Design Requirements for CIPP Liners

Thickness Requirements for CIPP Circular Liners

Table 1a*								
		Design Parame	Thickness Requirements by Invert Depth (mm)					
	Nominal Host Pipe Dimensions	Maximum Host Pipe Dimensions			Invert Depth = 7 m (Design thickness shall be the greater of Eq. 1 & E			
Shape	Diameter (mm)	Diameter (mm)	Deterioration State	Live Load Model	Eq. 1: Long Term Flexural Strength in hoop direction (MPa) Eq. 2: Long Term Modulus in hoop of (MPa)			
Circular	1500	1600	Partially Deteriorated	N/A	t = 141.64S _L ^{-0.476}	t = 337.73E _L ^{-0.327}		

ASTM F1216 -16

t = design thickness (mm) S_L = Long Term Flexural Strength (MPa) E_L = Long Term Flexural Modulus (MPa)

Design Method: Applicable Long Term Flexural Strength: Applicable Long Term Flexural Modulus:

15.5 MPa - 100 MPa 862 MPa - 4000 MPa 6.50% Ovality of Host Pipe: Soil Density: Modulus of Soil Reaction: 18.85 kN/m³ 6.890 MPa Water Table Depth: 2.0 m below ground elevation

Factor of Safety on Applied Stresses:

Thickness Requirements for CIPP Egg Shaped Liners

Table 1b*	ubie 1b*													
							Thickness Requirements by Invert Depth (mm)							
	Nominal Dimensions Maximum Di		imensions			Invert Depth = 6 m (Design thickness shall be the greater of Eq. 1 & Eq. 2		Invert Depth = 6.1 m (Design thickness shall be the greater of Eq. 1 & Eq. 2)		Invert Depth = 8.2 m (Design thickness shall be the greater of Eq. 1 & Eq. 2)		Invert Depth = 8.6 m (Design thickness shall be the greater of Eq. 1 & Eq. 2)		
Shape	Height (mm)	Width (mm)	Height (mm)	Width (mm)	Deterioration State	Live Load Model	Eq. 1: Long Term Flexural Strength in hoop direction (MPa)	Eq. 2: Long Term Flexural Modulus in hoop direction (MPa)	Eq. 1: Long Term Flexural Strength in hoop direction (MPa)	Eq. 2: Long Term Flexural Modulus in hoop direction (MPa)			Eq. 1: Long Term Flexural Strength in hoop direction (MPa)	Eq. 2: Long Term Flexural Modulus in hoop direction (MPa)
Egg	1500	1000	1600	1100	Fully Deteriorated	AASHTO HS25	N/A	N/A	t = 186.49S _L ^{-0.479}	t = 353.71E _L -0.320	N/A	N/A	N/A	N/A
Egg	1500	1000	1600	1100	Partially Deteriorated	N/A	t = 150.47S _L ^{-0.483}	t = 305.86E _L -0.322	N/A	N/A	N/A	N/A	N/A	N/A
Egg	1700	1100	1800	1200	Partially Deteriorated	N/A	N/A	N/A	N/A	N/A	t = 204.17S _L ^{-0.480}	t = 390.96E _L -0.320	t = 209.91S _L ^{-0.479}	t = 398.07E _L -0.320

^{*}Table 1b only applicable to egg shaped sewers to be lined with CIPP

t = design thickness (mm) S_L = Long Term Flexural Strength (MPa) E_L = Long Term Flexural Modulus (MPa)

Design Method: WRc Sewerage Rehabilitation Manual, Type 2 Design
Applicable Long Term Flexural Modulus: 15.5 MPa - 100 MPa
Applicable Long Term Flexural Modulus: 862 MPa - 4000 MPa Lateral Earth Coefficient: 0.4

18.85 kN/m³ Soil Density: Modulus of Soil Reaction: 6.890 MPa Assumed Water Table Depth: 2.0 m below ground elevation
Soil Stress Model: Effective Stress Factor of Safety on Applied Stresses:

^{*}Table 1a only applicable to circular sewers to be lined with CIPP

Design Requirements for Unbonded GRP Liners (WRc Type 2)

Thickness Requirements for GRP Circular Liners

Table 2a*											
		esign Parame	Thickness Requirements by Invert Depth (mm)								
	Nominal Host Pipe Dimensions	Maximum Host Pipe Dimensions			Invert Depth = 7 m (Design thickness shall be the greater of Eq. 1 & Eq. 2)						
Shape	Diameter (mm)	Diameter (mm)	Deterioration State	Live Load Model	Eq. 1: Long Term Flexural Strength in hoop direction (MPa) Eq. 2: Long Term Flex Modulus in hoop direct (MPa)						
Circular	1500	1600	Partially Deteriorated	N/A	t = 16	$t = 282.46E_L^{-0.329}$					

^{*}Table 2a only applicable to circular sewers to be lined with WRc type 2 GRP

t = design thickness (mm) $S_L = Long Term Flexural Strength (MPa)$ $E_L = Long Term Flexural Modulus (MPa)$

Design Method: ASTM F1216-16 Applicable Long Term Flexural Strength: Applicable Long Term Flexural Modulus: 15.5 MPa - 200 MPa 862 MPa - 7000 MPa 18.85 kN/m³ Soil Density: Modulus of Soil Reaction: 6.890 MPa Water Table Depth: 2.0 m below ground elevation Factor of Safety on Applied Stresses: 2

Thickness Requirements for GRP Egg Shaped Liners

Table 2b*	ble 2b*															
								Thickness Requirements by Invert Depth (mm)								
	Nominal Dimensions Maximum Dimensions		imensions			Invert Depth = 6 m (Design thickness shall be the greater of Eq. 1 & Eq. 2)		Invert Depth = 6.1 m (Design thickness shall be the greater of Eq. 1 & Eq. 2)		Invert Depth = 8.2 m (Design thickness shall be the greater of Eq. 1 & Eq. 2)		Invert Depth = 8.6 m (Design thickness shall be the greater of Eq. 1 & Eq. 2)				
Shape	Height (mm)	Width (mm)	Height (mm)	Width (mm)	Deterioration State	Live Load Model	Eq. 1: Long Term Flexural Strength in hoop direction (MPa)	Eq. 2: Long Term Flexural Modulus in hoop direction (MPa)	Eq. 1: Long Term Flexural Strength in hoop direction (MPa)	Eq. 2: Long Term Flexural Modulus in hoop direction (MPa)	Eq. 1: Long Term Flexural Strength in hoop direction (MPa)	Eq. 2: Long Term Flexural Modulus in hoop direction (MPa)	Eq. 1: Long Term Flexural Strength in hoop direction (MPa)	Eq. 2: Long Term Flexural Modulus in hoop direction (MPa)		
Egg	1500	1000	1600	1100	Fully Deteriorated	AASHTO HS25	N/A	N/A	t = 188.30S _L ^{-0.482}	t = 290.48E _L -0.323	N/A	N/A	N/A	N/A		
Egg	1500	1000	1600	1100	Partially Deteriorated	N/A	t = 152.54S _L ^{-0.487}	t = 249.94E _L ^{-0.325}	N/A	N/A	N/A	N/A	N/A	N/A		
Egg	1700	1100	1800	1200	Partially Deteriorated	N/A	N/A	N/A	N/A	N/A	t = 206.10S _L ^{-0.483}	t = 317.72E _L ^{-0.324}	t = 211.95S _L ^{-0.482}	t = 326.91E _L -0.323		

^{*}Table 2b only applicable to egg shaped sewers to be lined with WRc type 2 GRP

t = design thickness (mm) $S_L = Long Term Flexural Strength (MPa)$ $E_L = Long Term Flexural Modulus (MPa)$

Design Method: WRc Sewerage Rehabilitation Manual, Type 2 Design
Applicable Long Term Flexural Modulus: W8c Sewerage Rehabilitation Manual, Type 2 Design
15.5 MPa - 200 MPa
862 MPa - 7000 MPa Lateral Earth Coefficient:

Lateral Earth Coetricient.

Soil Density:
Modulus of Soil Reaction:
Assumed Water Table Depth:
Soil Stress Model:

Effective Stress
20 Factor of Safety on Applied Stresses:

Design Requirements for Bonded, Composite GRP Liners (WRc Type 1)

Thickness Requirements for Type 1 GRP Egg Shaped Liners

Table 3a*												
Applicable Sewer: S-MA20018612	Nominal Dimensions		Maximum Dimensions				Invert Dep (Design thickness shall be t					
Shape	Height (mm) Width (mm)		Height (mm)	Width (mm)	Deterioration State	Live Load Model	Eq. 1: Long Term Flexural Strength in hoop direction (MPa)	Eq. 2: Long Term Flexural Modulus in hoop direction (MPa)				
Egg	1500	1000	1600	1100	Fully Deteriorated	AASHTO HS25	$t = 154.18S_L^{-0.487}$	$t = 251.80E_L^{-0.325}$				

^{*}Table 3a only applicable to sewer S-MA20018612 lined with WRc type 1 GRP

t = design thickness (mm)

S₁ = Long Term Flexural Strength (MPa)

E₁ = Long Term Flexural Modulus (MPa)

Design Method: WRc Sewerage Rehabilitation Manual, Type 1 Design with type 2 design design checks for external hydrostatic stress

Applicable Long Term Flexural Strength: 15.5 MPa - 200 MPa Applicable Long Term Flexural Modulus: 862 MPa - 7000 MPa

Lateral Earth Coefficient: 0.4

Soil Density: 18.85 kN/m³
Modulus of Soil Reaction: 6.890 MPa

Assumed Water Table Depth: 2.0 m below ground elevation

Soil Stress Model: Effective Stress

Minimum long term tensile strength in hoop direction:

Minimum shear bond at grout/liner interface:

Factor of Safety on Applied Stresses:

10 MPa
0.68 MPa