSight is designed to report emissions according to the GHGProtocol for Cities (GPC) framework and principles.
Economic impacts	CityInSight incorporates a full financial analysis of costs related to energy (expenditures on energy) and emissions (carbon pricing, social cost of carbon), as well as operating and capital costs for policies, strategies, and actions. It allows for the generation of marginal abatement curves to illustrate the cost and/or savings of policies, strategies, and actions.

2. MODEL STRUCTURE

The major components of the model (sub-models) and the first level of modelled relationships (influences) are represented in Figure 2. These sub-models are all interconnected through various energy and financial flows. Additional relationships may be modelled in CityInSight by modifying inputs and assumptions specified directly by users or in an automated fashion by code or scripts running "on top of" the base model structure. Feedback relationships are also possible, such as increasing the adoption rate of non-emitting vehicles in order to meet a particular GHG emissions constraint.

Figure 1. Representation of CityInSight's structure.

GHG

emissions

3. STOCKS AND FLOWS

Within each sub-model are a number of stocks and flows that represent energy and emissions processes in cities. For any given year, various factors shape the picture of energy and emissions flows in a city, including the population and the energy services it requires, commercial floor space, energy production and trade, the deployed technologies that deliver energy services (service technologies), and the deployed technologies that transform energy sources to currencies (harvesting technologies). The model creates an explicit mathematical relationship between the factors—some contextual and some part of the energy consuming or producing infrastructure—making up the energy flow picture.

Some factors are modelled as stocks (i.e. counts of similar things classified by various properties). For example, population is modelled as a stock of people classified by age and gender. Population change over time is projected by accounting for the natural aging process, inflows (births, immigration), and outflows (deaths, emigration). The fleet of personaluse vehicles, an example of a service technology, is modelled as a stock of vehicles with a similarly classified fuel consumption intensity classified by size, engine type, and model year. As with population, projecting change in the vehicle stock involves aging vehicles and accounting for major inflows (new vehicle sales) and major outflows (vehicle discards). This stock-turnover approach is applied to other service technologies (e.g. furnaces, water heaters) and harvesting technologies (e.g. electricity generating capacity).

4. SUB-MODELS

The stocks and flows that make up each sub-model are described below.

POPULATION, HOUSEHOLDS, AND DEMOGRAPHICS

• City-wide population is modelled using the standard population cohort-survival method, which tracks population by age and gender on a year-by-year basis. It accounts for various components of change such as births, deaths, immigration, and emigration.

- Population is allocated to households and these are placed spatially in zones via physical dwellings (see the land-use accounting sub-model).
- The age of the population is tracked over time and is used for analyzing demographic trends, generational differences, and implications for shifting energy-use patterns.
- The population sub-model influences energy consumption in various sub-models:
- School enrollment totals (transportation)
- Workforce totals (transportation)
- Personal vehicle use (transportation)
- Waste generation

BUILDING LAND-USE ACCOUNTING

Land-use accounting identifies buildings in space and over time, through construction, retrofits, and demolitions. In the baseline, this is often directly informed by building-related geospatial data. Land-use accounting consists of the following elements:

- Quantitative spatial projections of residential dwelling units by:
- Residential structure type (single detached, semi detached, row house, apartment, etc.);
- Development type (greenfield, intensification); and
- Population assigned to dwelling units.
- Quantitative spatial projections of non-residential buildings by:
- Non-residential structure type (retail, commercial, institutional);
- Development type (greenfield, intensification);
- Classification of buildings into archetypes 0 (such as school, hospital, industrial—see Table 2).² This allows the model to account for differing intensities that would occur in relation to various non-residential buildings; and

- Job allocation to zones via non-residential floor area, using a floor-area-per-worker intensity.
- Land-use accounting takes the following "components of change" into account year over year:
- New development;
- Removals/demolitions; and
- Year of construction.
- Land-use accounting influences other aspects of the model, notably:
- Passenger transportation: The location of residential buildings influences where hometo-work and home-to-school trips originate, which in turn, influences their trip length and the subsequent mode selected. Similarly, the location and identification of non-residential buildings influences the destination for many trips. For example, buildings identified as schools would be identified in home-to-school trips.

.

able 6. Non-residential archetypes represented in the model.								
CATEGORY	UNIT							
Education	 College, university 							
	School							
Government buildings and space	 Municipal building 							
	• Fire station							
	Penal institution							
	Police station							
	 Military base or camp 							
Healthcare	 Retirement or nursing home 							
	 Special care home 							
	• Hospital							
Community and culture	• Greenspace							
	 Recreation 							
	Community centre							
	 Museum, art gallery 							
	 Religious institution 							

- Access to energy sources by buildings: Building location influences access to energy sources. For example, a rural dwelling may not have access to natural gas or a dwelling may not be in proximity to an existing district energy system. It can also be used to identify suitable projects. For example, the location and density of dwellings is a consideration for district energy development.
- Non-residential building energy: The identification of non-residential building archetypes influences their energy consumption based on their use type. For example, a building identified as a hospital would have a higher energy-use intensity than a building identified as a school.

²Where possible, this data comes directly from the municipality.

CATEGORY	UNIT			
Commercial space	• Restaurant			
	 Hotel, motel, inn 			
	• Retail			
	Commercial retail			
	Commercial			
	Commercial residential			
	Retail residential			
	Warehouse commercial			
	• Warehouse			
	Warehouse retail			
Utilities	• Energy utility			
	Water pumping or treatment station			
Transportation	 Transit terminal or station 			
	• Airport			
	Parking			
Agriculture	Industrial farm			
	• Barn			
	Greenhouse			
Industry and manufacturing	 Vehicle and heavy equipment service 			
	 Industrial generic 			
	 Manufacturing plant, miscellaneous processing plant 			
	 Chemical manufacturing plant 			
	 Printing and publishing plants 			
	 Food processing plant 			
	Textile manufacturing plant			
	 Furniture manufacturing plant 			
	Refineries—all types			
	 Fabricated metal product plant 			
	 Asphalt manufacturing plant 			
	 Concrete manufacturing plant 			

• Golf course

Surface infrastructure

RESIDENTIAL AND NON-RESIDENTIAL BUILDING ENERGY

Building energy consumption is closely related to the land-use accounting designation it receives based on where the building is located, its archetype, and when it was constructed. Building energy consumption is calculated in the model by considering:

- Total energy-use intensity of the building type (including the proportion from thermal demand) is built from energy end uses in the building. End uses include heating, lighting, and auxiliary demand. The energy intensity of end uses is related to the building or dwelling archetype and its age.
- Energy use by fuel is determined based on the technologies used in each building (e.g. electricity and heating system types). Heating system types are assigned to building equipment stocks (e.g., heating systems, air conditioners, water heaters).
- Building energy consumption in the model also considers:
- Solar gains and internal gains from sharing walls;
- Local climate (heating and cooling degree days); and
- Energy losses in the building.

and energ for pump

Miscellaneous large surfaces

 Building equipment stocks (e.g. water heaters and air conditioners) are modelled with a stockturnover approach that captures equipment age, retirements, and additions. In future projections, the natural replacement of stocks is often used as an opportunity to introduce new (and more efficient) technologies.

The model has residential and non-residential building energy sub-models. They influence and produce important model outputs such as:

- Total residential energy consumption and emissions and residential energy and emissions by building type, end use, and fuel;
- Total non-residential energy consumption and emissions and residential energy and emissions by building type, end use, and fuel; and
- Local/imported energy balance (i.e how much energy will need to be imported after considering local capacity and production).

Figure 3 details the flows in the building energy submodel at the building level.

TRANSPORTATION

CityInSight includes a spatially explicit passenger transportation sub-model that responds to changes in land use, transit infrastructure, vehicle technology, travel behaviour changes, etc. The sub-model has the following features:

- CityInSight uses the induced method for accounting for transportation-related emissions; the induced method accounts for in-boundary trips and 50% of transboundary trips that originate or terminate within the city boundary. This shares energy and GHGs between municipalities.
- The model accounts for "trips" in the following sequence:
- 1. Trip generation. Trips are divided into four types (home-work, home-school, home-other, and non-home-based) that are each produced and attracted by different combinations of spatial influences identified in the landuse accounting sub-model: dwellings, employment, classrooms, and non-residential floor space.
- 2. Trip distribution. Trips are distributed by the number of trips specified for each zone of origin and zone of destination pair. Origin-Destination (O-D) matrix data is based on local travel surveys and transportation models.
- 3. Mode share. For each origin-destination pair, trips are shared over walk/bike, public transit, and automobile.
- a. Walk/bike trips are identified based on a distance threshold of ~2 km for walking and \sim 5–10 km for biking.
- **b.** Transit trips are trips with an origin or destination within a certain distance to a transit station.
- 3. Vehicle distance. Vehicle kilometres travelled (VKT) are calculated based on the number of trips by mode and the distance of each trip based on a network distance matrix for the origin-destination pairs.

- VKT is assigned to a stock of personal vehicles based on vehicle type, fuel type, and fuel efficiency. The number of vehicles is influenced by the total number of households identified in the population sub-model. The model also uses a stock-turnover approach to model vehicle replacements, new sales, and retirements.
- The energy use and emissions associated with personal vehicles are calculated using the VKT of the stock of personal vehicles and their type, fuel, and efficiency characteristics.
- The personal mobility sub-model is one of the core components of the model. It influences and produces the following important model outputs:
- Total transportation energy consumption by fuel, including electricity consumption.
- Active trips and transit trips by zone distance.

Figure 3. Trips assessed in the personal mobility sub-model.

WASTE

Households and non-residential buildings generate solid The model calculates employment based on nonwaste and wastewater, and the model traces various residential building archetypes and their floor area. pathways to disposal, compost, and sludge. If present Employment related to investments is calculated using in the city, the model can also capture energy recovery standard employment multipliers and is often expressed from incineration and biogas. Waste generation is as person-years of employment per million dollars of translated to landfill emissions based on first order decay investment. models of carbon to methane.

LOCAL ENERGY PRODUCTION

The model accounts for energy generated within city

CityInSight accounts for the energy flows through the boundaries. It models energy produced from local model, as shown in Figure 6. Source fuels crossing sources (e.g. solar, wind, biomass) alongside energy the geographic boundary of the city are shown on imported from other resources (e.g. the electricity grid the left. The four "final demand" sectors-residential, and the natural gas distribution system) and accounts for commercial, industrial, and transportation-are shown conversion efficiency. Local energy generation can be towards the right. Some source fuels are consumed spatially defined. directly in the final demand sectors (e.g. natural gas used by furnaces for residential heating and gasoline FINANCIAL AND EMPLOYMENT IMPACTS used by personal vehicles for transportation). Other Energy-related financial flows and employment impacts source fuels are converted to another energy carrier are captured through an additional layer of model logic. before consumption in the final demand sectors (e.g. Costs are calculated as new stock is incorporated into solar energy converted to electricity via photovoltaic the model through energy flows (annual fuel costs) cells and natural gas combusted in heating plants and and other operating and maintenance costs. Costs are the resulting hot water distributed to end-use buildings based on a suite of assumptions that are inputted into via district energy networks). Finally, efficiencies of the the model. See Section 6 for financial variables tracked various conversion points (e.g. end uses, local energy

within the model.

5. ENERGY AND GHG EMISSIONS ACCOUNTING

production) are estimated to split flows into either "useful" energy or conversion losses at the far right side of the diagram.

Figure 4. An example energy flow Sankey diagram showing main node groups.

Figure 5 below shows the potential for ambiguity when energy is reported. For example, which of the energy flows circled are included and how do you prevent double counting? To address these ambiguities, CityInSight defines two main energy reports:

• Energy demand (shown in Figure 6). Energy demand includes the energy flows just before the final demand sectors (left of the dotted red line). Where the demand sectors are supplied by local

energy production nodes, the cut occurs after the local energy production and before demand.

• Energy supply (shown in Figure 7). Energy supply includes the energy flows just after the source fuel nodes (left of the dotted red line). Where the source fuels supply local energy production nodes, the cut occurs between the source fuels and local energy production.

Figure 6. An example of an energy supply report definition.

In the integrated CityInSight energy and emissions accounting framework, GHG emissions are calculated after energy consumption is known.

6. FINANCIAL ACCOUNTING

The model also expresses a financial analysis for most of its stocks and flows. Costs and savings modelling considers:

- Upfront capital expenditures related to new stocks such as new vehicles or new building equipment;
- Operating and maintenance costs (annualized costs, such as vehicle maintenance, associated with stocks);
- Energy costs related to energy flows in the model and accounting for fuel and electricity costs; and
- Carbon pricing calculated based on emissions generation.

٦	Commercial		
		Liseful Energy	
	Desidential	oscial Energy	
	Residential		
	Transportation		
		Conversion Losses	
	Industrial		

The expenditure types evaluated in the model are summarized in Table 7. Financial assumptions will be included in further iterations of the Winnipeg model.

Table 7. Categories of expenditures.

CATEGORY	DESCRIPTION
Residential buildings	Cost of dwelling construction and retrofitting and operating and maintenance costs (non-fuel).
Residential equipment	Cost of appliances and lighting, heating and cooling equipment.
Residential fuel	Energy costs for dwellings and residential transportation.
Residential emissions	Costs resulting from a carbon price on GHG emissions from dwellings and transportation.
Commercial buildings	Cost of building construction and retrofitting and operating and maintenance costs (non-fuel).
Commercial equipment	Cost of lighting, heating, and cooling equipment.
Commercial vehicles	Cost of vehicle purchase and operating and maintenance costs (non-fuel).
Non-residential fuel	Energy costs for commercial buildings, industry, and transport.
Non-residential emissions	Costs resulting from a carbon price on GHG emissions from commercial buildings, production, and transportation.
Energy production emissions	Costs resulting from a carbon price on GHG emissions for fuel used in the generation of electricity and heating.
Energy production fuel	Cost of purchasing fuel for generating local electricity, heating, or cooling.
Energy production equipment	Cost of the equipment for generating local electricity, heating, or cooling.
Municipal capital	Cost of the transit system additions (no other forms of municipal capital assessed).
Municipal fuel	Cost of fuel associated with the transit system.
Municipal emissions	Costs resulting from a carbon price on GHG emissions from the transit system.
Energy production revenue	Revenue derived from the sale of locally generated electricity or heat.
Personal use vehicles	Cost of vehicle purchase and operating and maintenance costs (non-fuel).
Transit fleet	Costs of transit vehicle purchase.
Active transportation infrastructure	Costs of bike lane and sidewalk construction.

FINANCIAL REPORTING PRINCIPLES

The financial analysis is guided by the following reporting principles:

- **1.** Sign convention: Costs are negative; revenue and savings are positive.
- 2. The financial viability of investments will be measured by their net present value.
- 3. All cash flows are assumed to occur on the last day of the year and, for purposes of estimating their present value in Year 1, will be discounted back to time zero (the beginning of Year 1). This means that even the initial capital outlay in Year 1 will be discounted by a full year for purposes of present value calculations.
- **4.** We will use a discount rate of three percent in evaluating the present value of future government costs and revenues.
- **5.** Each category of stocks will have a different investment horizon.
- 6. Any price increases for fuel, electricity, carbon, or capital costs included in our analysis will be real price increases, net of inflation.
- 7. Where a case can be made that a measure will continue to deliver savings after its economic life (e.g. after 25 years in the case of the longest lived measures), we will capitalize the revenue forecast for the post-horizon years and add that amount to the final year of the investment horizon cash flow.
- 8. When presenting the results of the financial analysis, we will round them to the nearest thousand dollars unless additional precision is meaningful.
- **9.** Only actual cash flows will be included in the financial analysis.

7. INPUTS AND OUTPUTS

orting The model relies on a suite of assumptions that define the various stocks and flows within the model for every time step (year) in the model.

BASE YEAR

For the baseline year, many model inputs come from calibrating the model with real energy datasets. This includes real building and transportation fuel data and city data on population, housing stock, and vehicle stock. Other assumptions come from underlying relationships between energy stocks and flows identified through research, like the fuel efficiency of personal vehicles or the efficiency of solar PV.

FUTURE PROJECTIONS

CityInSight is designed to project how the energy flow picture and the emissions profile will change in the long term by modelling potential changes in:

- the context (e.g. population, development patterns) and
- emissions reduction actions that influence energy demand and the composition of stocks.

Potential changes in the system are also based on a suite of input assumptions and are frequently referred to as "actions". Actions are intervention points in the model that change the relationship between a certain stock and flow at a certain time. Action assumptions can be based on existing projections and on proposed policy design and can be as wide ranging as the stocks and flows present in the model.

Stock-turnover models enable users to directly address questions about the penetration rates of new technologies over time that are constrained by assumptions such as new stock, market shares, and stock retirements. Examples of projection outputs include energy mix, mode split, vehicle kilometres of travel (VKT), total energy costs, household energy costs, and GHG emissions. Energy, emissions, capital, and operating costs are outputs for each scenario.

The emission and financial impacts of alternative climate mitigation scenarios are usually presented relative to a reference or "business as planned" scenario. For example, an action may assume that starting in 2030, all new personal vehicles will be electric. This assumption would be input into the model, and, starting in 2030, every time a vehicle reaches the end of its life, rather than be replaced with a gas- or dieselpowered vehicle, it is replaced with an electric vehicle. As a result, the increase in the electric vehicle stock means greater VKT allocated to electricity and less to gasoline, thereby lowering emissions.

8. SPATIAL DISAGGREGATION

As previously discussed, a key feature of CityInSight is the geocoded stocks and flows that underlie the energy and emissions in the community. All buildings and transportation activities are tracked within a discrete number of geographic zones specific to the city. This enables consideration of the impact of land-use patterns and urban form on energy use and emissions production from a baseline year to future years in the study horizon. CityInSight outputs can be integrated with city mapping and GIS systems. This feature allows CityInSight to support the assessment of a variety of urban climate mitigation strategies that are out of reach of more aggregate representations of the energy systems. Some examples include district energy, microgrids, combined heat and power, distributed energy, personal mobility (the number, length, and mode choice of trips), local supply chains, and EV infrastructure.

For stationary energy use, the foundation for the spatial representation consists of land use, zoning, and property assessment databases routinely maintained by municipal governments. These databases have been geocoded in recent years and contain detailed information about the built environment that is useful for energy analysis.

For transportation energy use and emissions, urban transportation survey data characterizes personal mobility by origin, destination, trip time, and trip purpose. This, in turn, supports the spatial mapping of personal transportation energy use and greenhouse gas emissions by origin or destination.

III. Modelling Process

CityInSight is designed to support the development buildings and population and historical trends in stocks of a municipal strategy for greenhouse gas mitigation. that can be determined during model calibration. In Usually, the model is engaged to identify a pathway for a particular, the project allocates future population and community to meet a greenhouse gas emissions target employment to building types and spaces. During this by a certain year or to stay within a cumulative carbon process, the model is calibrated against historical data, budget over a specified period. providing a technology stock as well as a historical trend for the model variables. This process ensures that the 1. Data Collection, Calibration, and Baseline demographics are consistent with the municipality's GIS and transportation modelling.

The CityInSight engagement begins with an intensive data collection and calibration exercise in which the The projection typically includes approved developments and official plans combined with the model is systematically populated with data on a wide range of stocks and flows in the community that affect simulation of committed energy infrastructure to be greenhouse gas emissions. From this data, a picture built, existing regulations and standards (e.g. renewable emerges that begins to identify where opportunities for energy and fuel efficiency), and communicated policies. climate change mitigation are likely to be found in the The projection incorporates conventional assumptions modelled community. about the future development of the electrical grid, uptake of electric vehicles, building code revisions, The calibration and inventory exercise helps establish a changes in climatic conditions, and other factors. common understanding among affected and interested The resulting projection serves as a reference line parties about how the greenhouse gas emissions in their against which the impact and costs of GHG mitigation measures can be measured. Sensitivity analyses and data visualizations are used to identify key factors and points of leverage within the reference projection.

community are connected to the way they live, work, and play. Relevant data are collected for variables that drive energy and emissions, such as characteristics of buildings and transportation technologies, and these datasets are reconciled with observed data from utilities and other databases. The surface area of buildings is modelled in order to accurately estimate energy performance by end use. Each building is tracked by vintage, structure, and location, and a similar process is used for transportation stocks. Additional analyses at this stage include local energy generation, district energy, and the provincial electricity grid. The primary outcome of this process is an energy and GHG inventory for the baseline year, with corresponding visualizations.

2. The Base Year and Reference Projection

Once the baseline is completed, a reference projection—referred to as the business-as-planned The low-carbon scenario is analyzed relative to the scenario-to the target year is developed. The reference reference projection. The actions in the low-carbon projection is based on a suite of input assumptions scenario are grouped together to ensure that there is no inserted into the model that reflect the future conditions. double counting and that the interactive effects of the This is often based on existing municipal projections for proposed measures are captured in the analysis.

3. Low-Carbon Scenario and Action Plan

The low-carbon scenario—referred to as the net-zero scenario—uses a new set of input assumptions to explore the impacts of emissions reduction actions on the emissions profile. This begins with developing a list of candidate measures for climate mitigation in the community and is supplemented by additional measures and strategies identified through the engagement process. For many actions, CityInSight draws on an in-house database that specifies the performance and cost of technologies and measures for greenhouse gas abatement.

IV. Addressing Uncertainty

There is extensive discussion about the uncertainty in models and modelling results. The assumptions underlying a model can be from other locations or large datasets that do not reflect local conditions or behaviours, and in cases where they do accurately reflect local conditions, it is still exceptionally difficult to predict how the conditions and behaviours will respond to broader societal changes and what those changes will be (the "unknown unknowns").

The modelling approach identifies four strategies for managing uncertainty related to community energy and emissions modelling:

- 1. Sensitivity analysis: From a methodological perspective, one of the most basic ways of studying complex models is the sensitivity analysis, which quantifies uncertainty in a model's output. During thes assessment, each of the model's input parameters is drawn from a statistical distribution in order to capture the uncertainty in the parameter's true value (Keirstead, Jennings, & Sivakumar, 2012).
 - » Approach: Each of the variables will be increased by 10-20% to illustrate the impact that an error of that magnitude has on the overall total.
- 2. Calibration: One way to challenge untested assumptions is to use backcasting to ensure the model can forecast the past accurately. The model can then be calibrated to generate historical outcomes, which usually refers to "parameter adjustments" that "force" the model to better replicate observed data.
 - » Approach: The model calibrates variables for which there are two independent sources of data. For example, the model calibrates building energy use (derived from buildings data) against actual electricity data from the electricity distributor.

- 3. Scenario analysis: Scenarios are used to demonstrate that a range of future outcomes is possible given the current conditions that no one scenario is more likely than another.
 - » Approach: The model will develop a reference scenario.
- 4. Transparency: The provision of detailed sources for all assumptions is critical to enabling policy-makers to understand the uncertainty intrinsic in a model.
 - » Approach: The assumptions and inputs are presented in this document.

Appendix A1: Model Assumptions

CATEGORY	BAU ASSUMPTION	BAP ASSUMPTION	NET-ZERO ASSUMPTION	SOURCE
Population and Er	mployment			
Population	Increases by 34% by 2050 from 2016 total	Same as BAU	Same as BAU	City
Employment	Increases by 33% by 2050 from 2016 total	Same as BAU	Same as BAU	City
Buildings				
New buildings gr	owth			
Building growth projections	Dwelling projections	Dwelling projections	20% of new dwellings to be single-detached by 2050.	BAU and BAP: Data derived from PLUM model
	Residential Growth (2016– 2050)	Residential Growth (2016– 2050)		
	Non-residential growth (2016–2050)	Non-residential growth (2016–2050)		

Table 8. Summary of business-as-usual (BAU), business-as-planned (BAP), and net-zero scenario (NZS) assumptions modelled for the City of Winnipeg's Community Energy Investment Roadmap.

CATEGORY	BAU ASSUMPTION	BAP ASSUMPTION	NET-ZERO ASSUMPTION	SOURCE		CATEGORY	BAU ASSUMPTION	BAI
New buildings	energy performance					Industrial	No	Ass
Residential	No improvements to new building	Assume base rate of 5% improvement	As of 2031, all new homes have 50% annual load coverage by solar	BAU and BAP: Derived from PLUM model	-		improvements to new building standards	rate imp eve
	standards	every 5 years	PV.			Existing buildi	ngs retrofitting	
Multi- residential	No improvements to new building standards	Assume base rate of 5% improvement every 5 years	By increasing storage capacity (i.e. batteries) with every renewable that is installed, reduce curtailment (i.e. the amount of time renewable energy supply is simply turned off, because it is not needed at that exact moment on the electricity grid) from 15% to 10% as renewables are installed.			Residential Multi- residential		
			All new buildings are substantially more efficient and electric by 2030. Efficiency improvements are modelled as follows: 2022: 2013 NBC 2024: 10% better 2026: 20% better 2030: 40% better		_		No retrofitting of existing building stock	A: ra st er
Commercial and institutional	No improvements to new building standards	Assume base rate of 5% improvement every 5 years	Include rooftop PV. All new buildings are substantially more efficient and electric by 2030. Efficiency improvements are modelled as follows: 2022: NECB 2020 2024: 25% better 2026: 50% better			Commercial and institutional Industrial		

	Starting in 2021, retrofit 100% of all existing dwellings built before 1980, exponentially, by 2035, achieving an average thermal savings of 50% and an electrical savings of 50%, including shifting to on-demand water heaters and heat pumps for space heating.
1% ovation ding a 10%	100% of all dwellings built between 1980 and 2016, exponentially, by 2050 (following pre-1980 dwellings).
duction	Achieve average thermal savings of 50% and electrical savings of 50%, including shifting to on-demand water heaters and heat pumps for space heating.
	Starting in 2021, increase efficiency by 50% by 2050 (linearly).
	Starting in 2021, increase efficiency to reduce overall process-related energy consumption by 33% by 2050 (linear).

CATEGORY	BAU ASSUMPTION	BAP ASSUMPTION	NET-ZERO ASSUMPTION	SOURCE
End use				
Space heating Water heating Space cooling	Fuel shares for end use - unchanged; held _ from 2016–2050.	Fuel shares for end use unchanged; held from 2016–2050.	Fuel shares for end use unchanged; held from 2016–2050.	Canadian Energy Systems Analysis Research. Canadian Energy System Simulator. Retrieved from http:// www.cesarnet.ca/ research/caness-model
Projected climate	e impacts			
Heating and cooling degree days	Heating degree days are expected to decrease, and cooling degree days will increase.	Heating degree days are expected to decrease, and cooling degree days will increase.	Heating degree days are expected to decrease, and cooling degree days will increase.	Downscaled climate data from Pacific Climate Impacts Consortium. Retrieved from Climateatlas.ca - BCCAqv2
Renewable energy	gy generation (on-site	e, building scale)		
Installation of heat pumps	NA	NA	100% of buildings by 2050	
Solar PV	NA	NA	Starting in 2021, install solar PV on 50% of pre-2016 buildings, achieving, on average, 50% of building electric load; scaling up to 50% of these buildings by 2050.	
Energy Generati	on			
Low- or zero-carl	bon energy generation	on (community scale)		
Rooftop Solar PV	Existing solar PV holds constant	Existing solar PV holds constant	We assume the current generation is held constant to 2050.	_
Ground mount solar	Existing solar PV holds constant	Existing solar PV holds constant	We assume the current generation is held constant to 2050.	
District Energy Generation			We assume the current generation is held constant to 2050.	_
Wind	Existing wind holds constant	Existing wind holds constant	We assume the current generation is held constant to 2050.	

CATEGORY	BAU ASSUMPTION	BAP ASSUMPTION	NET-ZERO ASSUMPTION	SOURCE
Transport				
Transit				
Expanded transit	No expansion of fleet	No expansion of fleet	Expand transit	
Electrify transit system	No electrification of fleet	8% of fleet is electrified by 2030	100% by 2035	Winnipeg's Climate Action Plan: Planning for Climate Change. Acting for People. Retrieved from: https://winnipeg. ca/Sustainability/ PublicEngagement/ ClimateAction Plan/#tab-related links
Active				
Mode share	No change to mode shares over time. 2016: 80% vehicle trips 10% transit 7% active 3% school bus	Proportional change in mode share: increasing transit mode share.2016: 80% vehicle trips 10% transit 7% active 3% school bus By 2030: 77% vehicle trips 14% transit 7% active 2% school bus By 2050: 72% vehicle trips 21% transit 7% active 0% school bus	Home based work/ transportation marketing and individual planning: "Private vehicle trips decline by 9% per person and vehicular trip lengths declined 6%. All areas of Winnipeg are affected. Implement smart commute home- based work." Increase/improve cycling and walking infrastructure: "By 2050, mode shift 50% of 2 km trips to walking and 5 km to cycling." By 2050: 51% vehicle trips 17% transit	2016 mode share from City of Winnipeg internal modelling. BAP 2030 mode share from Winnipeg's Climate Action Plan, and then extrapolated linearly to 2050. NZS modelling shifts short trips to active modes, away from transit and other vehicles, based on the length of the trip.

ed	No expansion of fleet	No expansion of fleet	Expand transit	
transit	No electrification of fleet	8% of fleet is electrified by 2030	100% by 2035	Winnipeg's Climate Action Plan: Planning for Climate Change. Acting for People. Retrieved from: https://winnipeg. ca/Sustainability/ PublicEngagement/ ClimateAction Plan/#tab-related links
iare	No change to mode shares over time. 2016: 80% vehicle trips 10% transit 7% active 3% school bus	Proportional change in mode share: increasing transit mode share.2016: 80% vehicle trips 10% transit 7% active 3% school bus By 2030: 77% vehicle trips 14% transit 7% active 2% school bus By 2050: 72% vehicle trips 21% transit 7% active 0% school bus	Home based work/ transportation marketing and individual planning: "Private vehicle trips decline by 9% per person and vehicular trip lengths declined 6%. All areas of Winnipeg are affected. Implement smart commute home- based work." Increase/improve cycling and walking infrastructure: "By 2050, mode shift 50% of 2 km trips to walking and 5 km to cycling." By 2050: 51% vehicle trips 17% transit	2016 mode share from City of Winnipeg internal modelling. BAP 2030 mode share from Winnipeg's Climate Action Plan, and then extrapolated linearly to 2050. NZS modelling shifts short trips to active modes, away from transit and other vehicles, based on the length of the trip.
			32% active 0% school bus	

CATEGORY	BAU ASSUMPTION	BAP ASSUMPTION	NET-ZERO ASSUMPTION	SOURCE	CATEGORY	BAU ASSUMPTION	BAP ASSUMPTION	NET-ZERO ASSUMPTION	SOURCE
Private/persona	al use				Vehicle fuel	CAFE Fuel	CAFE Fuel	BY 2040, all heavy-duty	EPA. (2012). EPA and
Electrify	No change to	No change to	100% electric by 2035		efficiencies/	standards:	standards:	vehicles (semi-trucks) are	NHTSA set standards
municipal fleet	municipal fleets	municipal fleets			tailpipe	Vehicle fuel	Vehicle fuel	green hydrogen based.	to reduce greenhouse
Floctrify		100% of pow	Samo as BAP assumption	Avcon L Malinatz	emission	consumption	consumption	Light-duty commercial	gases and improve fuel
Dersonal		sales by 2035	Same as DAI assumption	M (2018) Reaching	standards	rates reflect the	rates reflect the	vehicles are 100%	economy for model
vehicles	50105	501C3 Dy 2000		30% plug-in vehicle		implementation	implementation	electric by 2050	years 2017-2025
verneies				sales by 2030.		of the U.S.	of the U.S.	(Taxi-Fleet).	cars and light trucks.
				Modeling incentive		Corporate	Corporate		Retrieved from https://
				and sales mandate		Average Fuel	Average Fuel		www3.epa.gov/otaq/
				strategies in Canada.		Economy (CAFE)	Economy (CAFE)		climate/documents/
				Transportation Research		Fuel Standard	Fuel Standard		420f12050.pdf
				Part D: Transport and		for Light-Duty	for Light-Duty		Componente Aviene de Final
				Environment Volume 65,		Phase 1 and	Phase 1 and		Corporate Average Fuer
				Pages 596-617		Phase 2 of	Phase 2 of		from: http://www.phtsp
				Canada, N. R. (2021).		FPA HDV Fuel	FPA HDV Fuel		aov/fuel-economy
				Government of Canada.		Standards for	Standards for		goviner ceonomy
				Retrieved from https://		Medium- and	Medium- and		SOR/2010-201
				www.nrcan.gc.ca/		Heavy-Duty	Heavy-Duty		Passenger Automobile
				energy-efficiency/		Vehicles.	Vehicles.		and Light Truck
				transportation-					Greenhouse Gas
				alternative-fuels/					Emission Regulations.
				zero-emission-		Light duty:	Light duty:		Retrieved from: http://
				venicie-initastructure-		2015:	2015:		laws-lois.justice.gc.ca
						200 gCO ₂ e/km	200 gCO ₂ e/km		
Electrify	No change to EV	100% of new	Same as BAP assumption	Canada, N. R. (2021).		2025:	2025:		SOR/2018-98.
commercial	sales	sales for light-		Government of Canada.		119 gCO ₂ e/km	119 gCO ₂ e/km		Regulations Amending
venicles		duty vehicles by		Retrieved from https://		2030:	2030:		the Heavy-duty Vehicle
		2035		www.nrcan.gc.ca/		105 gCO ₂ e/km	105 gCO ₂ e/km		and Engine Greenhouse
				transportation					Gas Emission
				altornativo-fuols/		Heavy duty:	Heavy duty:		Regulations and other
				zero-emission-		20% reduction	20% reduction		Regulations Made
				vehicle-infrastructure-		in emissions	in emissions		Under the Canadian
				program/21876		2025 relative	2025 relative		Act 1000 Patriavad
Vahiela	Calculated in the	Calculated in the		Evport optimator		to 2015 and	to 2015 and		from: https://pollution
kilometres				derived from location of		2/1% reduction	21% reduction		waste canada ca
travelled	muuer	MUUEI		residents into schools			in emissions		waste.canada.ca
				and other services.		intensity in 2030	intensity in 2030		
				Average trip lengths		relative to 2015	relative to 2015		
				derived from Statistics					
				Canada. (see text of					
				DMA for further details)					

CATEGORY	BAU ASSUMPTION	BAP ASSUMPTION	NET-ZERO ASSUMPTION	SOURCE		CATEGORY	BAU ASSUMPTION	BAP ASSUMPTIO
Vehicle stock	All vehicle stock unchanged other than natural turnover. The total number of personal use and corporate vehicles is proportional to the projected number of households in the BAU.	Personal vehicle stock changes between 2016 and2050. Commercial vehicle stock unchanged between 2016 and2050. The total number of personal use and corporate vehicles is proportional to the projected number of households in the BAU.	Personal vehicle stock changes between 2016 and2050. Commercial vehicle stock unchanged between 2016 and 2050. The total number of personal use and corporate vehicles is proportional to the projected number of households in the BAU.	CANSIM and Natural Resources Canada's Demand and Policy Analysis Division.		Waste treatment Water/ wastewater	No change is waste treatment Not included	No change is waste treatment
Water and Was	ite					Industry and Ag	griculture	
Waste Waste	1250 kg/	1250 kg/		BAU and BAP: City of		Industrial efficiencies	No change	No change
generation	household year—	household/		Winnipeg Solid Waste		Agriculture	No change	No change
	no change	year— no change		Division	_	Sequestration a	and Land Accounting	
Waste diversion	No change to waste diversion	Residential waste diversion: 50% by 2025 59% by 2030	75% residential diversion, 80% ICI and construction/demolition waste	Comprehensive Waste Management Strategy (2011). Retrieved from http://clkapps.winnipeg.		Natural areas	Not included	Not included
		ICI waste:		DocExt/ViewDoc.		Renewable Ene	ergy Procurement	
		By 2025,the City manages 31% of waste.		asp?Document TypeId=2& DocId=3673		Purchases of renewable electricity	Not included	Not included
		By 2040, 80% diversion.				Purchases of renewable natural gas	Not included	Not Included
		C&D waste: By 2025, the City manages 25% of waste.By 2040, 80% diversion.			_			

ON	NET-ZERO ASSUMPTION	SOURCE
nt	Increase efficiency by 30% by 2050; upgrades of sludge handling will reduce GHG emissions associated with the blower energy consumption.	
	By 2050, biogas production: 75% methane recovery and conversion to biogas.	
	By 2050, 25% reduction in water/wastewater consumption (behaviour change, leak detection system, greywater reuse).	
	Effect of Action 1, land use and remaining net populations put in greenfield areas.	
	Calculate remaining emissions needed to get to net zero.	
	Calculate remaining emissions needed to get to net zero	

Appendix B: Business-as-Usual, Business-as-Planned, and Net-Zero Scenario Modelling Assumptions and Results

December 2021

About this Document

This report was developed by SSG as a technical resource to support and inform the development of the City of Winnipeg's Community Energy Investment Roadmap. This report details the key energy use and greenhouse gas (GHG) assumptions used to model Winnipeg's 2016 to 2050 business-as-usual (BAU),

Disclaimer

We used reasonable skill, care, and diligence to assess the information acquired during the preparation of this analysis; however, no guarantees or warranties are made regarding the accuracy or completeness of this information. This document, the information it contains, the information and basis on which it relies, and the associated factors are subject to changes beyond the control of the author. The information provided by others is believed to be accurate but has not been verified.

This analysis includes strategic-level estimates of the City of Winnipeg that should not be relied upon for design or other purposes without verification. The authors business-as-planned (BAP), and net-zero energy scenarios (NZS), as well as the model results.

A separate document, the Data, Methods, and Assumptions Manual, details the model used to produce the results outlined in this document.

do not accept responsibility for the use of this analysis for any purpose other than that stated above, and do not accept responsibility to any third party for the use, in whole or in part, of the contents of this document. This analysis applies to the City of Winnipeg and cannot be applied to other jurisdictions without analysis. Any use by the City of Winnipeg, its sub-consultants or any third party, or any reliance on or decisions based on this document, are the responsibility of the user or third party.

Contents

Summary of BAU Community Ener Buildings Energy Transportation En Waste Emissions

Tables

Table 1. Summary as-planned (BAP) modelled for the City of Wi Roadmap.

Table 2. Per capir 2016 and 2050 in and net-zero scen

Table 3. Commun business-as-usua and a net-zero sc

Table 4. Commu in a business-asand a net-zero se

Table 5. Commu 2016 and 2050 i planned scenario

Table 6. Commu and 2050 in a bu scenario, and a n

Table 7. Buildings energy a business-as-usual scer and a net-zero scenario.

J, BAP, and NZS Actions ······40
rgy and Emissions49
and Emissions58
nergy and Emissions66
, 74

ry of the business-as-usual (BAU), business- r), and net-zero scenario (NZS) assumptions
'innipeg's Community Energy Investment 40
ita community energy use and emissions in in a business-as-usual, business-as-planned, mario49
unity energy use, by fuel, in 2016 and 2050 in a al scenario, a business-as-planned scenario, cenario50
unity energy use, by sector, in 2016 and in 2050 usual scenario, a business-as-planned scenario, cenario52
inity greenhouse gas emissions, by sector, in in a business-as-usual scenario, a business-as- o, and a net-zero scenario54
unity greenhouse gas emissions, by fuel, in 2016 usiness-as-usual scenario, a business-as-planned net-zero scenario56
as energy use in 2016 and 2050, by end use, in ual scenario, a business-as-planned scenario, cenario58

Table 8. Buildings energy use in 2016 and 2050, by fuel, in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario
Table 9. Building greenhouse gas emissions in 2016 and 2050, by end use, in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario62
Table 10. Building greenhouse gas emissions in 2016 and 2050, by fuel, in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario
Table 11. Transportation energy use in 2016 and 2050, by fuel,in a business-as-usual scenario, a business-as-planned scenario,and a net-zero scenario.66
Table 12. Transportation energy use in 2016 and 2050, by vehicle type, in a business-as-usual scenario, a business-as- planned scenario, and a net-zero scenario
Table 13. Transportation greenhouse gas emissions in 2016 and2050, by fuel, in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario.70
Table 14. Transportation greenhouse gas emissions in 2016 and 2050, by vehicle type, in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario72

Table 15. Waste greenhouse gas emissions, by waste type, in2016 and 2050 in a business-as-usual scenario and a net-zeroscenario.74

Figures

Figure 1. Energy use per capita in a business-as-usual, business- as-planned, and net-zero scenario, 2016–205049
Figure 2. Greenhouse gas emissions per capita in a business-as- usual, business-as-planned, and net-zero scenario, 2016-2050.
Figure 3. Community energy use, by fuel, in a business-as-usual scenario, 2016–205050
Figure 4. Community energy use, by fuel, in a business-as- planned scenario, 2016–2050
Figure 5. Community energy use, by fuel, in a net-zero scenario, 2016–2050
Figure 6. Community energy use, by sector, in a business-as- usual scenario, 2016–205052
Figure 7. Community energy use, by sector, in a business-as- planned scenario, 2016–205053
Figure 8. Community energy use, by sector, in a net-zero scenario, 2016–205053
Figure 9. Community greenhouse gas emissions, by sector, in a business-as-usual scenario, 2016–205054
Figure 10. Community greenhouse gas emissions, by sector, in a business-as-planned scenario, 2016–205055
Figure 11. Community greenhouse gas emissions, by sector, in a net-zero scenario, 2016–205055
Figure 12. Community greenhouse gas emissions, by fuel, in a business-as-usual scenario, 2016–205056

Figure busine	e 13. Community greenhouse gas emissions, by fuel, in a ess-as-planned scenario, 2016–205057	
Figure net-ze	e 14. Community greenhouse gas emissions, by fuel, in a ro scenario, 2016–2050	
Figure usual	e 15. Building energy use, by end use, in a business-as- scenario, 2016–2050. ······59	
Figure plann	e 16. Building energy use, by end use, in a business-as- ed scenario, 2016–205059	
Figure scena	e 17. Building energy use, by end use, in a net-zero rio, 2016–2050. ·····60	
Figure usual	e 18. Building energy use, by fuel type, in a business-as- scenario, 2016–2050.	
Figure plann	e 19. Building energy use, by fuel type, in a business-as- ed scenario, 2016–2050	
Figure scena	e 20. Building energy use, by end use, in a net-zero rio, 2016–205062	
Figure busine	e 21. Building greenhouse gas emissions, by end use, in a ess-as-usual scenario, 2016–2050	
Figure busine	e 22. Building greenhouse gas emissions, by end use, in a ess-as-planned scenario, 2016–2050	
Figure net-ze	e 23. Building greenhouse gas emissions, by end use, in a Pro scenario, 2016–205064	
Figure busine	e 24. Building greenhouse gas emissions, by fuel, in a ess-as-usual scenario, 2016–2050	
Figure busine	e 25. Building greenhouse gas emissions, by fuel, in a ess-as-planned scenario, 2016–205065	
Figure zero s	e 26. Building greenhouse gas emissions, by fuel, in a net- cenario, 2016–2050. ·····66	
Figure usual	e 27. Transportation energy use, by fuel, in a business-as- scenario, 2016–2050. ·····67	

Figure 28. Transp planned scenario

Figure 29. Transp scenario, 2016–20

Figure 30. Transp business-as-usual

Figure 31. Transpo business-as-plann

Figure 32. Transp zero scenario, 20

Figure 33. Transp type, in a busines

Figure 34. Transp type, in a busines

Figure 35. Transp type, in a net-zerc

Figure 36. Transp type, in a busines

Figure 37. Transpo type, in a busines

Figure 38. Transp type, in a net-zerc

Figure 39. Waste usual scenario, 20

Figure 40. Waste emiss scenario, 2016–2050.

portation energy use, by fuel, in a business-as- p, 2016–205067
portation energy use, by fuel, in a net-zero 205068
oortation energy use, by vehicle type, in a Il scenario, 2016–2050
portation energy use, by vehicle type, in a ned scenario, 2016–205069
portation energy use, by vehicle type, in a net- 016–2050 70
oortation greenhouse gas emissions, by fuel ss-as-usual scenario, 2016–2050
oortation greenhouse gas emissions, by fuel ss-as-planned scenario, 2016–2050 71
oortation greenhouse gas emissions, by fuel o scenario, 2016–205072
oortation greenhouse gas emissions, by vehicle ss-as-usual scenario, 2016–205073
portation greenhouse gas emissions, by vehicle ss-as-planned scenario, 2016–205073
oortation greenhouse gas emissions, by vehicle o scenario, 2016–205074
e emissions, by waste type, in a business-as- 2016–2050 75
e emissions, by waste type, in a net-zero 205075

Summary of BAU, BAP, and NZS Actions

Table 1. Summary of the business-as-usual (BAU), business-as-planned (BAP), and net-zero scenario (NZS) assumptions modelled for the City of Winnipeg's Community Energy Investment Roadmap.

CATEGORY	BAU ASSUMPTION	BAP ASSUMPTION	NET-ZERO ASSUMPTION	SOURCE					
Population and employment									
Population	Increases by 34% by 2050 from 2016 total	Same as BAU	Same as BAU	City					
Employment Increases by 33% by 2050 Sa from 2016 total		Same as BAU	Same as BAU	City					
Buildings									
New buildings	growth								
Building growth	Dwelling projections	Dwelling projections Residential growth	20% of new dwellings to be single- detached by 2050	BAU and BAP: Data derived from PLUM model					
projections	Residential growth (2016– 2050)	(2016–2050) Non-residential growth							
	2000)	(2016–2050)							
	Non-residential growth (2016–2050)								

CATEGORY

New buildings e

Residential

Industrial

Multiresidential Commercial

and

institutional

BAU ASSUMPTION BAP ASSUMPTION		NET-ZERO ASSUMPTION	SOURCE
energy performance			
No improvements to new building standards	Assume base rate of 5% improvement every 5 years	As of 2031, all new homes have 50% annual load coverage by solar PV. By increasing storage capacity (i.e. batteries) with every renewable that is installed, reduce curtailment (i.e. the amount of time renewable energy supply is simply turned off, because it is not needed at that exact moment on the electricity grid) from 15% to 10% as renewables are installed. All new buildings are substantially more efficient and electric by 2030. Efficiency improvements are modelled as follows: 2022: 2013 NBC 2024: 10% better 2026: 20% better 2030: 40% better	BAU and BAP: Derived from PLUM model
No improvements to new building standards	Assume base rate of 5% improvement every 5 years		
No improvements to new building standards	Assume base rate of 5% improvement every 5 years	Include rooftop PV All new buildings are substantially more efficient and electric by 2030. Efficiency improvements are modelled as follows: 2022: NECB 2020 2024: 25% better 2026: 50% better 2030: 60% better	_
No improvements to new building standards	Assume base rate of 5% improvement every 5 years		

CATEGORY	BAU ASSUMPTION	BAP ASSUMPTION	NET-ZERO ASSUMPTION	SOURCE	CATEGORY	BAU ASSUMPTION	BAP ASSUMPTION	NET-ZERO ASSUMPTION	SOURCE	
Existing building	xisting buildings retrofitting					Renewable energy generation (on-site, building scale)				
Residential Multi-	_		Starting in 2021 and finishing by 2035, exponentially retrofit all dwellings built		Installation of heat pumps	NA	NA	100% of buildings by 2050		
residential			before 1980 to achieve an average thermal savings of 50% and an electrical savings of 50%. The retrofit includes shifting to on-demand water heaters and heat pumps for space heating. Starting in 2035 and finishing by 2050,		Solar PV	NA	NA	Starting in 2021, install solar PV on 50% pre-2016 buildings, achieving, on average, 50% of building electric load, scaling up to 50% of these buildings by 2050.		
		exponentially retrofit all dwellings built		Energy generat	ion					
		Assume a 1% annual	1980 dwellings).		Low- or zero-carbon energy generation (community scale)					
	No retrofitting of existing building stock	renovation rate of building stock, with a 10% energy reduction	This achieves an average thermal savings of 50% and an electrical savings of		Rooftop solar PV	Existing solar PV hold constant	Existing solar PV hold constant	We assume the current generation holds constant to 2050.		
			on-demand water heaters and heat pumps for space heating.		Ground mount solar	Existing solar PV hold constant	Existing solar PV hold constant	We assume the current generation holds constant to 2050.		
Commercial and	_		Starting in 2021, increase efficiency by 50% by 2050 (linearly).		District energy generation			We assume the current generation holds constant to 2050.		
institutional	_		Charting in 2021 in another official state	_	Wind	Existing wind holds constant	Existing wind holds constant	We assume the current generation holds constant to 2050.		
Industrial			Starting in 2021, increase efficiency to reduce overall process-related energy consumption by 33% by 2050 (linear).		Transport					
					Transit					
End use					Expanded transit	No expansion of fleet	No expansion of fleet	Expand transit		
Space heating Water heating Space cooling	Fuel shares for end use unchanged; held from – 2016–2050 –	Fuel shares for end use unchanged; held from 2016–2050	Fuel shares for end use unchanged; held from 2016–2050	Canadian Energy Systems Analysis Research. Canadian Energy System Simulator. Retrieved from http:// www.cesarnet.ca/research/ caness-model	Electrify transit system	No electrification of fleet	8% of fleet is electrified by 2030	100% by 2035	Winnipeg's Climate Action Plan: Planning for Climate Change. Acting for People. Retrieved from: https://winnipeg.ca/ Sustainability/PublicEngagement/	
Projected clima	te impacts								ClimateActionPlan/	
Heating and cooling degree days	Heating degree days are expected to decrease, and cooling degree days will increase.	Heating degree days are expected to decrease, and cooling degree days will increase.	Heating degree days are expected to decrease, and cooling degree days will increase.	Downscaled climate data from Pacific Climate Impacts Consortium. Retrieved from Climateatlas.ca - BCCAqv2					#tab-relatedlinks	

CATEGORY	BAU ASSUMPTION	BAP ASSUMPTION	NET-ZERO ASSUMPTION	SOURCE	CATEGORY	BAU ASSUMPTION	BAP ASSUMPTION	NET-ZERO ASSUMPTION	SOURCE
Active Mode share No c	No change to mode shares Proportional change in mode share: increasing transit mode share. By 2031, pm peak: 79% vehicle trips 11% transit	hares Proportional change in Mome-based work/transportation mode share: increasing marketing and individual planning: transit mode share. "Private vehicle trips decline by 9% per By 2031, pm peak: person and vehicular trip lengths decline 79% vehicle trips 6%. All areas of Winnipeg are affected. 11% transit mode share.		Electrify commercial vehicles	No change to EV sales	100% of new sales for light- duty vehicles by 2035	Same as BAP assumption	Canada, N. R. (2021). Government of Canada. Retrieved from https://www. nrcan.gc.ca/energy-efficiency/ transportation-alternative-fuels/ zero-emission-vehicle-infrastructure- program/21876	
		7% active 3% school bus 2016 pm peak: 80% vehicle trips 10% transit 7% active 3% school bus	work." Increase/improve cycling and walking infrastructure: "By 2050, mode shift 50% of 2 km trips to walking and 5 km to cycling."		Vehicle kilometres travelled	Calculated in the model	Calculated in the model		Expert estimates derived from location of residents, jobs, schools, and other services. Average trip lengths derived from Statistics Canada (see text of DMA for further details).
Private/persona	luse								
Electrify municipal fleet	No change to municipal fleets	No change to municipal fleets	100% electric by 2035						
Electrify personal vehicles	No change to EV sales	100% of new sales by 2035	Same as BAP assumption	Axsen, J., Wolinetz, M. (2018). Reaching 30% plug-in vehicle sales by 2030: Modeling incentive and sales mandate strategies in Canada. Transportation Research Part D: Transport and Environment Volume 65, Pages 596-617 Canada, N. R. (2021). Government of Canada. Retrieved from https://www. nrcan.gc.ca/energy-efficiency/ transportation-alternative-fuels/ zero-emission-vehicle-infrastructure- program/21876					

CATEGORY	BAU ASSUMPTION	BAP ASSUMPTION	NET-ZERO ASSUMPTION	SOURCE	CATEGORY	BAU ASSUMPTION	BAP ASSUMPTION	NET-ZERO ASSUMPTION	SOURCE
Vehicle fuel efficiencies/ tailpipe emission standards	CAFE fuel standards: Vehicle fuel consumption rates reflect the implementation of the U.S. Corporate Average Fuel Economy (CAFE) Fuel Standard for Light-Duty Vehicles and Phase 1 and Phase 2 of EPA HDV Fuel Standards for Medium- and	CAFE fuel standards: Vehicle fuel consumption rates reflect the implementation of the U.S. Corporate Average Fuel Economy (CAFE) Fuel Standard for Light-Duty Vehicles and Phase 1 and Phase 2 of EPA HDV Fuel	By 2040, all heavy-duty vehicles (semi- trucks) are green hydrogen based. Light-duty commercial vehicles are 100% electric by 2050 (Taxi-Fleet).	EPA. (2012). EPA and NHTSA set standards to reduce greenhouse gases and improve fuel economy for model years 2017–2025 cars and light trucks. Retrieved from https://www3.epa.gov/otaq/ climate/documents/ 420f12050.pdf Corporate Average Fuel Economy.	Vehicle stock	All vehicle stock unchanged other than natural turnover. The total number of personal- use and corporate vehicles is proportional to the projected number of households in the BAU.	Personal vehicle stock changes between 2016– 2050. Commercial vehicle stock unchanged 2016– 2050. The total number of personal-use and corporate vehicles is proportional to the projected number of households in the BAU.	Personal vehicle stock changes between 2016–2050. Commercial vehicle stock unchanged 2016–2050. The total number of personal-use and corporate vehicles is proportional to the projected number of households in the BAU.	CANSIM and Natural Resources Canada's Demand and Policy Analysis Division.
	Heavy-Duty Vehicles.	Standards for Medium- and Heavy-Duty Vehicles	or Medium- and Vehicles. /km /km /km y: Juction in Intensity by 2025 015 and a 24% In emissions 2030 relative to	Retrieved from: http://www.nhtsa. gov/fuel-economy	Water and was	te			
				SOR/2010-201. Passenger	Waste				
	Light duty:			Automobile and Light Truck Greenhouse Gas Emission	Waste generation	1250 kg/household/year— no change	1250 kg/household/year— no change	1250 kg/household/year—no change	BAU and BAP: City of Winnipeg Solid Waste Division
	2015: 200 gCO ₂ e/km 2025: 119 gCO ₂ e/km 2030: 105 gCO ₂ e/km Heavy duty: A 20% reduction in emissions intensity by 2025 relative to 2015 and a 24% reduction in	Light duty: 2015: 200 gCO_2e/km 2025: 119 gCO_2e/km 2030: 105 gCO_2e/km Heavy duty: A 20% reduction in emissions intensity by 2025		Regulations. Retrieved from: http://laws-lois.justice.gc.ca SOR/2018-98. Regulations Amending the Heavy-Duty Vehicle and Engine Greenhouse Gas Emission Regulations and other Regulations Made Under the Canadian Environmental Protection Act, 1999. Retrieved from: https://pollution- waste.canada.ca	Waste diversion	No change to waste diversion	Residential waste diversion: 50% by 2025 59% by 2030 ICI waste: By 2025, 31% of waste managed by City By 2040, 80% diversion. C&D waste: By 2025, 25% of waste managed by City. By 2040, 80% diversion.	75% residential diversion, 80% ICI, and construction/demolition waste.	Comprehensive Waste Management Strategy (2011). Retrieved from http://clkapps .winnipeg.ca/ DMIS/DocExt/ViewDoc. asp?Document Typeld=2&DocId =3673
	emissions intensity in 2030 relative to 2015.	relative to 2015 and a 24% reduction in emissions intensity in 2030 relative to 2015.			Waste treatment	No change to waste treatment.	No change to waste treatment.	Increase efficiency by 30% by 2050. Upgradingsludge handling will reduce GHG emissions associated with the blower energy consumption. By 2050, biogas production: 75% methane recovery and conversion to biogas.	
			Water/ wastewater	Not included	Not included	By 2050, 25% reduction in water/ wastewater consumption (behaviour change, leak detection system,			

greywater reuse).

CATEGORY	BAU ASSUMPTION	BAP ASSUMPTION	NET-ZERO ASSUMPTION	SOURCE	Commun
Industry and a	griculture				Commun
Industrial efficiencies	No change	No change	Starting in 2021, increase efficiency by 50% by 2050 (linearly).		Table 2. Per cc and net-zero s
Agriculture	No change	No change	No change		_
Sequestration	and land accounting				
Natural areas	Not included	Not included	Effect of Action 1, land use and remaining net populations put in greenfield areas		Per capita energ
Renewable en	ergy procurement				(GJ/cap)
Purchases of renewable electricity	Not included	Not included	Calculate remaining emissions needed to get to net zero		Per capita emiss (tCO ₂ eJ/cap)
Purchases of renewable natural gas	Not included	Not Included	Calculate remaining emissions needed to get to net zero		160

mmunity Energy and Emissions

e 2. Per capita community energy use and emissions in 2016 and 2050 in a business-as-usual, business-as-planned, net-zero scenario.

	2016	2050 BAU	2050 BAP	2050 NZS	% +/- 2016-2050NZS	% +/- 2050 BAU- 2050 NZS	% +/- 2050 BAP- 2050 NZS
capita energy cap)	134,306	110,544	86,259	45,903	-66%	-58%	-47%
capita emissions 9 ₂ eJ/cap)	6.2	4.9	2.8	0.3	-95%	-95%	-91%
60					7		
_					6		

-----BAU

—— BAP

—NZS

Table 3. Community energy use, by fuel, in 2016 and 2050 in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario.

ENERGY BY FUEL (GJ)	2016	SHARE 2016	2050 BAU	SHARE 2050	2050 BAP	SHARE 2050	2050 NZS	SHARE 2050	% +/- 2016-2050 NZS	% +/- 2050 BAU- 2050 NZS	% +/- 2050 BAP- 2050 NZS
Coal	27,881	0%	32,744	0%	32,755	0%	21,787	0%	-22%	-33%	-33%
Diesel	7,694,175	8%	7,544,074	7%	6,189,211	7%	9,280	0%	-100%	-100%	-100%
Gasoline	26,858,500	27%	24,890,180	23%	679,677	1%	23,470	0%	-100%	-100%	-97%
Grid electricity	25,409,671	26%	30,678,533	28%	37,075,028	43%	24,461,338	65%	-4%	-20%	-34%
Hydrogen	0	0%	0	0%	0	0%	1,733,633	5%	100%	100%	100%
Local electricity	0	0%	0	0%	0	0%	7,966,833	21%	100%	100%	100%
Natural gas	36,446,759	37%	44,942,529	41%	40,110,579	47%	0	0%	-100%	-100%	-100%
Other	199,188	0%	201,528	0%	170,544	0%	24,479	0%	-88%	-88%	-86%
Propane	806,720	1%	992,746	1%	858,325	1%	643	0%	-100%	-100%	-100%
RNG	0	0%	0	0%	0	0	3,221,456	9%	100%	100%	100%
Wood	942,474	1%	864,611	1%	833,508	1%	299,482	1%	-68%	-65%	-64%
TOTAL	98,385,368	100%	110,146,946	100%	85,949,627	100%	37,762,402	100%	-62%	-66%	-56%

Figure 3. Community energy use, by fuel, in a business-as-usual scenario, 2016–2050.

50

```
S)
GJ (millio
```


Figure 4. Community energy use, by fuel, in a business-as-planned scenario, 2016–2050.

Figure 5. Community energy use, by fuel, in a net-zero scenario, 2016–2050.

Table 4. Community energy use, by sector, in 2016 and in 2050 in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario.

ENERGY BY SECTOR(GJ)	2016	SHARE 2016	2050 BAU	SHARE 2050	2050 BAP	SHARE 2050	2050 NZS	SHARE 2050	% +/- 2016- 2050 NZS	% +/- 2050 BAU- 2050 NZS	% +/- 2050 BAP- 2050 NZS
Commercial	26,400,481	27%	34,914,321	32%	31,206,338	36%	12,806,665	34%	-51%	-63%	-59%
Industrial	13,551,869	14%	15,298,864	14%	13,343,020	16%	7,334,085	19%	-46%	-52%	-45%
Residential	24,491,230	25%	27,487,794	25%	25,552,024	30%	8,311,706	22%	-66%	-70%	-67%
Transportation	33,941,789	34%	32,445,966	29%	15,848,245	18%	9,309,946	25%	-73%	-71%	-41%
TOTAL	98,385,368	100%	110,146,946	100%	85,949,627	100%	37,762,402	100%	-62%	-66%	-56%

Figure 6. Community energy use, by sector, in a business-as-usual scenario, 2016–2050.

(suc G (mi

Figure 8. Community energy use, by sector, in a net-zero scenario, 2016–2050.

Figure 7. Community energy use, by sector, in a business-as-planned scenario, 2016–2050.

Table 5. Community greenhouse gas emissions, by sector, in 2016 and 2050 in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario.

EMISSIONS BY SECTOR (TCO ₂ E)	2016	SHARE 2016	2050 BAU	SHARE 2050	2050 BAP	SHARE 2050	2050 NZS	SHARE 2050	% +/- 2016- 2050 NZS	% +/- 2050 BAU- 2050 NZS	% +/- 2050 BAP- 2050 NZS
Agriculture	8,619	0%	8,619	0%	8,619	0%	8,619	3%	0%	0%	0%
Commercial	922,964	20%	1,162,128	24%	1,007,505	36%	1,263	0%	-100%	-100%	-100%
Fugitive	44,180	1%	54,478	1%	48,621	2%	0	0%	-100%	-100%	-100%
Industrial	238,573	5%	265,869	5%	248,562	9%	4,820	2%	-98%	-98%	-98%
Residential	748,824	17%	891,550	18%	813,551	29%	708	0%	-100%	-100%	-100%
Transportation	2,285,831	51%	2,145,883	44%	441,481	16%	2,777	1%	-100%	-100%	-99%
Waste	276,035	6%	392,043	8%	263,539	9%	247,901	93%	-10%	-37%	-59%
TOTAL	4,525,026	100%	4,920,570	100%	2,831,877	100%	266,088	100%	-94%	-95%	-91%

Figure 10. Community greenhouse gas emissions, by sector, in a business-as-planned scenario, 2016–2050.

Figure 11. Community greenhouse gas emissions, by sector, in a net-zero scenario, 2016–2050.

Table 6. Community greenhouse gas emissions, by fuel, in 2016 and 2050 in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario.

EMISSIONS BY FUEL (TCO ₂ E)	2016	SHARE 2016	2050 BAU	SHARE 2050	2050 BAP	SHARE 2050	2050 NZS	SHARE 2050	% +/- 2016-2050 NZS	% +/- 2050 BAU- 2050 NZS	% +/- 2050 BAP- 2050 NZS
Coal	14	0%	31	0%	31	0%	18	0%	26%	-99%	-99%
Diesel	550,547	12%	539,859	11%	442,369	16%	662	0%	-100%	-100%	-100%
Gasoline	1,790,769	40%	1,659,868	34%	46,102	2%	1,561	1%	-100%	-100%	-100%
Grid electricity	15,229	0%	4,337	0%	5,241	0%	3,458	1%	-77%	-99%	-99%
Natural gas	1,772,016	39%	2,185,082	44%	1,950,152	69%	0	0%	-100%	-100%	-100%
Non-energy	328,834	7%	455,140	9%	320,779	11%	256,520	96%	-22%	-99%	-99%
Other	2,945	0%	3,459	0%	3,460	0%	2,301	1%	-22%	-99%	-99%
Propane	49,340	1%	60,718	1%	52,497	2%	39	0%	-100%	-100%	-100%
RNG	0	0%	0	0%	0	0%	918	0%	100%	100%	100%
Wood	15,331	0%	12,077	0%	11,247	0%	611	0%	-96%	-100%	-100%
TOTAL	4,525,026	100%	4,920,570	100%	2,831,877	100%	266,088	100%	-94%	-100%	-100%

Figure 13. Community greenhouse gas emissions, by fuel, in a business-as-planned scenario, 2016–2050.

Figure 14. Community greenhouse gas emissions, by fuel, in a net-zero scenario, 2016–2050.

Buildings Energy and Emissions

Table 7. Buildings energy use in 2016 and 2050, by end use, in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario.

ENERGY BY END USE (GJ)	2016	SHARE 2016	2050 BAU	SHARE 2050	2050 BAP	SHARE 2050	2050 NZS	SHARE 2050	% +/- 2016- 2050 NZS	% +/- 2050 BAU- 2050 NZS	% +/- 2050 BAP- 2050 NZS
Industrial processes	7,780,157	12%	8,802,377	11%	8,804,807	13%	5,929,451	21%	-24%	-99%	-99%
Lighting	4,874,928	8%	6,533,685	8%	5,710,336	8%	2,787,525	10%	-43%	-100%	-100%
Major appliances	2,510,160	4%	3,599,023	5%	3,565,282	5%	1,963,975	7%	-22%	-99%	-99%
Plug load	5,233,036	8%	7,476,694	10%	7,213,977	10%	4,276,962	15%	-18%	-99%	-99%
Space cooling	656,175	1%	972,275	1%	802,374	1%	382,581	1%	-42%	-100%	-100%
Space heating	36,869,363	57%	41,768,930	54%	37,003,510	53%	11,183,375	39%	-70%	-100%	-100%
Water heating	6,519,763	10%	8,548,002	11%	7,001,096	10%	1,928,586	7%	-70%	-100%	-100%
TOTAL	64,443,581	100%	77,700,988	100%	70,101,382	100%	28,452,454	100%	-56%	-100%	-100%

Figure 15. Building energy use, by end use, in a business-as-usual scenario, 2016–2050.

Figure 16. Building energy use, by end use, in a business-as-planned scenario, 2016–2050.

Figure 17. Building energy use, by end use, in a net-zero scenario, 2016–2050.

Table 8. Buildings energy use in 2016 and 2050, by fuel, in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario.

ENERGY BY FUEL (GJ)	2016	SHARE 2016	2050 BAU	SHARE 2050	2050 BAP	SHARE 2050	2050 NZS	SHARE 2050	% +/- 2016-2050 NZS	% +/- 2050 BAU- 2050 NZS	% +/- 2050 BAP- 2050 NZS
Coal	27,881	0%	32,744	0%	32,755	0%	21,787	0%	-22%	-99%	-99%
Diesel	779,334	1%	757,420	1%	678,882	1%	7,203	0%	-99%	-100%	-100%
Grid electricity	25,409,151	39%	30,074,215	39%	27,550,606	39%	16,910,621	59%	-33%	-99%	-99%
Local electricity	0	0%	0	0%	0	0%	7,966,833	28%	100%	100%	100%
Natural gas	36,446,761	57%	44,942,536	58%	40,110,580	57%	0	0%	-100%	-100%	-100%
Other	31,262	0%	36,715	0%	36,726	0%	24,429	0%	-22%	-99%	-99%
Propane	806,720	1%	992,746	1%	858,326	1%	643	0%	-100%	-100%	-100%
RNG	0	0%	0	0%	0	0%	3,221,456	11%	100%	100%	100%
Wood	942,474	1%	864,611	1%	833,508	1%	299,482	1%	-68%	-100%	-100%
TOTAL	64,443,581	100%	77,700,988	100%	70,101,382	100%	28,452,454	100%	-56%	-100%	-100%

Figure 18. Building energy use, by fuel type, in a business-as-usual scenario, 2016–2050.

Figure 19. Building energy use, by fuel type, in a business-as-planned scenario, 2016–2050.

Figure 20. Building energy use, by end use, in a net-zero scenario, 2016–2050.

Table 9. Building greenhouse gas emissions in 2016 and 2050, by end use, in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario.

EMISSIONS BY END USE (TCO ₂ E)	2016	SHARE 2016	2050 BAU	SHARE 2050	2050 BAP	SHARE 2050	2050 NZS	SHARE 2050	% +/- 2016-2050 NZS	% +/- 2050 BAU- 2050 NZS	% +/- 2050 BAP- 2050 NZS
Industrial processes	185,376	10%	208,229	9%	208,297	10%	4,608	68%	-98%	-98%	-98%
Lighting	2,922	0%	924	0%	807	0%	271	4%	-91%	-71%	-66%
Major appliances	11,733	1%	15,314	1%	15,170	1%	198	3%	-98%	-99%	-99%
Plug load	3,136	0%	1,057	0%	1,020	0%	396	6%	-87%	-63%	-61%
Space cooling	5,543	0%	6,010	0%	4,216	0%	43	1%	-99%	-99%	-99%
Space heating	1,479,367	77%	1,792,439	77%	1,590,605	77%	1,065	16%	-100%	-100%	-100%
Water heating	222,285	12%	295,575	13%	249,503	12%	211	3%	-100%	-100%	-100%
TOTAL	1,910,361	100%	2,319,547	100%	2,069,618	100%	6,791	100%	-100%	-100%	-100%

Figure 21. Building greenhouse gas emissions, by end use, in a business-as-usual scenario, 2016–2050.

Figure 22. Building greenhouse gas emissions, by end use, in a business-as-planned scenario, 2016–2050.

Figure 23. Building greenhouse gas emissions, by end use, in a net-zero scenario, 2016–2050.

Table 10. Building greenhouse gas emissions in 2016 and 2050, by fuel, in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario.

EMISSIONS BY FUEL (TCO ₂ E)	2016	SHARE 2016	2050 BAU	SHARE 2050	2050 BAP	SSHARE 2050	2050 NZS	SHARE 2050	% +/- 2016-2050 NZS	% +/- 2050 BAU- 2050 NZS	% +/- 2050 BAP- 2050 NZS
Coal	14	0%	31	0%	31	0%	18	0%	26%	-42%	-42%
Diesel	55,486	3%	53,929	2%	48,336	2%	513	8%	-99%	-99%	-99%
Grid electricity	15,228	1%	4,251	0%	3,895	0%	2,390	35%	-84%	-44%	-39%
Natural gas	1,772,015	93%	2,185,082	94%	1,950,152	94%	0	0%	-100%	-100%	-100%
Other	2,945	0%	3,459	0%	3,460	0%	2,302	34%	-22%	-33%	-33%
Propane	49,340	3%	60,718	3%	52,497	3%	39	1%	-100%	-100%	-100%
RNG	0	0%	0	0%	0	0%	918	14%	100%	100%	100%
Wood	15,331	1%	12,077	1%	11,247	1%	611	9%	-96%	-95%	-95%
TOTAL	1,910,361	100%	2,319,547	100%	2,069,618	100%	6,791	100%	-100%	-100%	-100%

Figure 24. Building greenhouse gas emissions, by fuel, in a business-as-usual scenario, 2016–2050.

Figure 25. Building greenhouse gas emissions, by fuel, in a business-as-planned scenario, 2016–2050.

Figure 26. Building greenhouse gas emissions, by fuel, in a net-zero scenario, 2016–2050.

Transportation Energy and Emissions

Table 11. Transportation energy use in 2016 and 2050, by fuel, in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario.

ENERGY BY SOURCE (GJ)	2016	SHARE 2016	2050 BAU	SHARE 2050	2050 BAP	SHARE 2050	2050 NZS	SHARE 2050	% +/- 2016-2050 NZS	% +/- 2050 BAU- 2050 NZS	% +/- 2050 BAP- 2050 NZS
Diesel	6,914,841	21%	6,786,654	22%	5,510,329	39%	2,077	0%	-100%	-100%	-100%
Gas	25,429,581	79%	23,461,264	76%	679,677	5%	23,470	0%	-100%	-100%	-97%
Grid	521	0%	604,319	2%	8,095,502	57%	6,121,796	78%	1174858%	913%	-24%
electricity											
Hydrogen	0	0%	0	0%	0	0%	1,733,633	22%	100%	100%	100%
TOTAL	32,344,943	100%	30,852,237	100%	14,285,508	100%	7,880,975	100%	-76%	-74%	-45%

Figure 27. Transportation energy use, by fuel, in a business-as-usual scenario, 2016–2050.

Figure 28. Transportation energy use, by fuel, in a business-as-planned scenario, 2016–2050.

Figure 29. Transportation energy use, by fuel, in a net-zero scenario, 2016–2050.

Table 12. Transportation energy use in 2016 and 2050, by vehicle type, in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario.

ENERGY BY VEHICLE(GJ)	2016	SHARE 2016	2050 BAU	SHARE 2050	2050 BAP	SHARE 2050	2050 NZS	SHARE 2050	% +/- 2016- 2050 NZS	% +/- 2050 BAU- 2050 NZS	% +/- 2050 BAP- 2050 NZS
Car	11,242,316	35%	7,570,824	25%	2,204,991	15%	1,601,444	20%	-86%	-79%	-27%
Heavy truck	5,728,487	18%	5,518,098	18%	5,517,243	39%	1,747,596	22%	-69%	-68%	-68%
Light truck	14,759,645	46%	17,148,821	56%	5,948,779	42%	4,316,907	55%	-71%	-75%	-27%
Urban bus	614,494	2%	614,494	2%	614,494	4%	215,028	3%	-65%	-65%	-65%
TOTAL	32,344,943	100%	30,852,237	100%	14,285,508	100%	7,880,975	100%	-76%	-74%	-45%

Figure 30. Transportation energy use, by vehicle type, in a business-as-usual scenario, 2016–2050.

Figure 31. Transportation energy use, by vehicle type, in a business-as-planned scenario, 2016–2050.

Figure 32. Transportation energy use, by vehicle type, in a net-zero scenario, 2016–2050.

Table 13. Transportation greenhouse gas emissions in 2016 and 2050, by fuel, in a business-as-usual scenario, a business-as-planned scenario, and a net-zero scenario.

EMISSIONS BY SOURCE (TCO ₂ E)	2016	SHARE 2016	2050 BAU	SHARE 2050	2050 BAP	SHARE 2050	2050 NZS	SHARE 2050	% +/- 2016-2050 NZS	% +/- 2050 BAU- 2050 NZS	% +/- 2050 BAP- 2050 NZS
Diesel	495,061	22%	485,930	23%	394,033	89%	149	5%	-100%	-100%	-100%
Gas	1,790,769	78%	1,659,868	77%	46,102	10%	1,561	56%	-100%	-100%	-97%
Grid electricity	0	0%	85	0%	1,346	0%	1,067	38%	100%	1155%	-21%
TOTAL	2,285,831	100%	2,145,883	100%	441,481	100%	2,777	100%	-100%	-100%	-99%

Figure 33. Transportation greenhouse gas emissions, by fuel type, in a business-as-usual scenario, 2016–2050.

Figure 34. Transportation greenhouse gas emissions, by fuel type, in a business-as-planned scenario, 2016–2050.

Figure 35. Transportation greenhouse gas emissions, by fuel type, in a net-zero scenario, 2016–2050.

EMISSIONS BY VEHICLE (TCO ₂ E)	2016	SHARE 2016	2050 BAU	SHARE 2050	2050 BAP	SHARE 2050	2050 NZS	SHARE 2050	% +/- 2016-2050 NZS	% +/- 2050 BAU- 2050 NZS	% +/- 2050 BAP- 2050 NZS
Car	750,480	33%	494,919	23%	1,124	0%	805	29%	-100%	-100%	-28%
Heavy truck	406,883	18%	391,921	18%	392,220	89%	18	1%	-100%	-100%	-100%
Light truck	985,563	43%	1,116,135	52%	3,994	1%	1,626	59%	-100%	-100%	-59%
Off-road	98,910	4%	98,910	5%	202	0%	202	7%	-100%	-100%	0%
Urban bus	43,994	2%	43,998	2%	43,941	10%	126	5%	-100%	-100%	-100%
TOTAL	2,285,831	100%	2,145,883	100%	441,481	100%	2,777	100%	-100%	-100%	-99%

Table 14. Transportation greenhouse gas emissions in 2016 and 2050, by vehicle type, in a business-as-usual scenario, a business-as-planned scenario, anda net-zero scenario.

Figure 36. Transportation greenhouse gas emissions, by vehicle type, in a business-as-usual scenario, 2016–2050.

Figure 37. Transportation greenhouse gas emissions, by vehicle type, in a business-as-planned scenario, 2016–2050.

Figure 38. Transportation greenhouse gas emissions, by vehicle type, in a net-zero scenario, 2016–2050.

Waste Emissions

Table 15. Waste greenhouse gas emissions, by waste type, in 2016 and 2050 in a business-as-usual scenario and a net-zero scenario.

EMISSIONS BY WASTE TYPE (TCO ₂ E)	2016	SHARE 2016	2050 BAU	SHARE 2050	2050 BAP	SHARE 2050	2050 NZS	SHARE 2050	% +/- 2016-2050 NZS	% +/- 2050 BAU- 2050 NZS	% +/- 2050 BAP- 2050 NZS
Biological	8,641	3%	11,674	3%	19,943	8%	25,285	10%	193%	117%	27%
Landfill	224,015	81%	327,021	83%	190,248	72%	178,284	72%	-20%	-45%	-6%
Wastewater	43,380	16%	53,348	14%	53,348	20%	44,332	18%	2%	-17%	-17%
TOTAL	276,035	100%	392,043	100%	263,539	100%	247,901	100%	-10%	-37%	-6%

 $\rm Kt CO_2 e$

Figure 40. Waste emissions, by waste type, in a net-zero scenario, 2016–2050.

Appendix C: CEIR Implementation Framework

December 2021

Purpose of this Document

The Implementation Framework provides guidance for the near-term implementation of the CEIR. It is not a comprehensive list, but is rather meant to be a quick guide. Many of these actions have the potential for greater efficiency and effectiveness if undertaken in collaboration with other neighbouring municipalities, levels of government, and organizations.

Zero Emissions Buildings

	TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS
Program #1: Zero En	nissions New Co				
1.1 Zero emissions building coalition	Ongoing	 CoW Local industry associations Sustainable Building Manitoba Canada Green Building Council Winnipeg Construction Association Mechanical Contractors Association BOMA MB Assiniboine Credit Union 	• CoW staff time	 Identify key partners for working group, and develop a Terms of Reference for the group Identify opportunities for pilot projects to retrofit private homes, rental units, small businesses, and ICI buildings Undertake deep retrofits in municipal buildings to stimulate the sector 	# of buildings or residential units retrofit average % reduction in GHG emissions from each building retrofit# of jobs created

1.2 Sustainable development guideline

1.3 Efficient building incentives

тім	IING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS
On	ngoing	 CoW UDI Manitoba Manitoba Home Builders Association University of Manitoba Red River Community College Sustainable Building Manitoba PP&D department 	• CoW staff time	 Require improved sustainability performance of new development projects, with future tiers requiring enhanced performance Review development checklists in other cities and jurisdictions (Toronto Green Standard, Whitby Green Development, Vancouver Zero Emissions Building Plan/BC Step Code) 	number of projects achieving each tier of performance
				 Develop a development checklist, and implement for Winnipeg 	
On	ngoing	CoWSustainable Building ManitobaEfficiency Manitoba	 CoW staff time 	 Explore incentive options currently used in other jurisdictions, including priority permitting, reduced taxation or financial rebates 	no additional indicators
				 Develop an attentive program for Winnipeg 	
				 Align incentive program with performance tiers in the sustainable development guideline 	

	TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS		TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS
1.4 Net-zero	Ongoing	• CoW	• CoW	 Develop a strategy for achieving net 	% of new buildings	Program #2: Zero E	missions Retrofits				
building code		Sustainable Building Manitoba	staff time	zero emissions buildings for new	achieving net zero	2.1 Residential	2022: Pilot	• CoW	 CoW staff time 	• Develop a program to implement	# of buildings/homes
		Canada Green Building Council		construction (possibly in alignment with Task 1.2)	emissions	retrofit stream	projects 2024: Full	Manitoba Home Builders	PACE funding	deep retrofits with streams for owned and rented residential and	retrofit
		 Winnipeg Construction Association 		Establish a tiered approach to incrementally increase performance targeting net zero emissions by 2030 • Align with the sustainable			deployment of	Association Efficiency Manitoba	led by the City of Winnipeg	commercial buildings, including	GHG intensity of retrofitted buildings
		Efficiency Manitoba					programs	Climate Action Team	 Partnerships with local 	 Develop a revolving loan fund 	lettontted buildings
		• UDI Manitoba						 Winnipeg Construction Association 	credit units for	for low-interest loans for deep energy retrofits	
		 Manitoba Home Builders Association 		development checklist and incentives				Neighbourhood Renewal	low-interest Ioans	• Pilot a neighbourhood-scale	
		University of Manitoba						Corporations Canada Green Building Council	 Provincial and Federal 	building retrofit to explore economies of scale and	
		Red River Community College					Sun Certified Builders	government	opportunities to industrialize retrofits.		
		 Other communities with green building codes (Toronto 						• BUILD Inc.	• FCM	 Develop a centralized online tool 	
		Whitby, Vancouver)						 Assiniboine Credit Union Canada Mortgage and Hous 	 Canada Mortgage 	for residents to find information	
									and Housing	funding available for them, as well	
								Corporation	as lists of certified contractors and equipment providers.		
										Pilot neighbourhood-level	
										district energy systems for larger, ground-source heat pumps	
						2.2 Low-Income	Immediate	• CoW	CoW staff time	Identify key partners for working	# of low income
						retrofit stream		Efficiency Manitoba	• funding from	group, and develop a Terms of Reference for the group	households retrofit
								Ulimate Action leam	and Federal	 Develop a deep retrofit program 	
								Winnipeg anti-poverty NGOs	governments	focused on households	
								• DUILD INC.	projects, as	experiencing energy poverty	
								• SEED WINNIPEG	recommended		
									group		

	TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS		TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS
2.3 Large buildings stream	2022: Pilot projects 2024: Full deployment of programs	 CoW Efficiency Manitoba Local industry associations Canada Green Building Council 	 CoW staff time PACE funding led by the City of Winnipeg Partnerships with local credit units for low-interest loans Provincial and Federal government FCM 	 Develop a revolving loan fund for low-interest loans for deep energy retrofits Develop a green lease program, including templates to address the split incentive challenge Retrofit municipal buildings to net- zero standards to demonstrate leadership 	m ² of retrofitted floorspace GHG intensity of retrofitted buildings	2.5 Neighbourhood retrofit pilot	2022: Pilot projects 2024: Full deployment of programs	 CoW Manitoba Home Builders Association Efficiency Manitoba Climate Action Team Winnipeg Construction Association Neighbourhood Renewal Corporations Canada Green Building Council BUILD Inc. 	 CoW staff time PACE funding led by the City of Winnipeg Partnerships with local credit units for low-interest loans Provincial and Federal government FCM 	 Develop a PACE/ LIC programme to fund a neighbourhood retrofit Develop a revolving loan fund for low-interest loans for deep energy retrofits Issue a request for proposals for a neighbourhood-scale building retrofit to explore economies of scale and opportunities to industrialize retrofits Pilot neighbourhood-level district energy systems for larger, ground-source heat pumps 	# of buildings/homes retrofit GHG intensity of retrofitted buildings
2.4 Carbon co-operative	2022: Pilot projects 2024: Full deployment of programs	 CoW Efficiency Manitoba Local industry associations Social enterprises Carbon Co-op (based in the UK) 	• CoW staff time	 Issue a request for proposals for an organization to establish a retrofit co-operative. Provide a grant with start-up funding for the establishment of the retrofit co-operative. 	establishment of a Carbon Co-operative # of homes included in programs	2.6 Embodied carbon and refrigerants	Ongoing	 CoW Other jurisdictions with similar programs, such as the City of Vancouver 	• CoW staff time	 Require new buildings to calculate and report the life-cycle equivalent annual carbon dioxide emissions of each building, in kgCO2e/m², from the emission of refrigerants. Require new buildings to report the life-cycle equivalent carbon dioxide emissions (i.e. global warming potential impact, or 'embodied carbon') of each building, in kgCO2e/m², as calculated by a whole-building life-cycle assessment (LCA) 	average embodied GHG emissions per m ² for new buildings

	TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS
2.7 Workforce	Ongoing	• CoW	 CoW staff time 	Identify key partners for working group, and dovelop a Terms of	# of participants in a
Program		• BUILD		Reference for the group	through this working
		 University of Manitoba, University of Winnipeg 		 Create and implement a workforce development strategy 	group
		Red River College		, ,	
		 Winnipeg Construction 			
		Association			
		 Sustainable Buildings Manitoba 			

Zero-Emissions Transportation

	TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS
Program #3: The Bu	ilt Environment				
3.1 Urban planning and land use policies to encourage densification	2022- onward	• CoW	• CoW	 Implement policies that support garden suites, laneway homes and multi-unit homes in residential neighbourhoods 	% of new dwelling units in a greenfield location
3.2 Super Blocks + 15-Minute City	2023- onwards	• CoW	• CoW	 Identify and implement a pilot super block in the city Plan for 15-minute walking sheds including mixed-use, infrastructure, parks and food 	% of residents that have access to a full suite of destinations within a 15 minute walk.
3.3 Neighbourhood climate action plans	2022-onward	 CoW Neighbourhood associations 	• CoW	 Develop a climate action plan for each new or revised secondary plan Ensure the secondary plan is aligned with the City's GHG targets. 	# of secondary plans with a climate action plan

Program #4: A

4.1 Walking and cycling infrastructure

4.2 Clean air zo

TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS
2023- onward	• CoW	• CoW	 Implement \$0 parking fees for zero emissions vehicles until 2026 	# of ZEVs in Winnipeg
			 Remove parking minimums in new construction 	
			 Partner with the utilities and other companies to install EV charging stations for on-street and off- street parking 	

	TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS
ctive T	ransportation				
	2022- onwards	 CoW Winnipeg Trails Association Green Action Centre Bike Winnipeg 	CoW staff timeCoWFCM	 Expand the trail network to allow more trips to be made by separated bike lanes Develop training on safe cycling for all ages Organize cycling and walking promotional weeks, including incentives for participation across the city 	# km of physically separated bike lanes added mode share for walking and cycling
one	2024	 CoW Winnipeg Regional Health Authority 	 CoW staff time funding from FCM 	 Establish an independent commission to evaluate opportunities for a clean air zone Evaluate options for either closing off an area or street to vehicles and/or introducing a charge for polluting vehicles. 	air pollution indicators

	TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS
4.3 Behaviour change program	2022- onwards	• CoW	 CoW staff time 	 Evaluate program including Edmonton's Change for Climate, Smart Commute in the GTA and others 	# of people engaged
				 Design and implement a communications and engagement program 	
4.4 Flexible work locations	2022- onwards	 Winnipeg Central Business Association Green Action Centre 	 CoW staff time 	 Adopt zoning and land-use planning policies to support live- work designations 	vehicular commuting mode share
		local businesses		 Work with local businesses to develop co-working spaces to allow working closer to home, reducing the need for longer 	

	TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS					
Program #5: Enhanced Transit										
5.1 Enhanced transit	2022- onwards	 CoW, specifically the transit department 	• CoW	 Follow recommendations in the Transit Master Plan to increase transit use, and continue the adoption of zero-emissions buses 	transit mode share					
5.2 Zero emissions transit	2022- onwards	 CoW, specifically the transit department 	• CoW	 Accelerate Winnipeg Transit zero emission bus transition Expand this program to identify other opportunities for zero- emissions vehicles 	# of zero-emissions buses					

Program #6: A C

6.1 EV charging infrastructure

6.2 Zeroemissions transportation education program

6.3 Fleet transformation coalition

	TIMING	PARTNERS		NEXT STEPS	
Clea	n Fleet				
	2022-2025	CoWBusiness Improvement Zones	 Zero Emissions Vehicle Infrastructure Program (ZEVIP) Investing in Canada Infrastructure Program (ICIP) 	 Assess current EV charging infrastructure and identify priority gaps in the system 	 # publicly accessible EV charging stations # EV charging stations/ km² in dense urban areas
	Ongoing	CoWlocal car dealershipsManitoba Hydro	 CoW staff time dealerships for EV trials 	• Develop education programs to encourage and incentivise zero- emissions travel, and to address common questions or concerns about EVs	# of residentsparticipating inprograms% of new sales that areEVs
		 CoW Transit department Local industry associations Local car dealerships Local car and truck mechanics Economic Development Winnipeg 	• CoW staff time	 Identify major fleets in the City Convene a fleet decarbonisation working group 	 # of businesses setting fleet decarbonization targets # zero-carbon fleet vehicles in use

Clean Energy for Everyone

	TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS	energy
Program #7: A Ren	ewable Energy Ec	conomy				cooperativ
7.1 Renewable energy action	2022	Renewable energy businesses	• CoW	 Convene a renewable energy action group with a mandate to 	renewable energy action strategy	
group		 Economic Development Winnipeg 		identify barriers to renewable energy in the City boundary and strategies to address those barriers.	completed	7.7 Zero er district ene
7.2 Rooftop solar	2022: Pilot	• CoW	• CoW	 Initiate a community energy 	kW of generating	700
PV	projects	 Manitoba Hydro 	• FCM	mapping exercise to identify suitable locations and	capacity installed	7.8 Renewa natural gas
	2024: Full deployment	Community members		opportunities/barriers to implementation.		
	of programs	 Assiniboine Credit Union 		Pilot a municipal low-interest loan		
				to fund solar installations		Program #8
7.3 Parking lot solar PV	2022: Pilot • CoV projects • Mar	• CoW	• CoW	• Pilot project for installing solar PV	kW of generating	8.1 Industri
		 Manitoba Hydro 	• FCM	on a parking lot, reporting back with challenges and successes	capacity installed	Efficiency A
	2024: Full	 Local businesses and property 				Tealli
	of programs	owners				
7.4 Household	2022: Pilot	• CoW	• CoW	 Pilot projects for vehicle to grid 	kw of storage installed	
and neighbourhood	projects	 Manitoba Hydro 	 Manitoba Hydro 	charging and household energy storage		
energy storage	2024: Full					
	deployment of programs					
7.5 Community	2022: Pilot	Renewable energy firms	 CoW staff time 	• Issue an Expression of Interest for	kW of generating	
solar garden	projects	Community members	Credit Unions	developers of a solar garden on municipally-owned land	capacity installed	
	2024: Full	Assiniboine Credit Union				
	deployment of programs	• Manitoba Hydro				

	TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS
Renewable ergy operatives	2024	 Manitoba Cooperative Association Cooperatives First Assiniboine Credit Union 	 CoW Cooperative development fund 	 Identify opportunities for solar installations on city-owned facilities Provide funding for the creation of renewable energy cooperatives 	Renewable energy cooperative created # of members in the renewable energy cooperatives
Zero emissions :rict energy	2024	• CoW	 CoW Canada Infrastructure Bank 	 Complete a district energy assessment of zero emissions heating systems (geothermal, waste heat from sewer, solar with seasonal storage) 	Zero emissions district energy system developed
Renewable ural gas (RNG)	Ongoing	• CoW	• CoW	• Maximize the capture of biogas in the wastewater treatment system	GJ of RNG generated

	TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS
ean Ir	ndustry				
'n	2022	 CoW Province of Manitoba Manitoba Hydro Manitoba Environmental Industries Association Economic Development Winnipeg Canmet Labs (NRCan) 		 Convene a low carbon industry working group Identify opportunities for pilot projects to improve the efficiency of industrial operations 	% reduction in GHGs from industrial processes

Waste Management

	TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS	
Program #9: Zero w	vaste					
9.1 A Circular Economy Strategy	Ongoing	 CoW Economic Development Winnipeg Province of Manitoba 	• CoW	 Develop and deliver educational programming about waste reduction, and waste sorting Develop a working group to identify opportunities with local businesses and community members to expand the availability of repair and reselling of goods 	# tonnes of waste per capita % waste to landfill	
9.2 Landfill GHG Action Group	Ongoing	CoWPrivate landfill operatorsProvince of Manitoba	• CoW staff time	 Identify key partners for working group, and develop a Terms of Reference for the group Identify a strategy to maximize landfill gas capture on all landfills as soon as possible 	Average % CH4 leakage from landfills	
9.3 Zero emissions water and wastewater	Ongoing	• CoW	• CoW	 Identify specific sources of GHG emissions in CoW water and wastewater treatment systems Develop an implementation plan to address emissions sources, including fuel switching, process changes, and industrial efficiencies 	GHG emissions by gas from water and wastewater treatment	

Program #10: Ca

10.1 Develop an annual carbon budget

10.2 Apply a climate lens for expenditures ar policies

10.3 Addressing the emissions g

A Whole City Approach

	TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS
Carbo	n management				
١	2022- onwards	• CoW	 CoW staff time 	 Develop a community-wide carbon budget for the City of Winnipeg, and allocate it by department 	annual carbon budget
				 Provide staff training on the use and purpose of a carbon budget 	
				 Report annually using the Task Force on Climate-Related Financial Disclosure (TCFD) framework 	
	2022- onwards	• CoW	CoW staff time	 Develop a climate lens policy for council approval 	# of projects evaluated using a
nd				 Integrate the climate lens into the climate budget process 	climate lens
				 Provide staff training on the adoption of a climate lens 	
g ap	2026	• CoW	 CoW staff time 	 Update the low carbon pathway for the City every five years 	low carbon pathway updated

	TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS		
Program #11: Zero e	emissions operatio	ns					Program #12: (
11.1 Annual GHG and energy reporting	Ongoing	• CoW	• CoW	 Create a climate action dashboard for the carbon budget, inventories and other indicators 	annual GHG emissions inventory annual TCFD report published		12.1 Communit Climate Advisc Committee
11.2 An expanded Office of Sustainability	Immediate	• CoW	 CoW staff time 	 Develop a management and staffing plan to support immediate implementation of the CEIR next steps 	# of staff dedicated to climate action		12.2 Story-tellir
11.3 A zero- emissions fleet	2022	• CoW	• CoW	 Adopt a policy on zero emissions vehicle procurement 	# of zero-emissions vehicles in municipal fleet % of fleet that is zero-emissions		
11.4 Zero- emissions buildings	2022-ongoing	• CoW	CoW staff timeCoW	 Complete an asset-level GHG inventory for CoW assets Develop a portfolio approach to building-level decarbonization for all existing municipal buildings Integrate a renewable energy strategy into the portfolio analysis 	GHG emissions from municipal buildings	-	

	TIMING	PARTNERS	RESOURCES	NEXT STEPS	REPORTING METRICS
gram #12: Comm	unications				
l Community nate Advisory mmittee	Ongoing	 CoW Others as identified through development of committee 	• CoW staff time	 Identify key partners for the Advisory Committee, and develop a Terms of Reference for the group Develop a workplan for the 	Annual report to Council prepared
				Advisory Committee	
2 Story-telling	Ongoing	• CoW	 CoW staff time Communications consultancy 	 Develop a communications strategy for the CEIR and climate action in Winnipeg 	Climate literacy survey

This table provides the 2016 base year emissions data, categorized according to the Global Protocol for Community-scale Greenhouse Gas Emission Inventories.¹ Using this categorization to update the municipal inventory periodically ensures consistency across inventory years and comparability between global municipal jurisdictions.

Reason for exclusion key

- N/A Not applicable; Not included in scope
- ID Insufficient data
- **NR** No relevant or limited activities identified

Other Reason provided under Comments

GPC REF NO.	SCOPE	GHG EMISSIONS SOURCE	INCLUSION	REASON FOR EXCLUSION	CO2	СН₄	N ₂ O	TOTAL CO ₂ E
1		STATIONARY ENERGY S	SOURCES					
1.1		Residential buildings						
1.1.1	1	Emissions from fuel combustion within the city boundary	Yes		724,087	14,172	5,179	743,437
1.1.2	2	Emissions from grid- supplied energy consumed within the city boundary	Yes		4,744	8	74	4,827
1.1.3	3	Emissions from transmission and distribution losses from grid-supplied energy consumption	Yes		551	1	9	560
1.2		Commercial and institut	ional building	gs/facilities				
1.2.1	1	Emissions from fuel combustion within the city boundary	Yes		911,899	585	5,661	918,145
1.2.2	2	Emissions from grid- supplied energy consumed within the city boundary	Yes		4,273	8	67	4,347

GPC REF NO.	SCOPE	GHG EMISSIONS SOURCE	INCLUSION	REASON FOR EXCLUSION	CO2	СН₄	N₂O	TOTAL CO ₂ E
1.2.3	3	Emissions from transmission and distribution losses from grid-supplied energy consumption	Yes		496	1	8	505
1.3		Manufacturing industry	and construc	ction				
1.3.1	1	Emissions from fuel combustion within the city boundary	Yes		231,711	222	1,617	233,551
1.3.2	2	Emissions from grid- supplied energy consumed within the city boundary	Yes		4,393	8	69	4,470
1.3.3	3	Emissions from transmission and distribution losses from grid-supplied energy consumption	Yes		510	1	8	519
1.4		Energy industries						
1.4.1	1	Emissions from energy used in power plant auxiliary operations within the city boundary	No	NR	0	0	0	0
1.4.2	2	Emissions from grid- supplied energy consumed in power plant auxiliary operations within the city boundary	No	NR	0	0	0	0
1.4.3	3	Emissions from transmission and distribution losses from grid-supplied energy consumption in power plant auxiliary operations	No	NR	0	0	0	0
1.4.4]	Emissions from energy generation supplied to the grid	No	NR	0	0	0	0
1.5		Agriculture, forestry and	fishing activ	ities				
1.5.1	1	Emissions from fuel combustion within the city boundary	No	NR	0	0	0	0

 $^{^{1} {\}rm The~GPC~can~be~found~here:~https://ghgprotocol.org/sites/default/files/standards/GHGP_GPC_0.pdf}$

GPC REF NO.	SCOPE	GHG EMISSIONS SOURCE	INCLUSION	REASON FOR EXCLUSION	CO ₂	CH4	N ₂ O	TOTAL CO ₂ E
1.5.2	2	Emissions from grid- supplied energy consumed within the city boundary	No	NR	0	0	0	0
1.5.3	3	Emissions from transmission and distribution losses from grid-supplied energy consumption	No	NR	0	0	0	0
1.6		Non-specified sources						
1.6.1	1	Emissions from fuel combustion within the city boundary	No	NR	0	0	0	0
1.6.2	2	Emissions from grid- supplied energy consumed within the city boundary	No	NR	0	0	0	0
1.6.3	3	Emissions from transmission and distribution losses from grid-supplied energy consumption	No	NR	0	0	0	0
1.7		Fugitive emissions from I	mining, proce	essing, storage	e, and trans	portation o	fcoal	
1.7.1	1	Emissions from fugitive emissions within the city boundary	No	NR	0	0	0	0
1.8		Fugitive emissions from (oil and natura	al gas systems				
1.8.1]	Emissions from fugitive emissions within the city boundary	Yes		48	44,132	0	44,180
Ш		TRANSPORTATION						
11.1		On-road transportation						
11.1.1	1	Emissions from fuel combustion for on-road transportation occurring within the city boundary	Yes		1,810,013	3,309	13,339	1,826,661
11.1.2	2	Emissions from grid- supplied energy consumed within the city boundary for on-road transportation	Yes		0	0	0	0

GPC REF NO.	SCOPE	GHG EMISSIONS SOURCE	INCLUSION	REASON FOR EXCLUSION	co₂	СН₄	N₂O	TOTAL CO ₂ E
11.1.3	3	Emissions from portion of transboundary journeys occurring outside the city boundary, and transmission and distribution losses from grid-supplied energy consumption	Yes		358,362	728	1,169	360,259
II.2		Railways						
11.2.1	1	Emissions from fuel combustion for railway transportation occurring within the city boundary	No	NR	0	0	0	0
II.2.2	2	Emissions from grid- supplied energy consumed within the city boundary for railways	No	NR	0	0	0	0
11.2.3	3	Emissions from portion of transboundary journeys occurring outside the city boundary, and transmission and distribution losses from grid-supplied energy consumption	No	NR	0	0	0	0
II.3		Water-borne navigation						
11.3.1	1	Emissions from fuel combustion for waterborne navigation occurring within the city boundary	No	N/A	0	0	0	0
11.3.2	2	Emissions from grid- supplied energy consumed within the city boundary for waterborne navigation	No	N/A	0	0	0	0

GPC REF NO.	SCOPE	GHG EMISSIONS SOURCE	INCLUSION	REASON FOR EXCLUSION	CO2	СН₄	N ₂ O	TOTAL CO ₂ E
II.3.3	3	Emissions from portion of transboundary journeys occurring outside the city boundary, and transmission and distribution losses from grid-supplied energy consumption	No	N/A	0	0	0	0
11.4		Aviation						
11.4.1	1	Emissions from fuel combustion for aviation occurring within the city boundary	No	N/A	0	0	0	0
II.4.2	2	Emissions from grid- supplied energy consumed within the city boundary for aviation	No	N/A	0	0	0	0
11.4.3	3	Emissions from portion of transboundary journeys occurring outside the city boundary, and transmission and distribution losses from grid-supplied energy consumption	No	N/A	0	0	0	0
II.5		Off-road						
II.5.1	1	Emissions from fuel combustion for off- road transportation occurring within the city boundary	No	NR	94,554	3,748	608	98,910
II.5.2	2	Emissions from grid- supplied energy consumed within the city boundary for off- road transportation	No	NR	0	0	0	0

GPC REF NO.	SCOPE	GHG EMISSIONS SOURCE	INCLUSION	REASON FOR EXCLUSION	CO2	СН₄	N₂O	TOTAL CO ₂ E
III		WASTE						
III.1		Solid waste disposal						
111.1.1	1	Emissions from solid waste generated within the city boundary and disposed in landfills or open dumps within the city boundary	Yes		0	224,015	0	224,015
111.1.2	3	Emissions from solid waste generated within the city boundary but disposed in landfills or open dumps outside the city boundary	Yes		0	0	0	0
111.1.3	1	Emissions from waste generated outside the city boundary and disposed in landfills or open dumps within the city boundary	No	N/A	0	0	0	0
III.2		Biological treatment of v	vaste					
111.2.1	1	Emissions from solid waste generated within the city boundary that is treated biologically within the city boundary	Yes		0	5,214	3,427	8,641
111.2.2	3	Emissions from solid waste generated within the city boundary but treated biologically outside of the city boundary	No	N/A	0	0	0	0
III.2.3	1	Emissions from waste generated outside the city boundary but treated biologically within the city boundary	No	N/A	0	0	0	0
III.3		Incineration and open b	urning					
III.3.1	1	Emissions from solid waste generated and treated within the city boundary	No	N/A	0	0	0	0

GPC REF NO.	SCOPE	GHG EMISSIONS SOURCE	INCLUSION	REASON FOR EXCLUSION	CO2	CH₄	N₂O	TOTAL CO ₂ E
III.3.2	3	Emissions from solid waste generated within the city boundary but treated outside of the city boundary	No	N/A	0	0	0	0
III.3.3	1	Emissions from waste generated outside the city boundary but treated within the city boundary	No	N/A	0	0	0	0
.4		Wastewater treatment a	nd discharge					
111.4.1	1	Emissions from wastewater generated and treated within the city boundary	Yes		0	38,536	4,844	43,380
III.4.2	3	Emissions from wastewater generated within the city boundary but treated outside of the city boundary	No	NR	0	0	0	0
111.4.3	1	Emissions from wastewater generated outside the city boundary	No	N/A	0	0	0	0
IV		INDUSTRIAL PROCESSE	S AND PROE	OUCT USE (IPP	U)			
IV.1	1	Emissions from industrial processes occurring within the city boundary	No	ID	0	0	0	0
IV.2	1	Emissions from product use occurring within the city boundary	No	ID	0	0	0	0
V		AGRICULTURE, FOREST	RY AND LANI	d use (Afolu	I)			
V.1	1	Emissions from livestock within the city boundary	No	NR	0	8,437	182	8,619
V.2	1	Emissions from land within the city boundary	No	NR	0	0	0	0

GPC REF NO.	SCOPE	GHG EMISSIONS SOURCE	INCLUSION	REASON FOR EXCLUSION	CO2	CH4	N ₂ O	TOTAL CO ₂ E
V.3	1	Emissions from aggregate sources and non-CO2 emission sources on land within the city boundary	No	NR	0	0	0	0
VI		OTHER SCOPE 3						
VI.1	3	Other Scope 3	No	N/A	0	0	0	0