The City of Winnipeg Tender No. 39-2024

APPENDIX 'A'

GEOTECHNICAL REPORT

	_		Table 1 - Summary of P eila Avenue, Garden Par	Table 1 - Summary of Pavement Core Structure Leila Avenue, Garden Park Drive to McGregor Street	st	
Core	lane	Test H	Test Hole Location		Pavement Surface	
No.	2	UTM (N)	14U (E)	Type	Core Diameter (mm)	Thickness (mm)
PC01	Westbound	5534821	633/03	Asphalt	150	95
-	Curb	1201000	001000	Concrete	150	160
PC02	Westbound	5534810	633406	Asphalt	150	85
100	Curb	0-0-00	00+000	Concrete	150	180
PC03	Westbound	5534810	633405	Asphalt	100	105
	Curb	0-01000	004000	Concrete	100	190
PC04	Eastbound	5334587	633057	Asphalt	150	80
-	Curb	1001000	702000	Concrete	150	155
PC05	Eastbound	5531557	634043	Asphalt	100	80
	Curb	1001000	010+00	Concrete	100	200
PCOG	Eastbound	5531555	634016	Asphalt	150	80
	Curb	000100	010100	Concrete	150	200
PC07	Eastbound	5534486	634165	Asphalt	100	105
5	Curb	00++000	001400	Concrete	100	200
PCOR	Eastbound	5534401	634160	Asphalt	150	85
2	Curb		601400	Concrete	150	190
PC09	Eastbound	553/487	634162	Asphalt	150	105
2	Curb	101-1000	201	Concrete	150	205
PC10	Eastbound	553AAGG	634200	Asphalt	150	100
2	Curb		202400	Concrete	150	140
PC11	Eastbound	5534460	624242	Asphalt	100	95
-	Median	00++000	017400	Concrete	100	250
PC12	Eastbound	6634463	634748	Asphalt	150	80
11	Curb	000000	0024710	Concrete	L L L	000

1999 202 a

Page 1

			Table 2 - Summary of F McGregor Street, Forres	Table 2 - Summary of Pavement Core Structure McGregor Street, Forrest Avenue to Leila Avenue		
	Lane	Test Ho	Test Hole Location		Pavement Surface	
1		UTM (N)	14U (E)	Type	Core Diameter (mm)	Thickness (mm)
PC13	Northbound	5534345	634429	Asphalt	150	50
1	Iviedian	2012	2	Concrete	150	220
PC14	Southbound	5534334	634410	Asphalt	150	06
	Median	000	01++00	Concrete	150	190
PC15	Northbound	5534252	634300	Asphalt	150	145
	Curb	1	000100	Concrete	150	200
PC 16	Southbound	5534236	634371	Asphalt	150	70
	Curb			Concrete	150	200
Core	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Test Ho	Test Hole Location		Pavament Surface	
-	rane	UTM (N)	14U (E)	Type	Core Diameter (mm)	Thickness (mm)
PC17	South Curb	5534761	624444	Asphalt	150	65
-	2000	024000	004444	Concrete	150	200
PC18	Middle	5534201	634541	Asphalt	100	30
		- 04-000		Concrete	100	195
PC19	North Curb	5534181	634580	Asphalt	150	80
			000100	Concrete	150	210
PC20	South Curb	5534110	631700	Asphalt	150	70
-		0 + + 000	034122	Concrete	150	190
	Middle	5534048	634862	Asphalt	150	80
-	2	0	000400	Concrete	150	200
	North Curh	5534010	634064	Asphalt	150	0
-	2	0	+00+00	Concrete	150	205
-	Middle	5533052	GJENBE	Asphalt	100	75
-	2	700000	000000	Concrete	100	195
4	South Curb	5533937	635090	Asnhalt	150	00

Page 2

1		
	0	MITED
	L,	NSULTING LIMITED
1	Q	UTANSIN
1		9
4		1

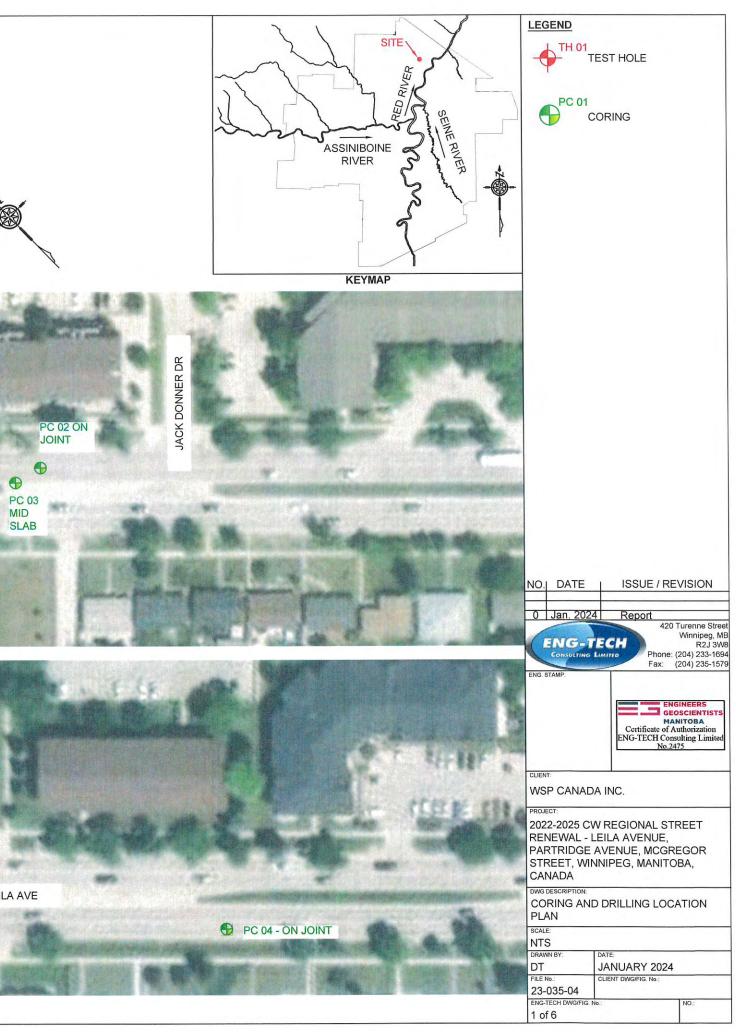
			Table 3 - Summary of	Table 3 - Summary of Pavement Core Structure	150	200
		East	tbound Partridge Avenue,	Eastbound Partridge Avenue, McGregor Street to Main Street	Street	
Core	ane	Test Hole Location	Location		Pavement Surface	
.o	Laic	UTM (N)	14U (E)	Type	Core Diameter (mm)	Thickness (mm)
PC25	North Curb	5533017	625151	Asphalt	150	65
	2		101000	Concrete	150	185
PC26	South Curb	5533870	636733	Asphalt	150	75
2	2000	0.0000	007000	Concrete	150	205

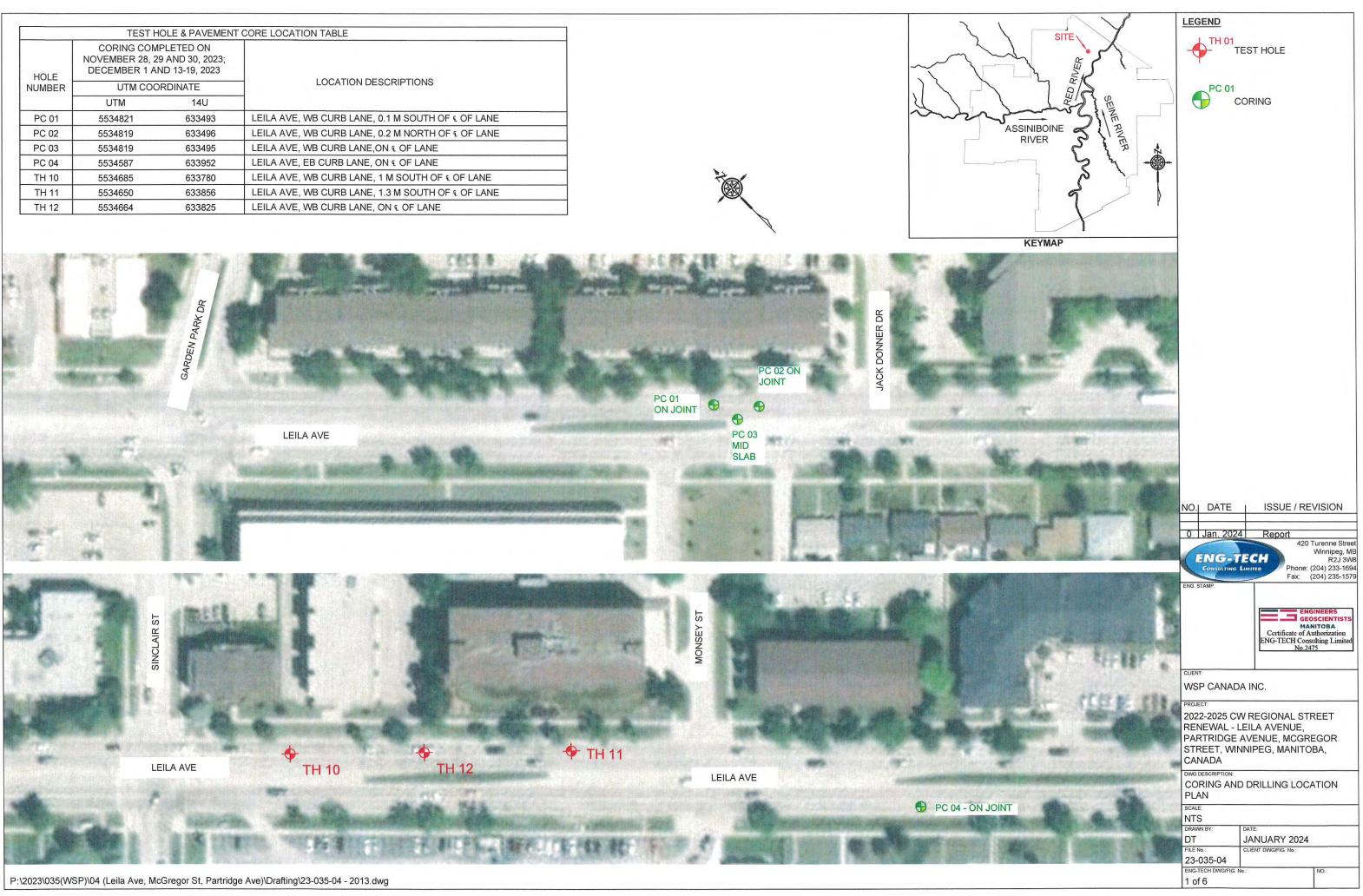
Table 4 Summary of Pavement Structure McGregor Street, Seven Oaks Avenue to Forrest Avenue	Pavement Structure Subgrade Sample	Type Depth I (mm)	0.6 27.0	125		1.6 35.7	165 2.0 43.0	2.5 49.1	0.6 27.3	85 0.9 28.4	Clave 25.1	-	200 26.0	2:5 31.1	0.6 17.8	70 Silty Clay 0.9 16.4 0.0 2.9 85.8 11.3 23 18 5		Cidy 2300 1.6 36.5 - </th <th>180 2.0 34.5</th> <th>2.5 53.7</th> <th>0.6 30.7</th> <th>75</th> <th>Clave 2500 1.2 21.4</th> <th>_</th> <th></th>	180 2.0 34.5	2.5 53.7	0.6 30.7	75	Clave 2500 1.2 21.4	_	
	Pavement Surface	Type Depth (mm)		Asphalt 125			Concrete 165			Asphalt 85 Concrete 200			Asphalt 70				Concrete 180			Asphalt 75			Concrete 170		
	Test GPS Coordinates	tole UTM 14U			TH1 5533340 633056		0				TH2 5533420 634002	0450000	0			4	TU2 6632660 834060	Decesso	0			7.	THA 5533687 634101	1000000	

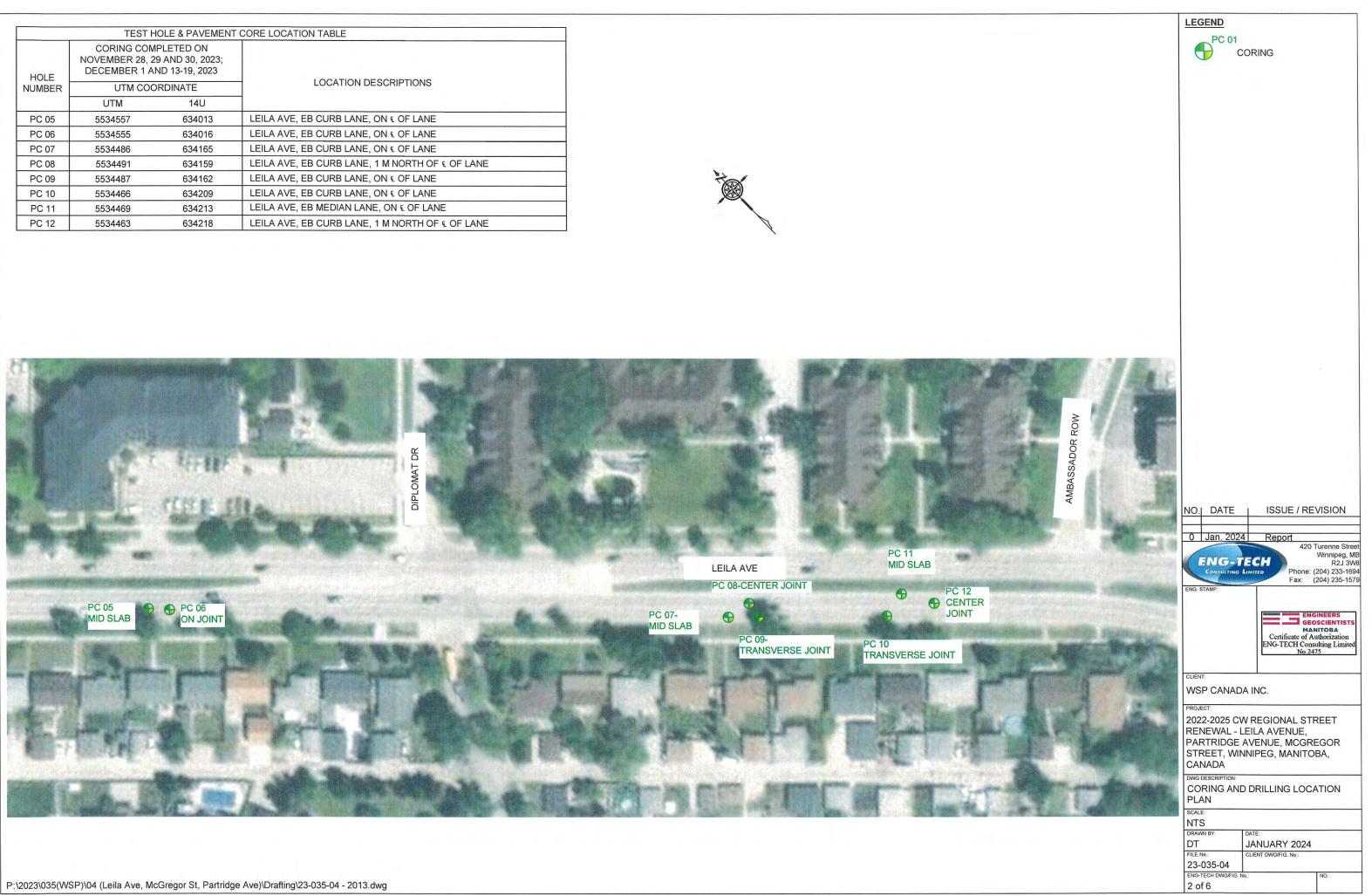
1999 2024

ture subgrade beptin (m) bescription (m) bescription (m) bescription (m) (m) bescription (m)						McC	Sumn McGregor Street,	Table 4 Summary of Pavement Structure Street, Seven Oaks Avenue to Forrest Avenue	4 ient Structur Avenue to Fo	e vrrest Avenue							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Test	10	ordinates	Pavemer	nt Surface	Pavemer Ma	nt Structure terial	Subgrade	Sample	Moisture	Hy	dromete	r Analys	.s	Att	Atterberg Limits	imits
48phat 35 48phat 35 48phat 35 470 1	Hole		14U	Type	Depth (mm)	Type	Depth (mm)	Description	_	Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit	Plastic Limit	Plasticity Index
									0.6	17.0	-	1	4	•	τ	- F	L
5533762 634146 2500 412 2.3.1				Asphalt	35				0.9	19.2	-1	4	- 1	ī	-	ï	i
	THA	_	_				2600		1.2	23.1	i			a.	ĵ.	1	1
$ \left. $	2		_				0067		1.6	35.9		л.	1	1	i	ų.	4
(a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c				Concrete	160				2.0	42.2	4	-	1	1	1	1	
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $									2.5	49.0	-1	Ţ	j.	i	1	1	
$ \left. \begin{array}{cccccccccccccccccccccccccccccccccccc$									0.6	29.6		i	Ţ	1	1	ì	,
5533832 634193 634193 634193 634193 610 2.9 0.0 2.9 28.4 68.7 1 Foundation (1) Fance (1) 190 10 2.0 14.4 2.0 2.9 0.0 2.9 2.0 <				Asphalt	65				0.9	31.4	ł	T			,	i	-
	ТЦА	-	-				2500	Fat Clay	1.2	29.9	0.0	2.9	28.4	68.7	79	25	54
$ \left. \left. \left. \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	_	_				0002		1.6	37.2	•		Ŧ	1	1	.1	1
				Concrete	190				2.0	41.4	1	1	a.	Ţ.	1	-1	1
$ \left. \left. \begin{array}{cccccccccccccccccccccccccccccccccccc$									2.5	44.4		4	ų.	j.	1	A	,
$ 5533927 \\ 5633927 \\ 5633927 \\ 5633927 \\ 5633927 \\ 5634014 \\ 54 \\ 5634014 \\ 51 \\ 5634014 \\ 51 \\ 5634014 \\ 51 \\ 5634014 \\ 51 \\ 5634014 \\ 51 \\ 5634014 \\ 51 \\ 5634014 \\ 51 \\ 5634014 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ $									0.6	17.2	î	1	1	•	4	-i,	1
$ 5533927 \ 634227 \ 634227 \ 634227 \ 634227 \ 63422 \ 185 \ Concrete \ 226 \ 22$				Asphalt	70			Lean Clay	0.9	21.5	0.0	4.3	75.7	20.0	29	19	10
5534014 634276 185 185 1.6 44.7 2.0 45.9 2.1 2.0 <	TU7		200403				0000		1.2	29.5	•	,	1	4	à.	•	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ē	-	177400				0002		1.6	44.7	1	ı	1	1	•	í.	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Concrete	185				2.0	45.9	1	ý.		x	i.	1	1
									2.5	49.1		1		ī	÷	1	-1-
5534014 G34276 Clay 2500 1.2 22.0 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.6</td> <td>28.6</td> <td>1</td> <td>ì</td> <td>1</td> <td>a.</td> <td></td> <td>1</td> <td>9</td>									0.6	28.6	1	ì	1	a.		1	9
5534014 634276 534014 634276 500 1.2 22.0 2.4.3 2.0 2.4.3 2.0 2.4.9 2.0 2.4.9 2.0 2.4.9 2.0 2.4.9 2.0 2.4.9 2.0 2.4.9 2.0 2.4.9 2.0 2.0 2.4.9 2.0 2.0 2.4.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0				Asphalt	90				0.9	26.5		4	1	ı	i	1	1
Concrete 205	ТН8		A7015A			Clav	2500		1.2	22.0	i	1	1	1	1	â	i.
205 24.9	2	_				Clay	0007		1.6	24.3	-	6	ŕ		r,	ŕ	ı
35.1				Concrete	205				2.0	24.9	1		1	i	į.	1	ą
									2.5	35.1		1	.1	ı	,	1	

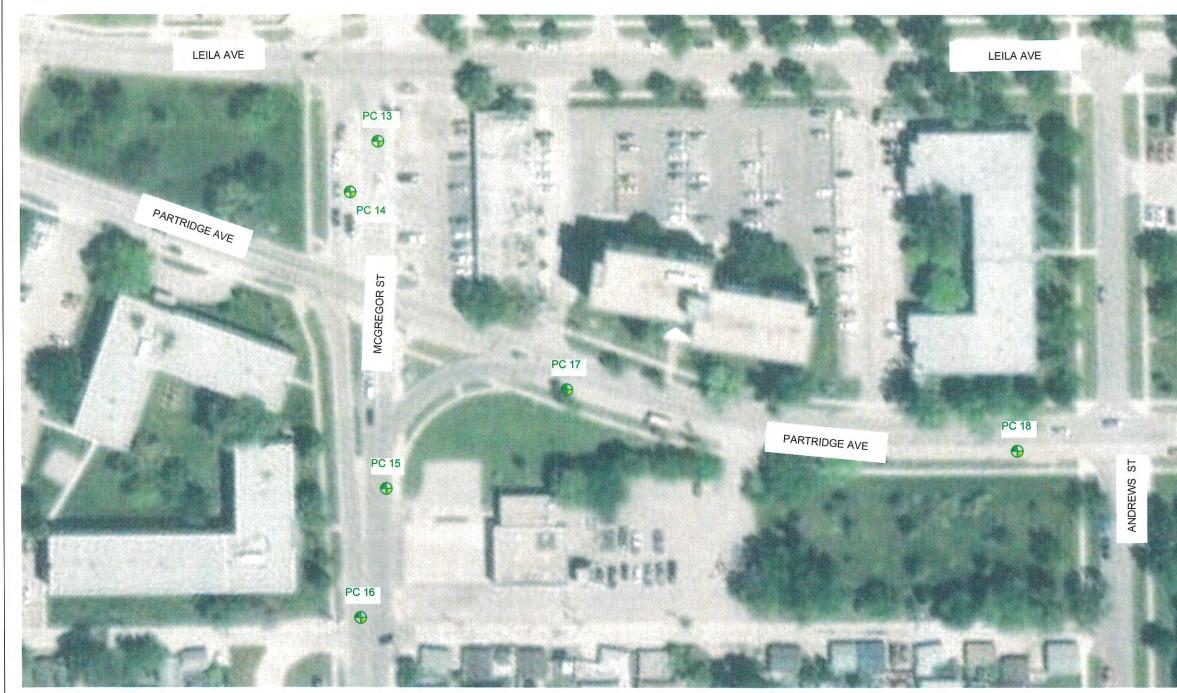
Page 5


	nnipeg, Manitoba, Canada	
	e, McGregor Street, Wil	
	nue, Partridge Avenue	
WSP Canada Inc.	2022 – 2055 CW Regional Street Renewal – Leila Aver	File No. 23-035-04


Test	GPS Co	GPS Coordinates	Pavemen	Pavement Surface	Pavemen	Pavement Structure Material	Subarade	ture Sample Moisture	Moisture	Hyd	Hydrometer Analysis	Analysis		Atte	Atterberg Limits	mits
Hole	UTM	14U	Type	Depth (mm)	Туре	Depth (mm)	Description	(m)	Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid	Plastic Limit	Plasticity Index
								0.6	31.6	,		1	1	1	4	÷
			Asphalt	90				0.9	21.7	1	3	1	1	a	,	,
ТНО	5534115	634313			nel C	2600	Silty Clay	1.2	20.5	0.0	5.0	82.6	12.4	23	18	5
2		0.000			Ciay	0002		1.6	38.6	ų	1	-1	a.	1	1	à
			Concrete	225				2.0	45.2	1	1	1	,	ı	,	•
								2.5	47.3	1	a		2	1	1	÷
						Sumn Leila Avenue	Table 5 Summary of Pavement Structure Avenue, Monsey Street to Sinclair Street	5 ent Structure set to Sinclai	s r Street							
Test	GPS Co	GPS Coordinates	Pavemer	Pavement Surface	Pavemer	Pavement Structure Material	Subarade	Sample	Moisture	Hyc	Hydrometer Analysis	Analysi	0	Atte	Atterberg Limits	imits
Hole	UTM	14U	Type	Depth (mm)	Type	Depth (mm)	Description	Uepth (m)	Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid	Plastic Limit	Plasticity Index
								0.6	31.7	•	1	,	1	4	1	1
(Asphalt	60				0.9	36.6	1	ı	1			4	ġ.
THIO	5534685	633780				2600	Fat Clay	1.2	35.9							
2	000+000				Ciay	0002		1.6	23.7	ì	1		1	ī	4	j.
			Concrete	180				2.0	22.0	-	1	4	-	1	4	,
								2.5	31.7	1	Į.	1	a.	a	2	i
								0.6	35.5	ï	-	1		1		a
			Asphalt	55			Fat Clay	0.9	36.2							
TU11	EE246ED	CODEE			nol0	2500		1.2	36.8	1	1		t-	•	1	¢
		-			Ciay	0067		1.6	43.3		•	1	1	i		ï
			Concrete	180				2.0	46.4	•	•	4		ų.	4	a.
								2.5	51.0	1	1	1	9	.,	,	
TL113*	EE2AGEA	S2207E	Asphalt	75	Class	1000										
1	1001000	070000	Concrete	105	Ciay	nnoi		0.1 - 8.0	t		i	r	1	!	1	i


Page 6

	TEST H	IOLE & PAVEMENT	CORE LOCATION TABLE
HOLE	CORING COM NOVEMBER 28, 2 DECEMBER 1 A	9 AND 30, 2023;	
NUMBER	UTM COC	RDINATE	- LOCATION DESCRIPTIONS
_	UTM	14U	
PC 01	5534821	633493	LEILA AVE, WB CURB LANE, 0.1 M SOUTH OF € OF LANE
PC 02	5534819	633496	LEILA AVE, WB CURB LANE, 0.2 M NORTH OF C OF LANE
PC 03	5534819	633495	LEILA AVE, WB CURB LANE,ON € OF LANE
PC 04	5534587	633952	LEILA AVE, EB CURB LANE, ON € OF LANE
TH 10	5534685	633780	LEILA AVE, WB CURB LANE, 1 M SOUTH OF & OF LANE
TH 11	5534650	633856	LEILA AVE, WB CURB LANE, 1.3 M SOUTH OF € OF LANE
TH 12	5534664	633825	LEILA AVE, WB CURB LANE, ON € OF LANE



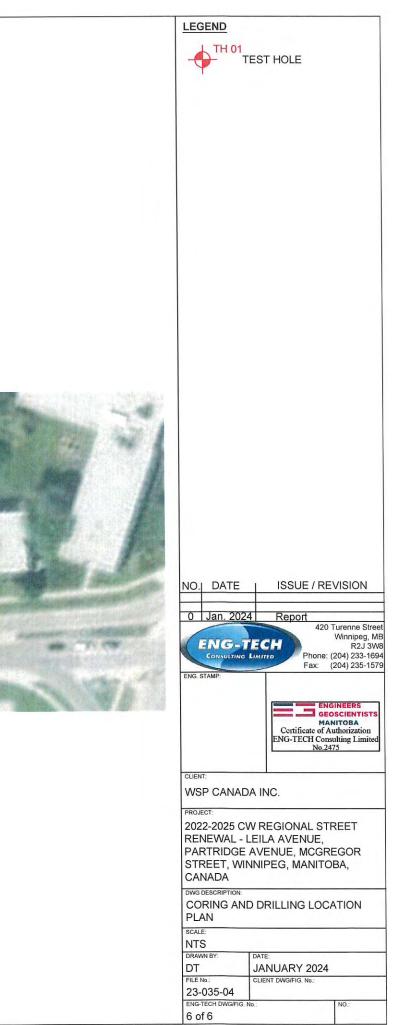
	CORING COM NOVEMBER 28, 2		
HOLE	DECEMBER 1 A		
NUMBER	UTM COC	RDINATE	LOCATION DESCRIPTIONS
	UTM	14U	
PC 05	5534557	634013	LEILA AVE, EB CURB LANE, ON € OF LANE
PC 06	5534555	634016	LEILA AVE, EB CURB LANE, ON € OF LANE
PC 07	5534486	634165	LEILA AVE, EB CURB LANE, ON € OF LANE
PC 08	5534491	634159	LEILA AVE, EB CURB LANE, 1 M NORTH OF € OF LANE
PC 09	5534487	634162	LEILA AVE, EB CURB LANE, ON € OF LANE
PC 10	5534466	634209	LEILA AVE, EB CURB LANE, ON € OF LANE
PC 11	5534469	634213	LEILA AVE, EB MEDIAN LANE, ON € OF LANE
PC 12	5534463	634218	LEILA AVE, EB CURB LANE, 1 M NORTH OF € OF LANE

	TEST H	OLE & PAVEMENT	CORE LOCATION TABLE
HOLE	CORING COM NOVEMBER 28, 2 DECEMBER 1 A	9 AND 30, 2023;	
NUMBER	UTM COC	RDINATE	LOCATION DESCRIPTIONS
	UTM	14U	
PC 13	5534345	634429	MCGREGOR ST, NB MEDIAN LANE, ON € OF LANE
PC 14	5534334	634419	MCGREGOR ST, SB MEDIAN LANE, ON € OF LANE
PC 15	5534252	634390	MCGREGOR ST, NB CURB LANE, ON € OF LANE
PC 16	5534236	634371	MCGREGOR ST, SB CURB LANE, ON € OF LANE
PC 17	5534261	634444	PARTRIDGE AVE, EB SOUTH CURB LANE, ON € OF LANE
PC 18	5534201	634541	PARTRIDGE AVE, EB MIDDLE LANE, ON € OF LANE

	TEST H	IOLE & PAVEMENT	CORE LOCATION TABLE	
HOLF	CORING COM NOVEMBER 28, 2 DECEMBER 1 A	9 AND 30, 2023;		
NUMBER	UTM COC	RDINATE	- LOCATION DESCRIPTIONS	
	UTM	14U		
PC 19	5534181	634589	PARTRIDGE AVE, EB NORTH CURB LANE,ON € OF LANE	
PC 20	5534110	634722	PARTRIDGE AVE, EB SOUTH CURB LANE,ON € OF LANE	
PC 21	5534048	634863	PARTRIDGE AVE, EB MIDDLE LANE,ON € OF LANE	
PC 22	5534010	634954	PARTRIDGE AVE, EB NORTH CURB LANE,ON € OF LANE	
PC 23	5533952	635086	PARTRIDGE AVE, EB MIDDLE LANE,ON € OF LANE	
PC 24	5533937	635090	PARTRIDGE AVE, EB SOUTH CURB LANE,ON € OF LANE	
PC 25	5533917	635151	PARTRIDGE AVE, EB NORTH CURB LANE,ON € OF LANE	
PC 26	5533870	635233	PARTRIDGE AVE, EB SOUTH CURB LANE,ON € OF LANE	

Ŵ

	TEST H	IOLE & PAVEMENT	CORE LOCATION TABLE						
HOLE	CORING COM NOVEMBER 28, 2 DECEMBER 1 A	9 AND 30, 2023;							
NUMBER	UTM COC	RDINATE	LOCATION DESCRIPTIONS						
TH 01	UTM	14U							
TH 01	5533349	633956	MCGREGOR ST, SB LANE, ON € OF LANE						
TH 02	5533429	634002	MCGREGOR ST, NB LANE, ON € OF LANE						
TH 03	5533550	634050	MCGREGOR ST, SB LANE, ON € OF LANE						
TH 04	5533687	634121	MCGREGOR ST, NB LANE, ON € OF LANE						
TH 05	5533762	634146	MCGREGOR ST, SB LANE, ON € OF LANE						
TH 06	5533832	634193	MCGREGOR ST, NB LANE, ON € OF LANE						
TH 07	5533927	634227	MCGREGOR ST, SB LANE, ON € OF LANE						
TH 08	5534014	634276	MCGREGOR ST, NB LANE, ON € OF LANE						


P:\2023\035(WSP)\04 (Leila Ave, McGregor St, Partridge Ave)\Drafting\23-035-04 - 2013.dwg

	TEST H	OLE & PAVEMENT	CORE LOCATION TABLE	
HOLE	CORING COM NOVEMBER 28, 2 DECEMBER 1 AI	9 AND 30, 2023;	LOCATION DESCRIPTIONS	0
NUMBER	UTM COC	RDINATE	LOCATION DESCRIPTIONS	
	UTM	14U		
TH 09	5534115	634313	MCGREGOR ST, SB LANE, ON € OF LANE	

Test Hole #: TH01 Client: WSP Canada Inc.

Location: See Figure 5

File No.: 23-035-04

Date Drilled: December 1, 2023

Site: SB McGregor Street, Winnipeg, Manitoba Grade Elevation: 100.0 m

Water Elevation: --

Engineering And Testing

Solutions That Work For You Project: 2022 - 2025 CW Regional Street Renewal - Leila, Partridge, McGregor

		SUBSURFACE PROFILE		S		E DA	A			SHEAR	
Depth (m)	Soil Symbol	Description	Elevation (m)	Sample No.	Sample Type	Moisture Content (%)	Blows/300 mm	Moisture Content (%) PL IXI LL 20 40 60 80	P. Pen	Torvane	UC C
0.0-		Ground Surface	100.0								
0.0	SIGNER	Asphalt (125 mm)	-								
		Concrete (165 mm)	-								
		<i>Clay</i> - dark brown, moist, firm, silty, trace sand. - below 0.8 m, brown, soft.		S1	\$	27.0	_	•			
	1		-	S2	5	22.7					
1.0-	1		99.0-	00		23.0					
	1			S3		23.0					
	1		-								
	1	- below 1.6 m, dark brown, stiff.	-	S4	5	35.7		À.			
2.0-			98.0-	S 5	5	43.0		••••••••••••••••••••••••••••••••••••••			
		- below 2.3 m, dark brown, stiff.	-								
	1		-	S6		49.1					
3.0- 4.0- 5.0-		End of Test Hole - end of test hole at 2.5 m below grade. - no seepage or sloughing encountered during drilling. - test hole backfilled with auger cuttings and gravel and patched with cold mix asphalt upon completion of drilling.	97.0								
Lo R	ogge eviev	H Consulting Limited Drilled By d by: DO Drill Rig: wed by: M Auger Siz	Lone Sta ze: 100 r	ar T1	A+ olid	Stem		L. Completion Dep Completion Ele Sheet: 1 of 1 AUGER CUTTINGS	vation:	97.5 1	

Test Hole #: TH02

Location: See Figure 5

File No.: 23-035-04

Client: WSP Canada Inc.

Date Drilled: November 30, 2023

Site: NB McGregor Street, Winnipeg, Manitoba Grade Elevation: 100.0 m

Water Elevation: --

Engineering And Testing

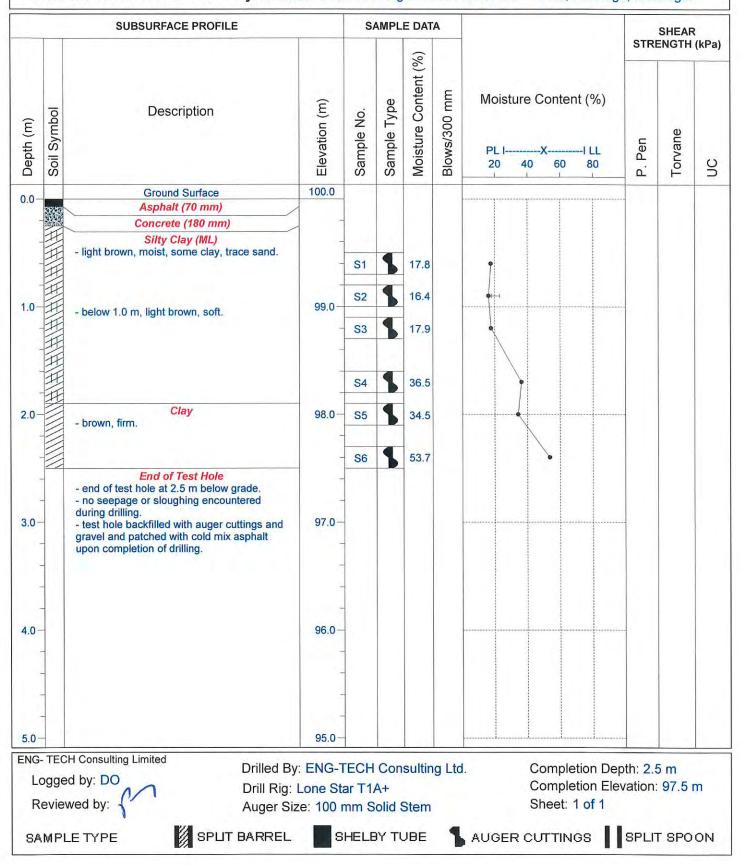
Solutions That Work For You Project: 2022 - 2025 CW Regional Street Renewal - Leila, Partridge, McGregor

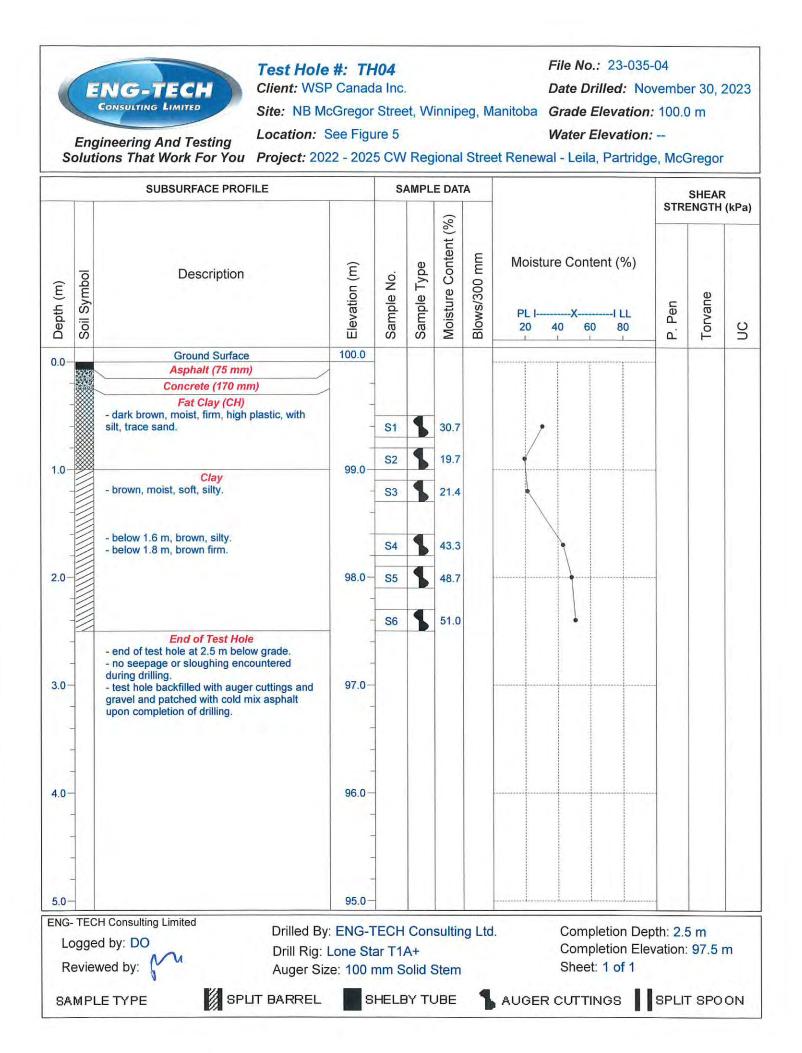
		SUBSURFACE PROFILE	1	S	AMPL	E DAT	A		STP	SHEAF	
Depth (m) Soil Symbol	Soil Symbol	Description	Elevation (m)	Sample No.	Sample Type	Moisture Content (%)	Blows/300 mm	Moisture Content (%) PL IXI LL 20 40 60 80	P. Pen	Torvane	
0.0-		Ground Surface	100.0								
		Asphalt (85 mm)	_								
		Concrete (200 mm) Clay	-								
	1	- black, moist, stiff, with gravel.		-	4						
	1			S1	D	27.3					
		- below 0.8 m, brown, moist, soft, silty.		S2	1	28.4					
-0.1		- below 1.1 m brown, moist, firm, silty.	99.0-								
		- Delow 1.1 m blown, molst, mm, sity.	-	S3	1	25.1		1 1 1 1			
			-	S4	1	22.4	d.				
-	1										
2.0-	1		98.0-	S 5	5	26.0		••••••••••••••••••••••••••••••••••••••	****		
-	1		-								
-	1		-	S6	1	31.1					
3.0-		End of Test Hole - end of test hole at 2.5 m below grade. - no seepage or sloughing encountered during drilling. - test hole backfilled with auger cuttings and gravel and patched with cold mix asphalt upon completion of drilling.	- 97.0-								
			-								
			-								
1.0-			96.0-				1.1				
			-								
			1 1								
- 0			95.0-								
5.0-			95.0-	1			-				-
		H Consulting Limited Drilled By	: ENG-T	ECH	Con	sultir	ng Ltd	I. Completion De	epth: 2.	5 m	
	19191	d by: DO Drill Rig:	Lone Sta	ar T1	A+			Completion El	evation	97.5	m
R	eviev	wed by: V Auger Siz	ze: 100 r	nm S	olid	Stem		Sheet: 1 of 1			
	MO	E TYPE SPLIT BARREL		HELE	יד ענ	IPE		AUGER CUTTINGS	lone	T 000	0.01

Test Hole #: TH03

File No.: 23-035-04

Water Elevation: --


Client: WSP Canada Inc.


Date Drilled: December 1, 2023

Site: SB McGregor Street, Winnipeg, Manitoba Grade Elevation: 100.0 m

Engineering And Testing Solutions That Work For You

Location: See Figure 5 Project: 2022 - 2025 CW Regional Street Renewal - Leila, Partridge, McGregor

Test Hole #: TH05

File No.: 23-035-04

Client: WSP Canada Inc.

Date Drilled: December 1, 2023

Site: SB McGregor Street, Winnipeg, Manitoba Grade Elevation: 100.0 m

Location: See Figure 5

Water Elevation: --

Engineering And Testing

Solutions That Work For You Project: 2022 - 2025 CW Regional Street Renewal - Leila, Partridge, McGregor

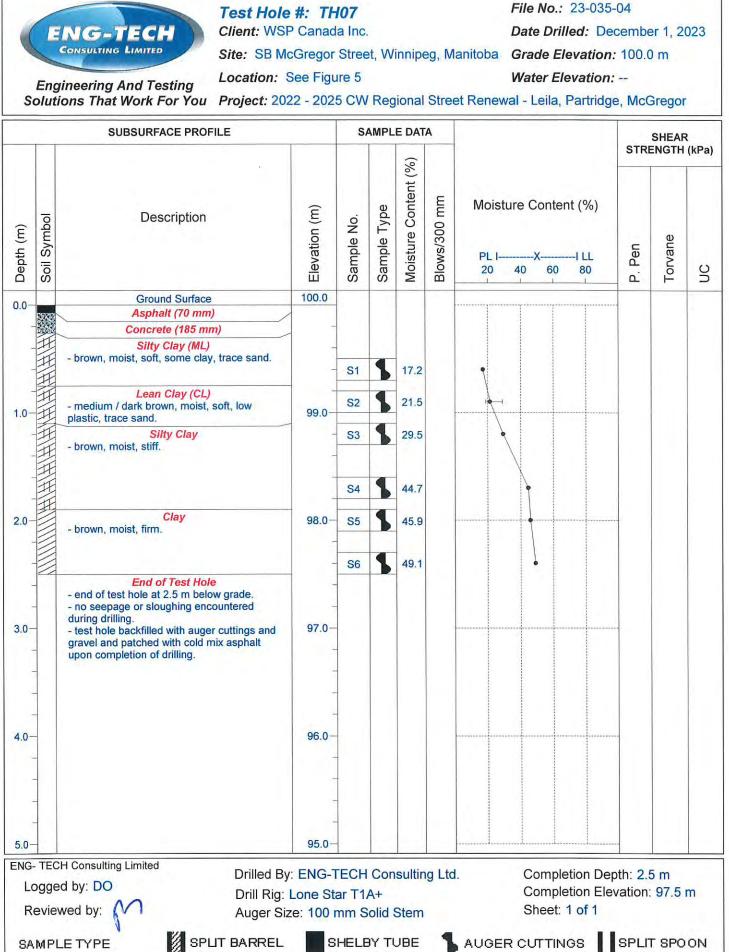
		SUBSURFACE PROFILE		S	AMPL	E DAT	ΓA					SHEAF	
Depth (m)	Soil Symbol	Description	Elevation (m)	Sample No.	Sample Type	Moisture Content (%)	Blows/300 mm		X	ntent (%) l LL 60 80	ue ue ue	Torvane	(kPa)
0.0-		Ground Surface	100.0										
0.0 	Asphalt (35 mm)												
0.0 - ligh - ligh 1.0 - H - ligh - li	Concrete (160 mm)												
-	Ŧ	Silty Clay (ML) - light brown, moist, some clay, trace sand.											
-	Ŧ		-	S1	18	17.0		9					
6	Ŧ	-light brown, soft	-	-									
10-	Ŧ		99.0-	S2	1	19.2		1			_		
1.0	Ŧ		00.0	00		-							
	Ŧ			S 3	D	23.1		٦		1			
-	Ŧ		1										
-	Ŧ		÷	~		35.9			\sum				
	T	Clay		S4		35.9			/				
2.0-	1	- below 1.9 m, brown, firm.	98.0-	S 5		42.2							
	1					-			\setminus				
	1			-	4	-	·						
	2			S6	Ъ	49.0			•				
3.0-		End of Test Hole - end of test hole at 2.5 m below grade. - no seepage or sloughing encountered during drilling. - test hole backfilled with auger cuttings and gravel and patched with cold mix asphalt upon completion of drilling.	- 97.0- - -										
40-			96.0-										
4.0			00.0										
			-										
1													
-			-	-									
5.0-			95.0-									1	4
Lo Re	ogge evie		one Sta e: 100 r	ar T1.	A+ olid	Stem			Con She	npletion De npletion Ele et: 1 of 1	vation	97.5	

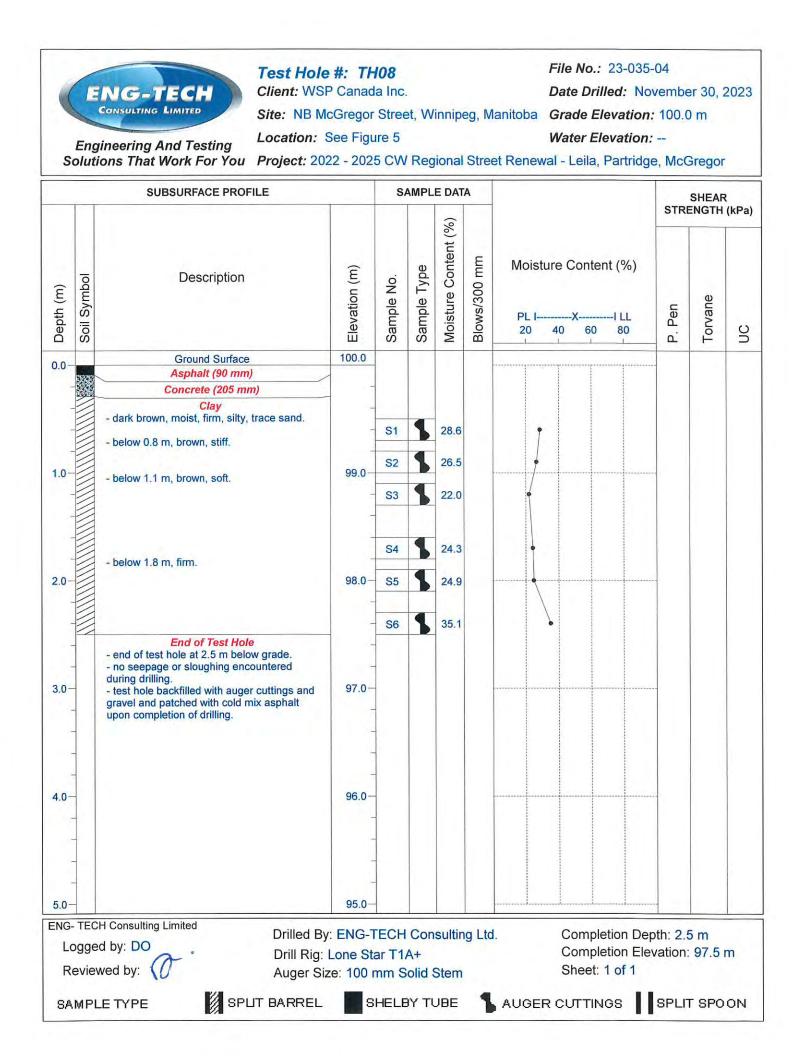
Test Hole #: TH06 Client: WSP Canada Inc.

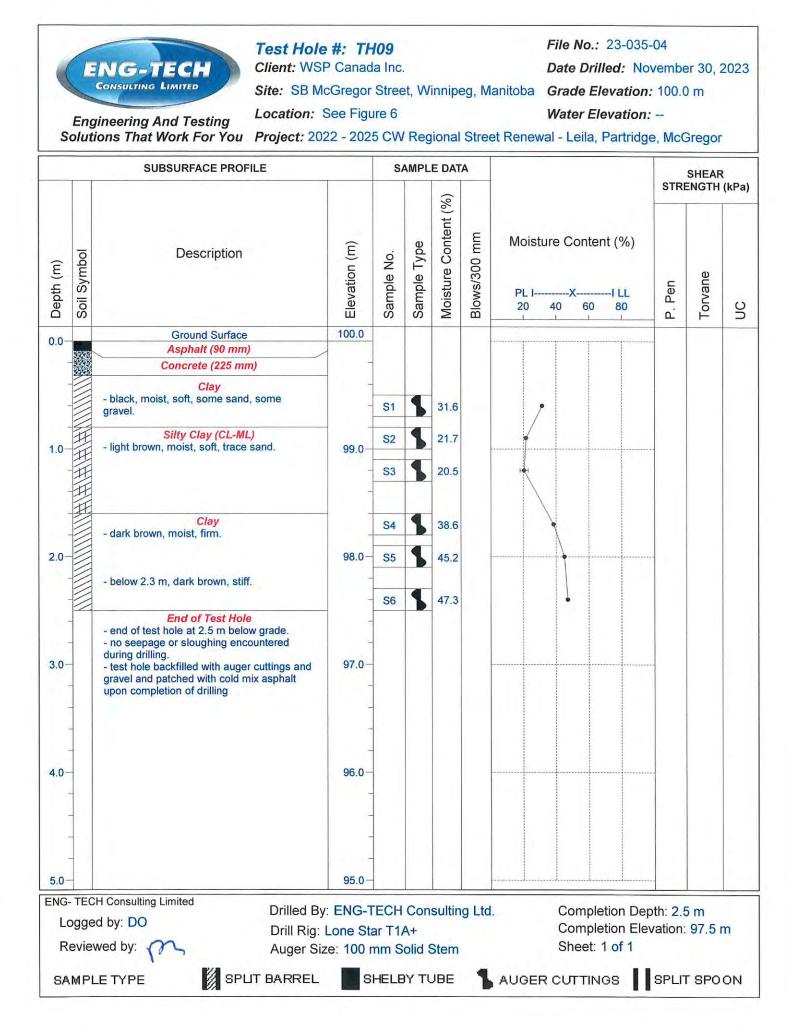
Location: See Figure 5

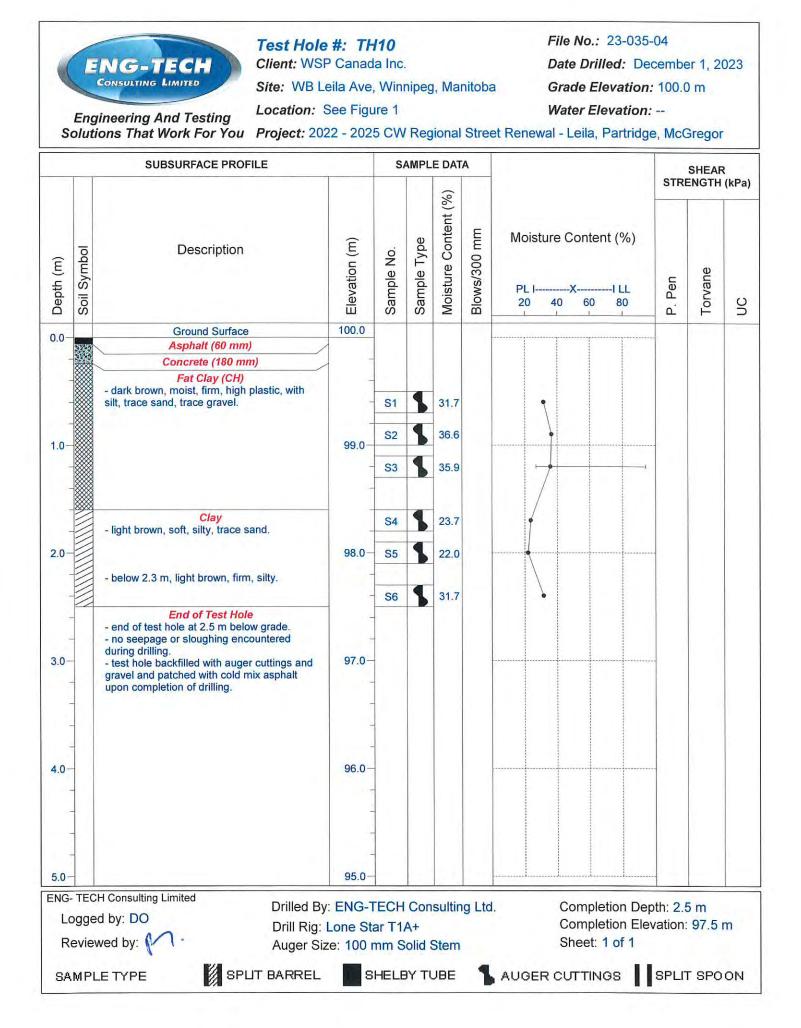
File No.: 23-035-04

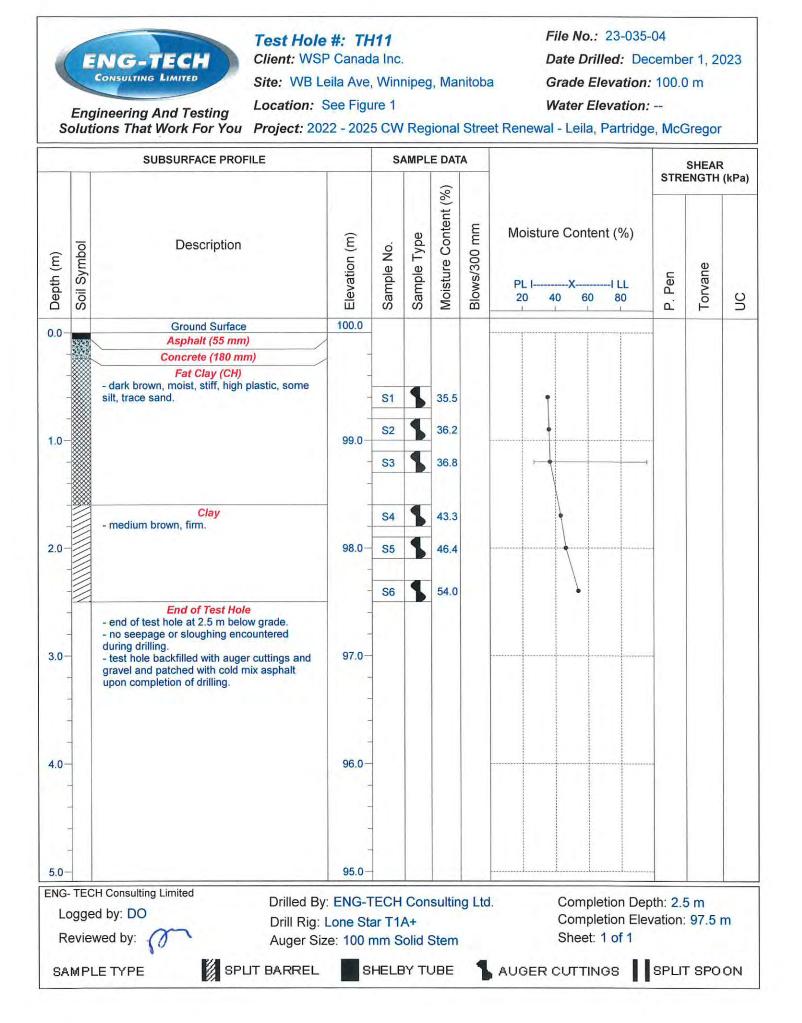
Date Drilled: November 30, 2023

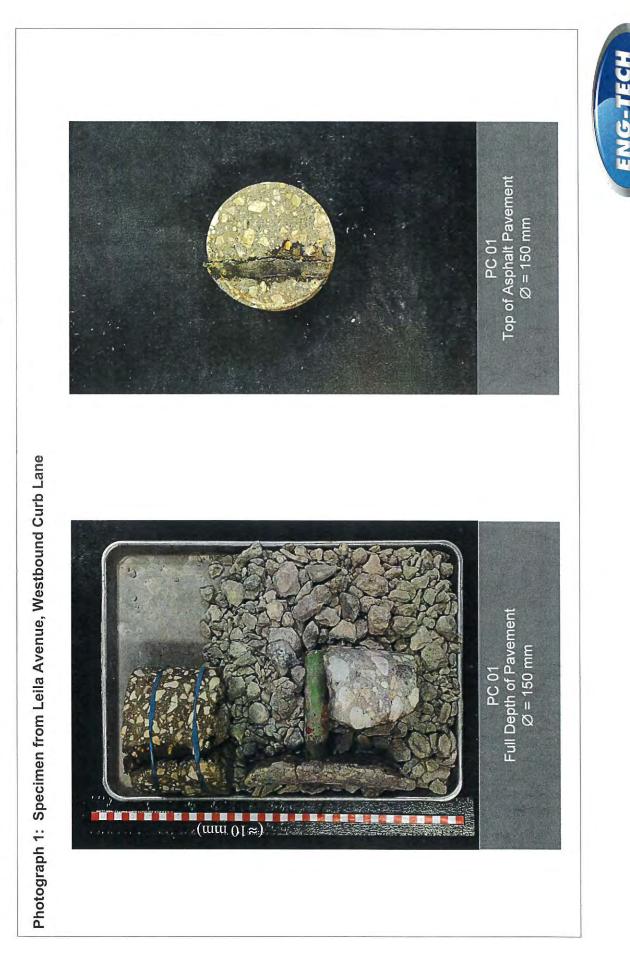

Site: NB McGregor Street, Winnipeg, Manitoba Grade Elevation: 100.0 m

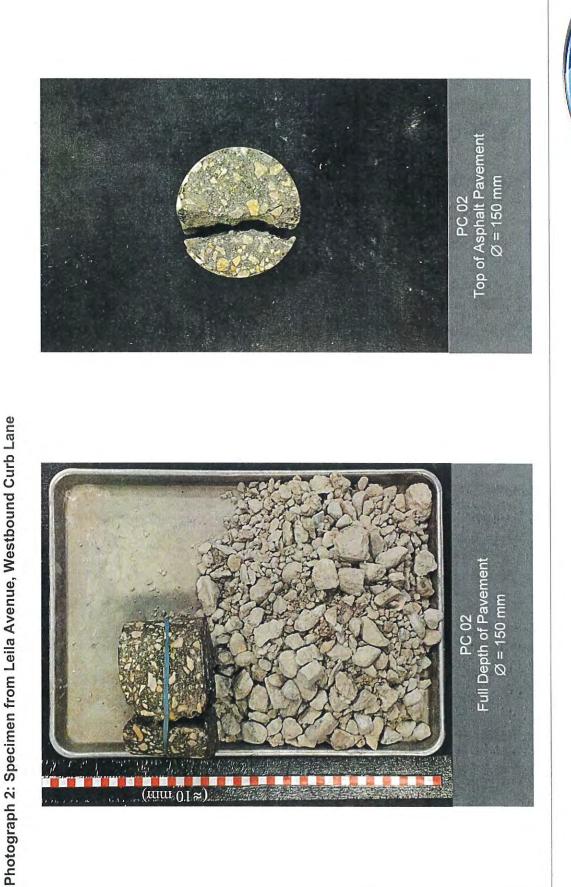

Water Elevation: --

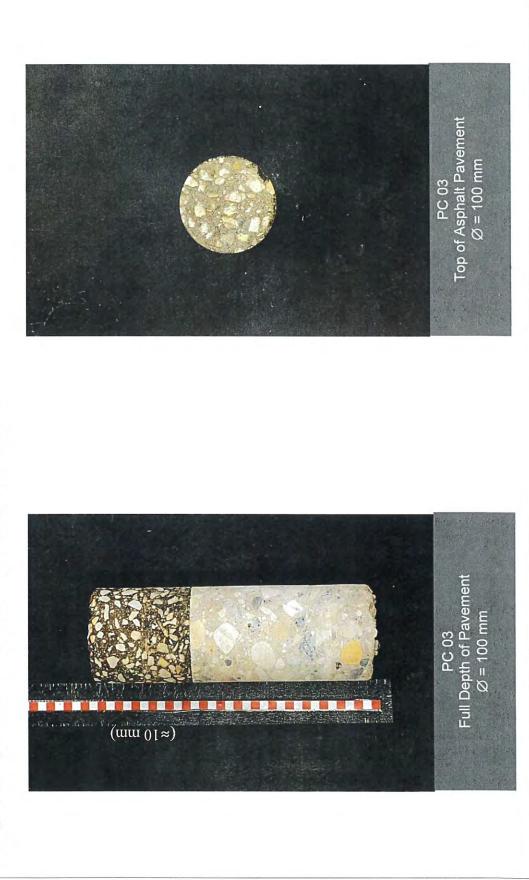

 Engineering And Testing
 Location: See Figure 5
 water Elevation: -


 Solutions That Work For You
 Project: 2022 - 2025 CW Regional Street Renewal - Leila, Partridge, McGregor


-		SUBSURFACE PROFILE		S	AMPL	e dat	A			SHEAR	
Depth (m)	Soil Symbol	Description	Elevation (m)	Sample No.	Sample Type	Moisture Content (%)	Blows/300 mm	Moisture Content (%) PL IXI LL 20 40 60 80	P. Pen	Torvane	nc
0.0-		Ground Surface	100.0								
		Asphalt (65 mm) Concrete (190 mm)	-								
1		Fat Clay (CH) - dark brown, moist, firm, high plastic, with silt, trace sand.	-	S1	\$	29.6		e			
				S2	1	31.4					
1.0-			99.0-	S3	•	29.9					
-		- below 1.6 m, brown, firm, some silt.	4								
5				S4	5	37.2		\ \			
2.0-		<i>Clay</i> - brown, moist, stiff. - below 2.2 m, moist, firm.	98.0	S5	1	41.4			-		
		- below 2.2 m, molst, mm.		S6	1	44.4					
		End of Test Hole - end of test hole at 2.5 m below grade. - no seepage or sloughing encountered during drilling. - test hole backfilled with auger cuttings and gravel and patched with cold mix asphalt upon completion of drilling.	97.0- - - 96.0- - -								
5.0-			- 95.0-								
Lo	ogge	H Consulting Limited Drilled By d by: DO Drill Rig: wed by: Auger Siz	Lone Sta	ar T1.	A+		ig Ltd	I. Completion Dep Completion Ele Sheet: 1 of 1			m






CONSULTING LIM

File No.: 23-035-03 Page 2

Photograph 3: Specimen from Leila Avenue, Westbound Curb Lane


File No.: 23-035-03 Page 4

Photograph 4: Specimen from Leila Avenue, Eastbound Curb Lane

File No.: 23-035-03 Page 5

2022 – 2025 CW Regional Street Renewal – Leila Avenue, Partridge Avenue, McGregor Street, Winnipeg, Manitoba, Canada WSP Canada Inc.

File No.: 23-035-03 Page 6

Photograph 6: Specimen from Leila Avenue, Eastbound Curb Lane

П

L

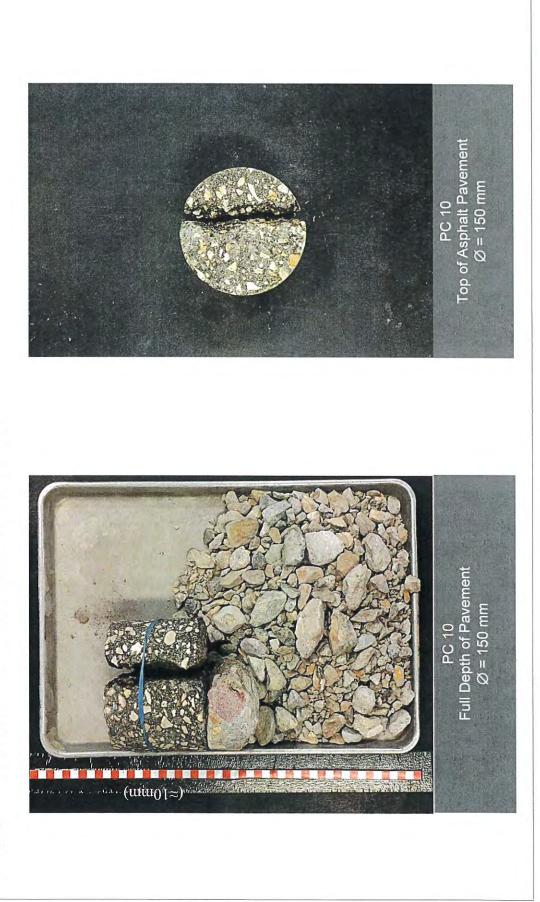

File No.: 23-035-03 Page 7


Photograph 7: Specimen from Leila Avenue, Eastbound Curb Lane

File No.: 23-035-03 Page 8

CONSULTING LIMITED

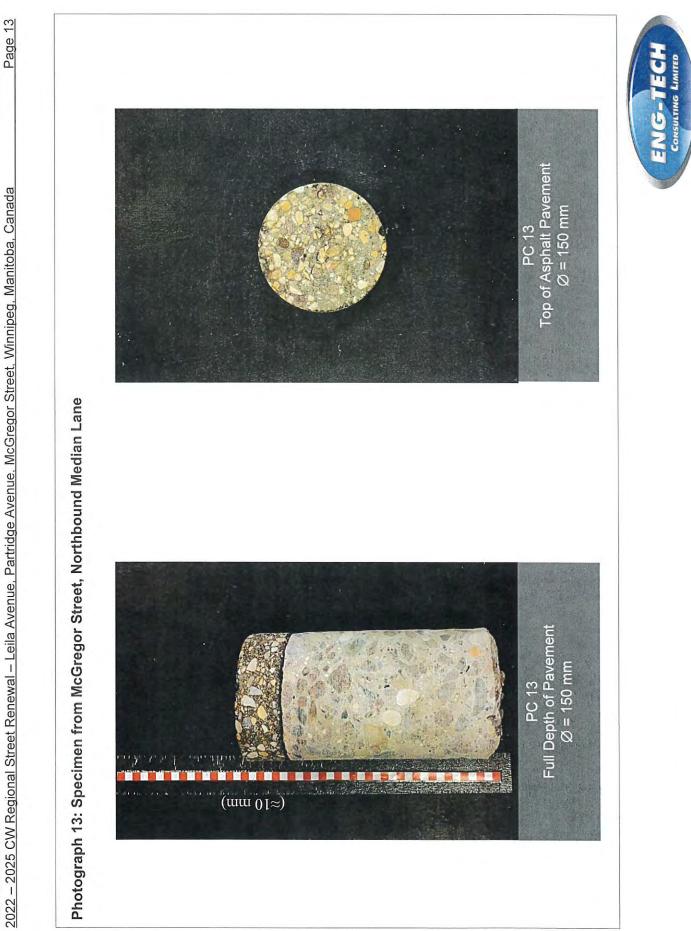
File No.: 23-035-03 Page 9


Photograph 9: Specimen from Leila Avenue, Eastbound Curb Lane

File No.: 23-035-03 Page 10

Photograph 10: Specimen from Leila Avenue, Eastbound Curb Lane

Top of Asphalt Pavement Ø = 100 mm

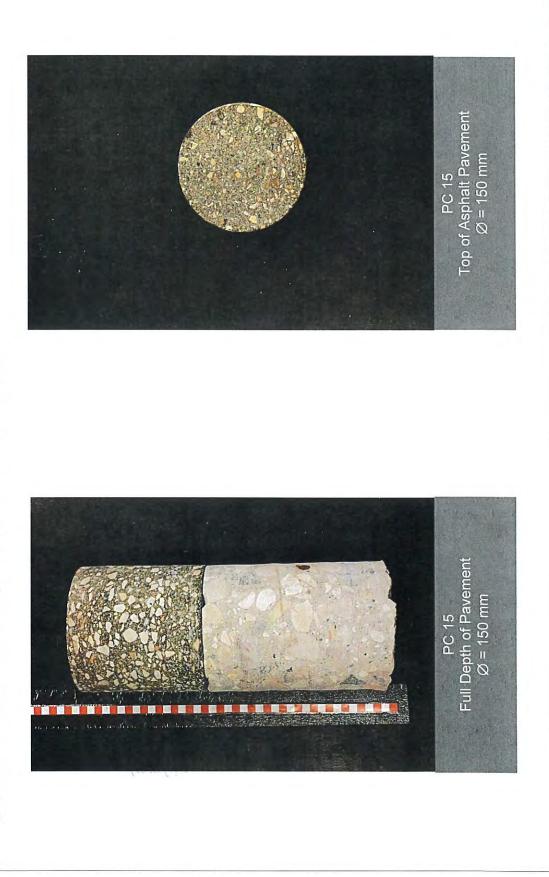

PC 11 Full Depth of Pavement Ø = 100 mm

PC 11

File No.: 23-035-03 Page 12

File No.: 23-035-03

WSP Canada Inc. 2022 – 2025 CW Regional Street Renewal – Leila Avenue, Partridge Avenue, McGregor Street, Winnipeg, Manitoba, Canada


File No.: 23-035-03 Page 14

File No.: 23-035-03 Page 15

Photograph 15: Specimen from McGregor Street, Northbound Curb Lane

CONSULTING LIMITED

PC 16 Top of Asphalt Pavement $\emptyset = 150 \text{ mm}$ Photograph 16: Specimen from McGregor Street, Southbound Curb Lane PC 16 Full Depth of Pavement Ø = 150 mm (mm 01≈)

File No.: 23-035-03 Page 17

Photograph 17: Specimen from Partridge Avenue, South Curb Lane

File No.: 23-035-03 Page 18

Photograph 18: Specimen from Partridge Avenue, Eastbound Middle Lane

File No.: 23-035-03 Page 19

Photograph 19: Specimen from Partridge Avenue, Eastbound North Curb Lane

File No.: 23-035-03 Page 20

File No.: 23-035-03 Page 21

Photograph 21: Specimen from Partridge Avenue, Eastbound Middle Lane

File No.: 23-035-03 Page 22

File No.: 23-035-03 Page 23

File No.: 23-035-03 Page 24

CONSULTING LIMIT

File No.: 23-035-03 Page 25

Photograph 25: Specimen from Partridge Avneue, Eastbound North Curb Lane

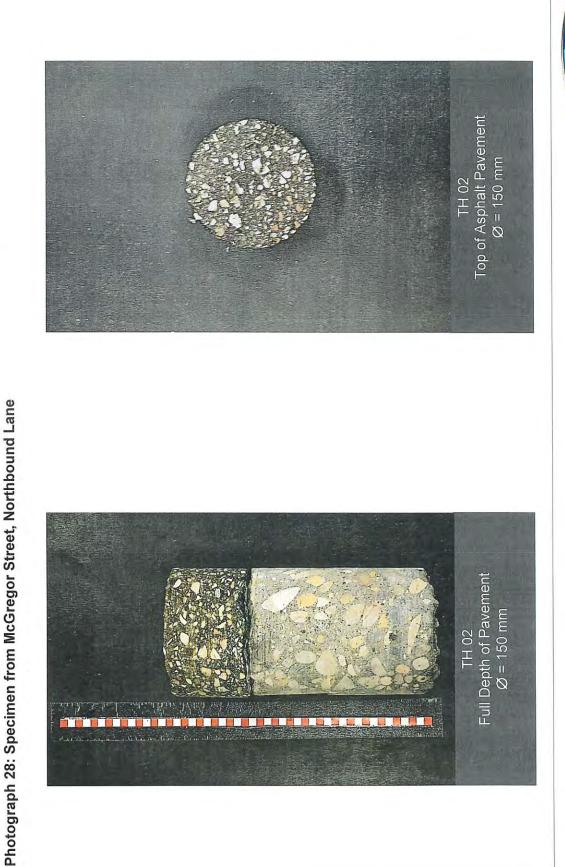
File No.: 23-035-03 Page 26

Photograph 26: Specimen from Partridge Avenue, Eastbound South Curb Lane

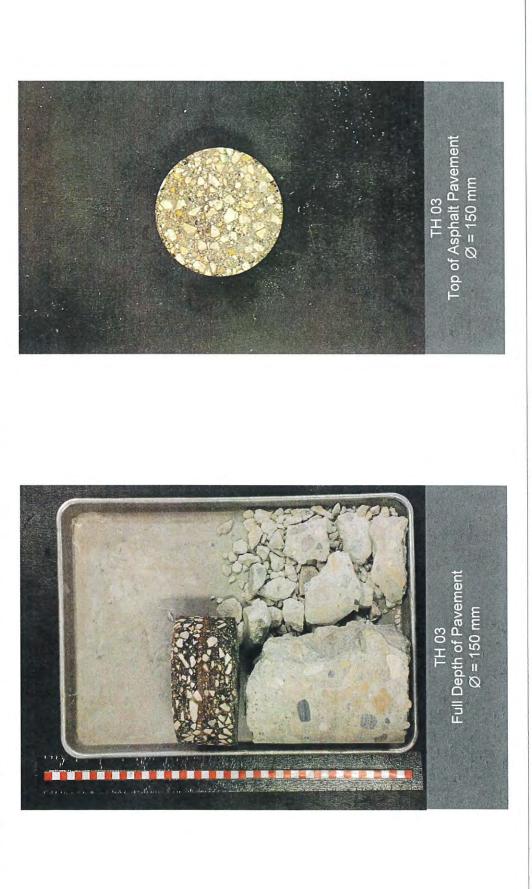
SULTING LIMITED

L

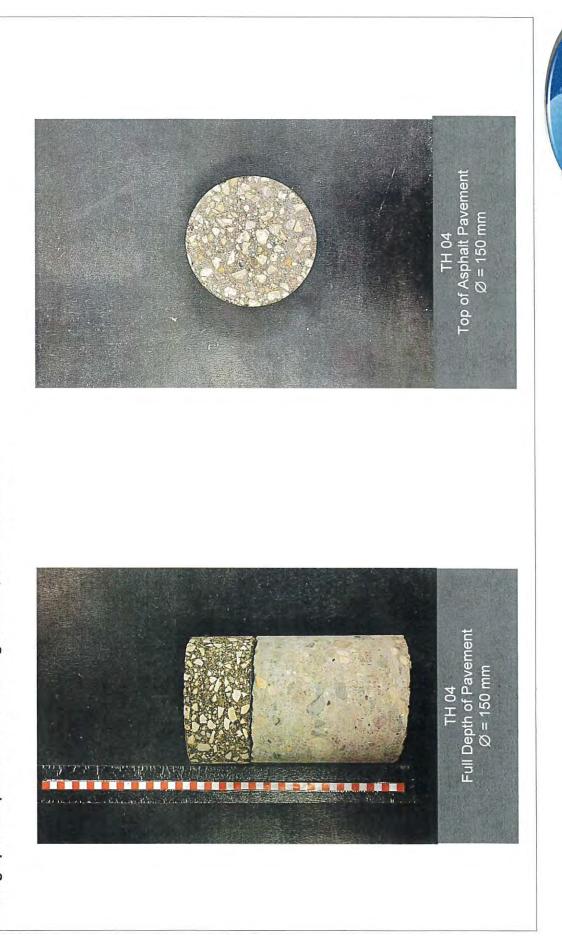
File No.: 23-035-03 Page 27


Photograph 27: Specimen from McGregor Street Southbound Lane

STITUE LIMITED П


File No.: 23-035-03 Page 28

File No.: 23-035-03 Page 29


Photograph 29: Specimen from McGregor Street, Soutbound Lane

File No.: 23-035-03 Page 30

Photograph 30: Specimen from McGregor Street, Northbound Lane

5

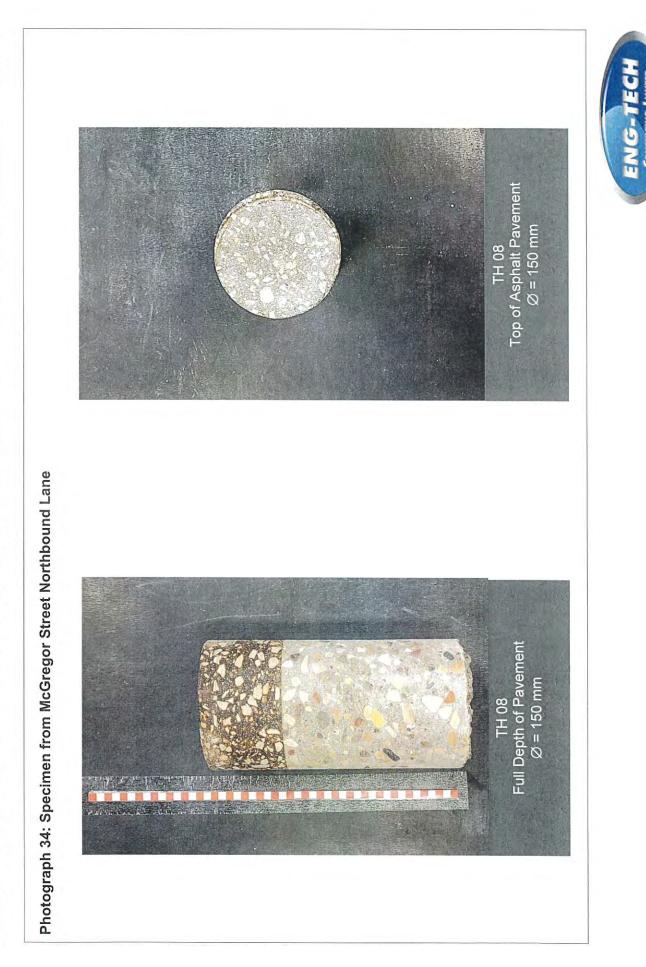
File No.: 23-035-03 Page 31 Photograph 31: Specimen from McGregor Street, Southbound Lane 7

TH 05 Top of Asphalt Pavement Ø = 150 mm

TH 05 Full Depth of Pavement Ø = 150 mm

File No.: 23-035-03 Page 32

Photograph 32: Specimen from Mcgregor Street, Northbound Lane


File No.: 23-035-03 Page 33

Photograph 33: Specimen from McGregor Street, Southboud Lane

File No.: 23-035-03 Page 34

File No.: 23-035-03 Page 35

File No.: 23-035-03 Page 36

ENG-TEC

File No.: 23-035-03 Page 38

Photograph 38: Specimen from Leila Avenue, Westbound Curb Lane

"Engineering and Testing Solutions That Work for You"

420 Turenne Street Winnipeg, Manitoba R2J 3W8 engtech@mymts.net www.eng-tech.ca

OBTAINING AND TESTING DRILLED CORES

File No .:

Ref. No .:

23-035-04

23-35-4-1

WSP Canada Inc. 1600 Buffalo Place Winnipeg, Manitoba R3T 6B8

Attention:

Project:	2022- 2025 CW AVENUE, MCG	REGIONAL	STREET RENEWAL – LE EET, WINNIPEG, MANIT	ILA AVENUE, PAI OBA, CANADA	RTRIDGE
Location:	Leila Avenue				
Date Cored:	Nov & Dec 2023	Cored By:	ENG-TECH (Kyle Zebiere)	Page:	1 of 1
Date Received:	Nov & Dec 2023	Received By:	ENG-TECH (Kyle Zebiere)	Structure:	Road pavement
Age of Concrete	9: -	Concrete Des	ign Strength: -	Direction of Load:	Parallel
and the second second	the state has a read of the				

Core Conditioning: As per CSA A23.2-14C Clause 7.3.1 (moist)

Test Method: CSA A23.2-14C, 9C

Strength Specification: Minimum 85% of design strength on an average of 3 cores - no single core less than 75% as per CSA A23.1 Clause 4.4.2.2.2.2

Core	Core		ngth	Average	Date Tested	Compressive	Tupo of	Tested Du
No. Location on Structure		Cored (mm)	Tested (mm)	Diameter (mm)	(m/d/y)	Strength (MPa)	Type of Fracture	Tested By ENG-TECH
PC03	Westbound curb lane, Northing: 5534819 Easting: 633495 Centerline of lane	190	186	100	Jan 17/24	57.01*	1	Rey Batac
PC05	Eastbound curb lane, Northing: 5534557 Easting: 634013 Centerline of lane	200	131	100	Jan 17/24	40.01*	1	Rey Batac
PC07	Eastbound curb lane, Northing: 5534486 Easting: 634165 Centerline of lane	200	190	100	Jan 17/24	45.63*	1	Rey Batac
PC11	Eastbound middle lane, Northing: 5534469 Easting: 634213 Centerline of lane	248	175	100	Jan 17/24	66.3*	1	Rey Batac

Reporting of these results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. *Denotes corrected strength for Length/Diameter ratio less than 2.0 to 1.0. Type of fracture indicated when cylinder fails to meet 85% of design strength or if different than CSA A23.2-19-9C Table 3 Type 1.

Comments: All core ends were trimmed prior to compressive strength testing and were end prepared using a high strength capping compound.

Deviations from test procedure: None

Email: WSP Canada Inc. Contact Group

ENG-TECH Consulting Limited Per

Darci Babisky, C.E.T. Operations Manager - Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

Supplementary information may be provided upon request. Restrictions and additional fees may apply.

"Engineering and Testing Solutions That Work for You"

420 Turenne Street Winnipeg, Manitoba R2J 3W8 engtech@mymts.net www.eng-tech.ca OBTAINING AND TESTING DRILLED CORES

File No .:

Ref. No.:

23-035-04

23-35-4-2

WSP Canada Inc. 1600 Buffalo Place Winnipeg, Manitoba R3T 6B8

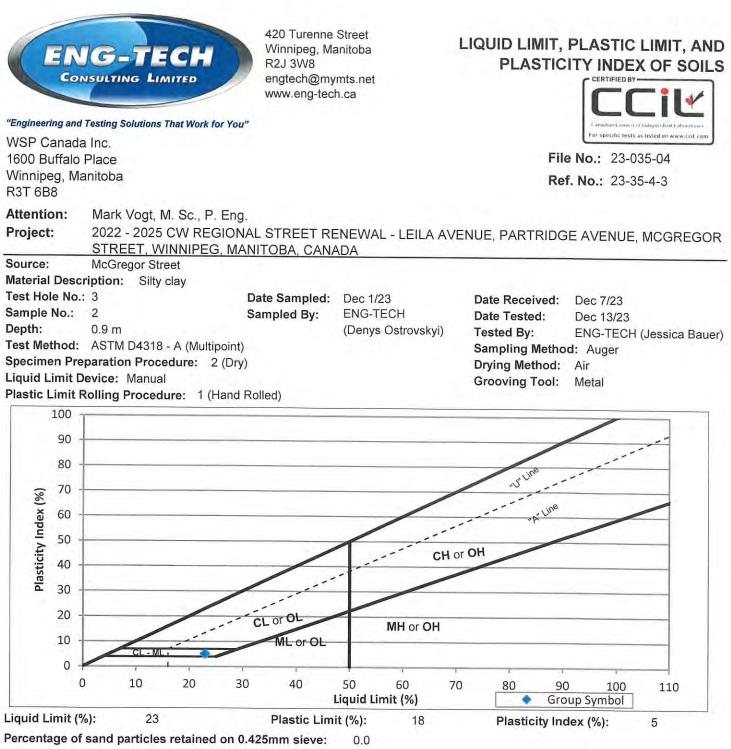
Attention:	Scott Sudermar	n, C.E.T., P. Eng			
Project:	2022- 2025 CW AVENUE, MCG	REGIONAL S	STREET RENEWAL – LE EET, WINNIPEG, MANIT	ILA AVENUE, PAI OBA, CANADA	RTRIDGE
Location:	Partridge Avenue				
Date Cored:	Nov & Dec 2023	Cored By:	ENG-TECH (Kyle Zebiere)	Page:	1 of 1
Date Received:	Nov & Dec 2023	Received By:	ENG-TECH (Kyle Zebiere)	Structure:	Road pavement
Age of Concrete	9: -	Concrete Des	ign Strength: -	Direction of Load:	Parallel
Core Conditioni	ng: As per CSA A2	23.2-14C Clause	7.3.1 (moist)	Test Method:	CSA A23.2-14C, 9C

Strength Specification: Minimum 85% of design strength on an average of 3 cores - no single core less than 75% as per CSA A23.1 Clause 4.4.2.2.2.2

Core		Length		Average Diameter (mm)	Date Tested	Compressive	Type of Fracture	Tested By ENG-TECH
No. Location on Structure	Cored (mm)	Tested (mm)	(m/d/y)		Strength (MPa)			
PC18	Eastbound middle lane, Northing: 5534201 Easting: 634541 Centerline of lane	194	192	100	Jan 17/24	51.19*	1	Rey Batac
PC23	Eastbound middle lane, Northing: 5533952 Easting: 635086 Centerline of lane	195	193	100	Jan 17/24	64.89*	1	Rey Batac

Reporting of these results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. *Denotes corrected strength for Length/Diameter ratio less than 2.0 to 1.0. Type of fracture indicated when cylinder fails to meet 85% of design strength or if different than CSA A23.2-19-9C Table 3 Type 1.

Comments: All core ends were trimmed prior to compressive strength testing and were end prepared using a high strength capping compound.

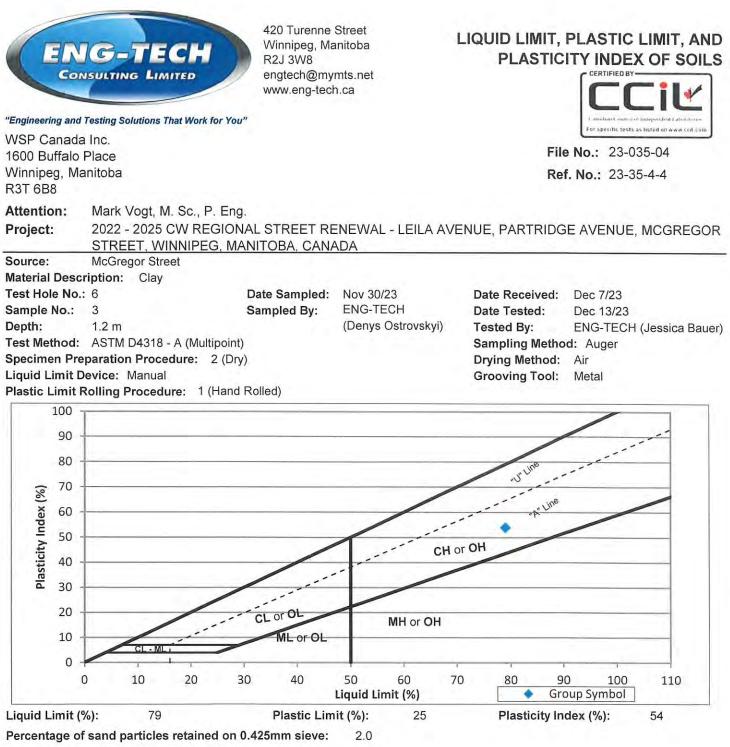

Deviations from test procedure: None Email: WSP Canada Inc. Contact Group

	ENG-TECH Consulting Limited	
Per	OAL	>

Darci Babisky, C.E.T. Operations Manager - Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

Supplementary information may be provided upon request Restrictions and additional fees may apply.

Classification: ASTM D2487; CL - ML, Silty clay ASTM D3282: A-4 (3)


As Received Moisture Content (%): 16.4 Comments:

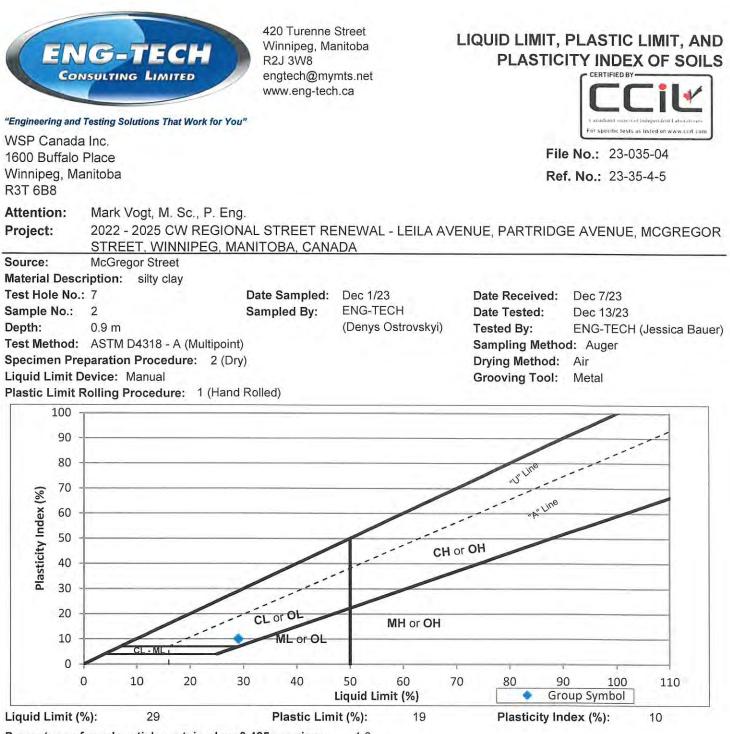
Email: WSP Canada Inc. Contact Group

ENG-TECH Consulting Limited

Per[<]

Classification: ASTM D2487, CH, Fat clay ASTM D3282: A-7-6 (61)

As Received Moisture Content (%): 29.9 Comments:


Email: WSP Canada Inc. Contact Group

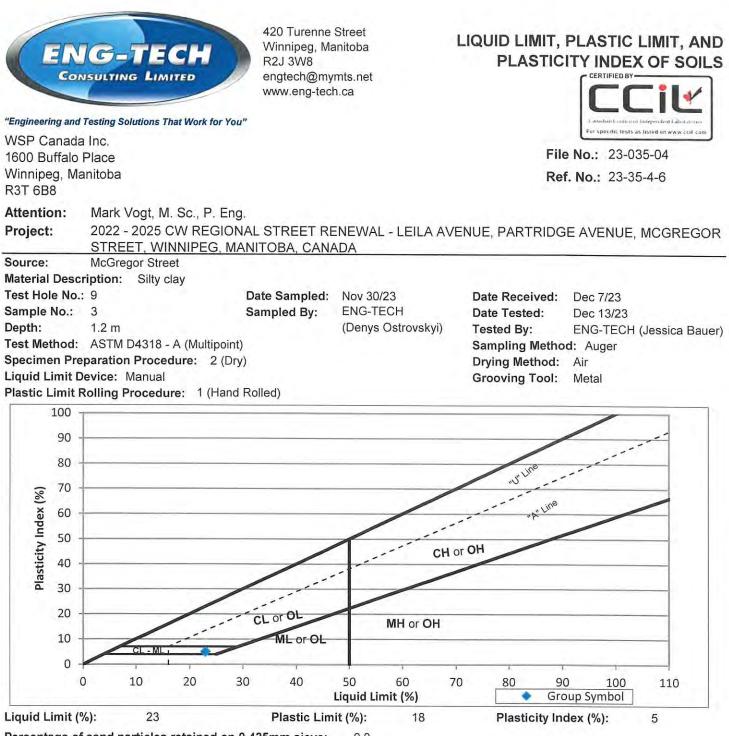
ENG-TECH Consulting Limited

Per

Darci Babisky, C.E.T. Operations Manager - Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

Percentage of sand particles retained on 0.425mm sieve: 1.0

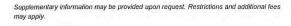
Classification: ASTM D2487, CL, Lean clay ASTM D3282: A-4 (8)


As Received Moisture Content (%): 21.5 Comments:

Email: WSP Canada Inc. Contact Group

ENG-TECH Consulting Limited

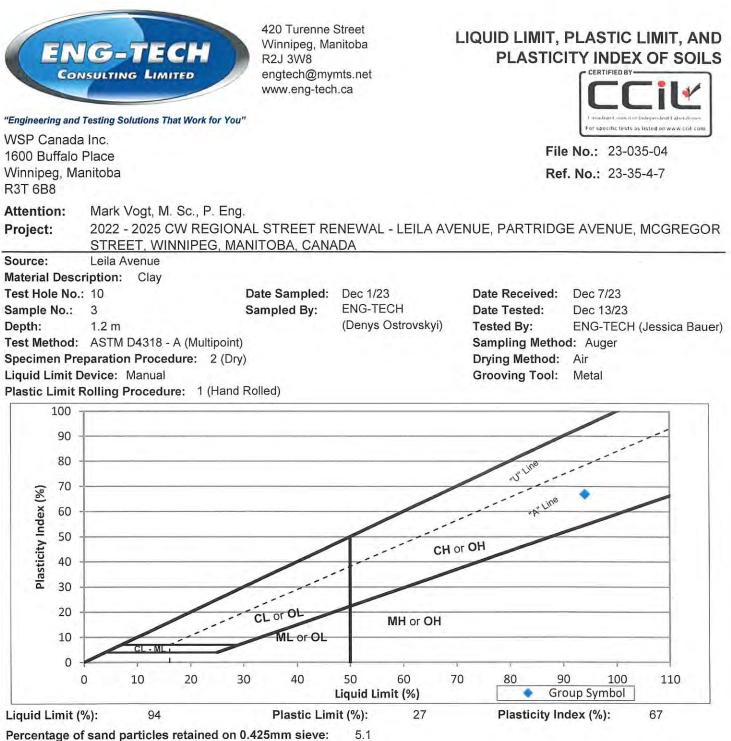
Per



Percentage of sand particles retained on 0.425mm sieve: 0.0

Classification: ASTM D2487, CL-ML, Silty clay ASTM D3282: A-4 (3)

As Received Moisture Content (%): 20.5 Comments:

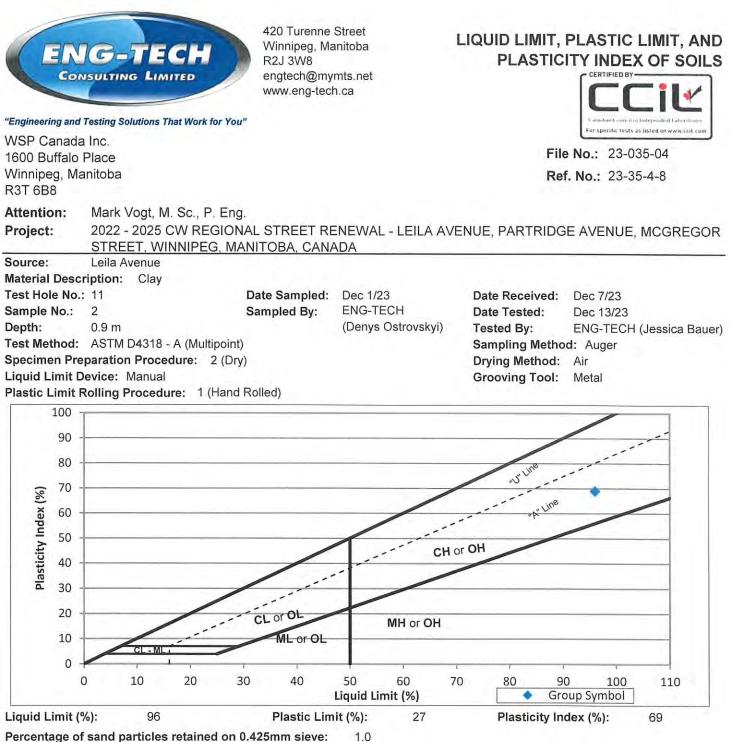

Email: WSP Canada Inc. Contact Group

ENG-TECH Consulting Limited

Per

ASTM D2487, CH, Fat clay ASTM D3282: A-7-6 (72)

As Received Moisture Content (%): 35.9 Comments:


Classification:

Email: WSP Canada Inc. Contact Group

ENG-TECH Consulting Limited

Per

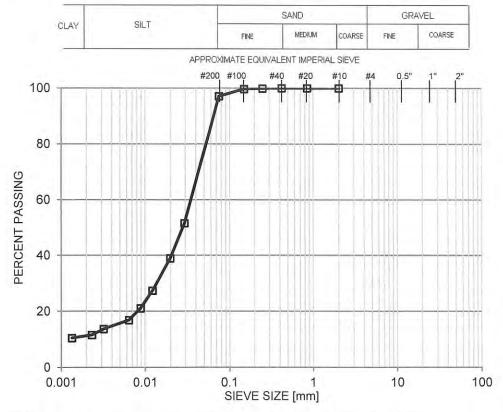
Classification: ASTM D2487, CH, Fat clay

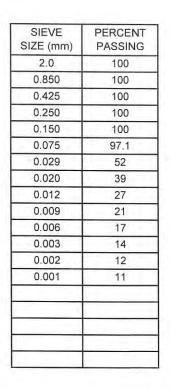
ASTM D3282: A-7-6 (80)

As Received Moisture Content (%): 36.2 Comments:

Email: WSP Canada Inc. Contact Group

Supplementary information may be provided upon request. Restrictions and additional fees may apply.


ENG-TECH Consulting Limited


Per

PARTICLE SIZE ANALYSIS

Project: 2022 - MCGF	e ba Vogt, M. Sc., P. Eng	NAL STREET RE			23-035-04 23-35-4-9 ⁄ENUE,
Winnipeg, Manitob R3T 6B8 Attention: Mark V Project: 2022 - MCGF	ba Vogt, M. Sc., P. Eng - 2025 CW REGION	NAL STREET RE			
Project: 2022 - MCGF	2025 CW REGION	NAL STREET RE		ENUE, PARTRIDGE AV	ENUE,
			ILUBA CANADA		
Source: Mo	cGregor Street				
Material Descriptio	n: Silty clay				
Test Hole No.: 3		Date Sampled:	Dec 1/23	Sampled By: ENG-TEC	CH (Denys Ostrovskyi)
Sample No.: 2		Date Received:	Dec 7/23	Sample Type: Auger cut	tting
Depth: 0.9	9 m	Date Tested:	Dec 13/23	Tested By: ENG-TEC	CH (Tim Christensen)
Test Method: AS	STM D7928	Drying Method:	Air	Specific Gravity: Estin	
Method Used: -		Dispersion Proc	ess: Stirrer / Tipping	Separating Sieve Size (mm): 2.0
Dispersion Device:	Apparatus A: Hu	mboldt Mechanica	Analysis Stirrer	Dispersion Time (min.):	

 Percent of:
 GRAVEL (0.0 %), SAND (2.9 %), SILT (85.8 %), CLAY (11.3 %)

 Classification:
 ASTM D2487, CL - ML, Silty clay

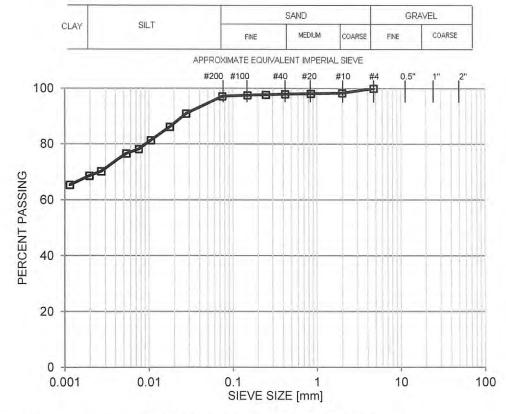
ASTM D3282: A-4 (3)

As Received Moisture Content (%): 16.4 Comments:

Email: WSP Canada Inc. Contact Group

Supplementary information may be provided upon request. Restrictions and additional fees may apply.

Per


ENG-TECH Consulting Limited

pala

PARTICLE SIZE ANALYSIS

"Engineering and Te	esting Solutions That Wor	k for You"				
WSP Canada I 1600 Buffalo P Winnipeg, Mar R3T 6B8	lace				File No.: 2 Ref. No.: 2	
Project: 20		and the second sec	NEWAL - LEILA AV IITOBA, CANADA	ENUE, PARTF	RIDGE AVE	NUE,
Source:	McGregor Street					
Material Descri	ption: Clay					
Test Hole No.:	6	Date Sampled:	Nov 30/23	Sampled By:	ENG-TECH	(Denys Ostrovskyi)
Sample No.:	3	Date Received:	Dec 7/23	Sample Type:	Auger cuttir	ng
Depth:	1.2 m	Date Tested:	Dec 13/23	Tested By:	ENG-TECH	I (Tim Christensen)
Test Method:	ASTM D7928	Drying Method:	Air	Specific Grav	ity: Estima	ted 2.7
Method Used:	÷ • • • • • • • • • • • • • • • • • • •	Dispersion Proc	ess: Stirrer / Tipping	Separating Si	eve Size (m	m): 2.0
Dispersion Dev	ice: Apparatus A:	Humboldt Mechanica	I Analysis Stirrer	Dispersion Ti		

SIEVE PERCENT SIZE (mm) PASSING 4.75 100 2.0 98 0.850 98 0.425 98 0.250 98 0.150 98 0.075 97.1 0.028 91 0.018 86 0.011 81 0.008 78 0.005 77 0.003 70 0.002 69 0.001 65

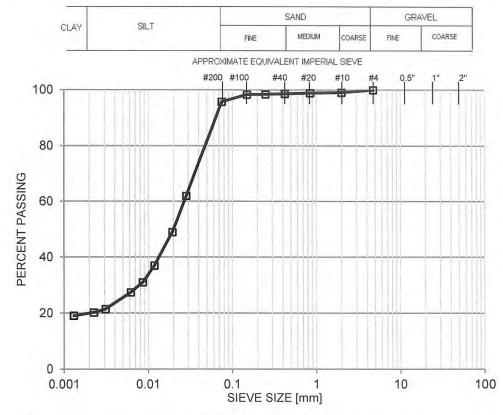
Percent of: GRAVEL (0.0 %), SAND (2.9 %), SILT (28.4 %), CLAY (68.7 %) Classification: ASTM D2487,CH, Fat clay

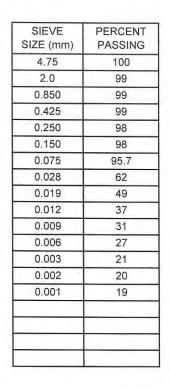
ASTM D3282: A-7-6 (61)

As Received Moisture Content (%): 29.9 Comments:

Email: WSP Canada Inc. Contact Group

Supplementary information may be provided upon request. Restrictions and additional fees may apply.




ENG-TECH Consulting Limited

PARTICLE SIZE ANALYSIS

"Engineering and T	esting Solutions That Wor	k for You"				
WSP Canada	Inc.			F	ile No.:	23-035-04
1600 Buffalo P Winnipeg, Mar R3T 6B8				F	Ref. No.:	23-35-4-11
Attention: Ma	ark Vogt, M. Sc., P.	Eng.				
Project: 20	22 - 2025 CW REG	The state of the second s	NEWAL - LEILA AV IITOBA, CANADA	ENUE, PARTRI	IDGE AV	ENUE,
Source:	McGregor Street					
Material Descri	ption: Silty clay					
Test Hole No.:	7	Date Sampled:	Dec 1/23	Sampled By:	ENG-TEC	H (Denys Ostrovskyi
Sample No.:	2	Date Received:	Dec 7/23	Sample Type:	Auger cut	ting
Depth:	0.9 m	Date Tested:	Dec 13/23	Tested By:	ENG-TEC	H (Tim Christensen)
Test Method:	ASTM D7928	Drying Method:	Air	Specific Gravit		
Method Used:		Dispersion Proc	ess: Stirrer / Tipping	Separating Sie	ve Size (r	nm): 2.0
Dispersion Dev	vice: Apparatus A:	Humboldt Mechanica	I Analysis Stirrer	Dispersion Tim		

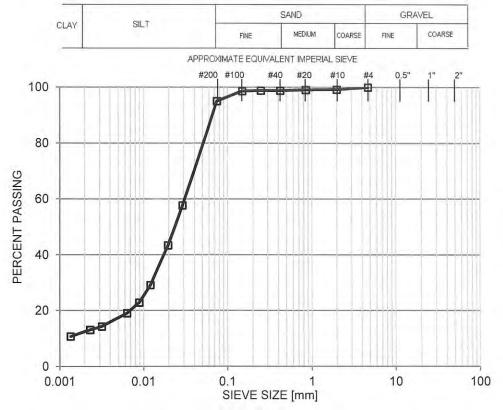
Percent of: GRAVEL (0.0 %), SAND (4.3 %), SILT (75.7 %), CLAY (20.0 %) Classification: ASTM D2487, CL, Lean clay

ASTM D3282: A-4 (8)

As Received Moisture Content (%): 21.5 Comments:

Email: WSP Canada Inc. Contact Group

Supplementary information may be provided upon request. Restrictions and additional fees may apply.



ENG-TECH Consulting Limited

PARTICLE SIZE ANALYSIS

"Engineering and Te	sting Solutions That Work	for You"			
WSP Canada I	nc.			File No.:	23-035-04
1600 Buffalo P Winnipeg, Man R3T 6B8				Ref. No.:	23-35-4-12
Project: 202	rk Vogt, M. Sc., P. E 22 - 2025 CW REGI CGREGOR STREET	ONAL STREET RE		ENUE, PARTRIDGE AV	ENUE,
Source:	McGregor Street				
Material Descrip	otion: Silty clay				
Test Hole No.:	9	Date Sampled:	Nov 30/23	Sampled By: ENG-TEC	CH (Denys Ostrovskyi
Sample No.:	3	Date Received:	Dec 7/23	Sample Type: Auger cut	
Depth:	1.2 m	Date Tested:	Dec 14/23	Tested By: ENG-TEC	CH (Tim Christensen)
Test Method:	ASTM D7928	Drying Method:	Air	Specific Gravity: Estin	
Method Used:	-	Dispersion Proc	ess: Stirrer / Tipping	Separating Sieve Size (mm): 2.0
Dispersion Dev	ice: Apparatus A:	Humboldt Mechanica	I Analysis Stirrer	Dispersion Time (min.):	

SIEVE PERCENT SIZE (mm) PASSING 4.75 100 2.0 99 0.850 99 0.425 99 0.250 99 0.150 99 0.075 95.0 0.029 58 0.020 43 0.012 29 0.009 23 0.006 19 0.003 14 0.002 13 0.001 11

 Percent of:
 GRAVEL (0.0 %), SAND (5.0 %), SILT (82.6 %), CLAY (12.4 %)

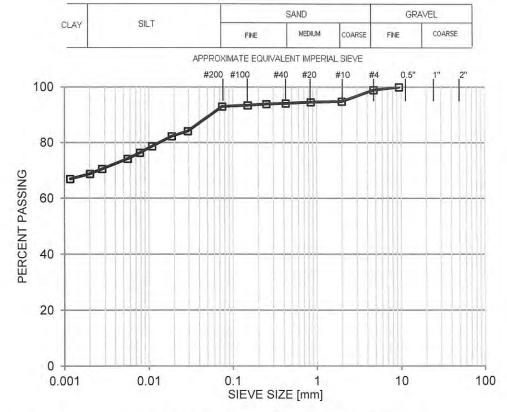
 Classification:
 ASTM D2487, CL-ML, Silty clay

ASTM D3282: A-4 (3)

As Received Moisture Content (%): 20.5 Comments:

Email: WSP Canada Inc. Contact Group

Supplementary information may be provided upon request. Restrictions and additional fees may apply.


Per

ENG-TECH Consulting Limited

PARTICLE SIZE ANALYSIS

WSP Canada	esting Solutions That Wor					22 025 04
					File No.:	23-035-04
1600 Buffalo P					Ref. No.:	23-35-4-13
Winnipeg, Mar	nitoba					
R3T 6B8						
Attention: Ma	ark Vogt, M. Sc., P.	Eng.				
Project: 20	22 - 2025 CW REG	GIONAL STREET RE	NEWAL - LEILA AV	ENUE, PARTE	RIDGE AV	ENUE,
MC	CGREGOR STREE	T, WINNIPEG, MAN	IITOBA, CANADA			
•	Laila Avenue					
Source:	Leila Avenue					
Source: Material Descri						
		Date Sampled:	Dec 1/23	Sampled By:	ENG-TEC	:H (Denys Ostrovskyi
Material Descri	ption: Clay	Date Sampled: Date Received:	Dec 1/23 Dec 7/23	Sampled By: Sample Type:		
Material Descri Test Hole No.:	ption: Clay 10				Auger cut	ting
Material Descri Test Hole No.: Sample No.:	ption: Clay 10 3	Date Received:	Dec 7/23 Dec 14/23	Sample Type:	Auger cut ENG-TEC	ting H (Tim Christensen)
Material Descri Test Hole No.: Sample No.: Depth:	ption: Clay 10 3 1.2 m	Date Received: Date Tested: Drying Method:	Dec 7/23 Dec 14/23	Sample Type: Tested By:	Auger cut ENG-TEC ity: Estim	ting H (Tim Christensen) nated 2.7

SIEVE	PERCENT
SIZE (mm)	PASSING
9.5	100
4.75	99
2.0	95
0.850	95
0.425	94
0.250	94
0.150	93
0.075	93.0
0.029	84
0.019	82
0.011	79
0.008	76
0.006	74
0.003	71
0.002	69
0.001	67

 Percent of:
 GRAVEL (1.0 %), SAND (6.0 %), SILT (24.3 %), CLAY (68.7 %)

 Classification:
 ASTM D2487, CH, Fat clay

ASTM D3282: A-7-6 (72)

As Received Moisture Content (%): 35.9 Comments:

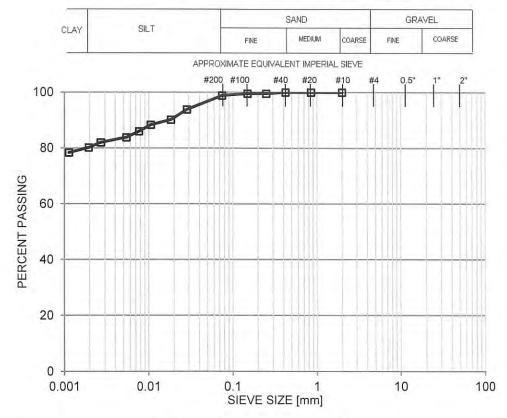
Email: WSP Canada Inc. Contact Group

Supplementary information may be provided upon request. Restrictions and additional fees may apply.

ENG-TECH Consulting Limited

Per Darci Babisky, C.E.T. **Operations Manager - Laboratory**

Ph: (204) 233-1694 Fx: (204) 235-1579



420 Turenne Street Winnipeg, Manitoba R2J 3W8 engtech@mymts.net www.eng-tech.ca

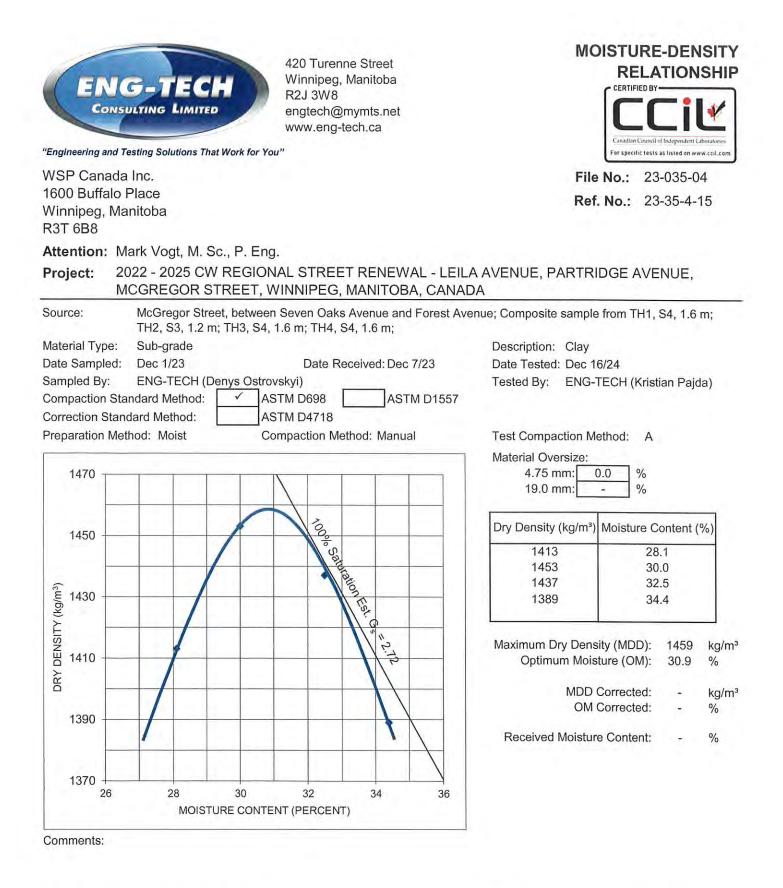
PARTICLE SIZE ANALYSIS

Engineering and I	esting Solutions That Wo	TK TOF YOU			
WSP Canada	Inc.			File No.:	23-035-04
1600 Buffalo P Winnipeg, Mar R3T 6B8	1010.0			Ref. No.:	23-35-4-14
	ark Vogt, M. Sc., P.				
		GIONAL STREET RE		ENUE, PARTRIDGE A	/ENUE,
Source:	Leila Avenue				
Material Descri	ption: Clay				
Test Hole No.:	11	Date Sampled:	Dec 1/23	Sampled By: ENG-TEG	CH (Denys Ostrovskyi)
Sample No.:	2	Date Received:	Dec 7/23	Sample Type: Auger cu	tting
Depth:	0.9 m	Date Tested:	Dec 14/23	Tested By: ENG-TEG	CH (Tim Christensen)
Test Method:	ASTMD7928	Drying Method:	Air	Specific Gravity: Estin	nated 2.7
Method Used:	-	Dispersion Proc	ess: Stirrer / Tipping	Separating Sieve Size (
Dispersion Dev	vice: Apparatus A	: Humboldt Mechanica	I Analysis Stirrer	Dispersion Time (min.)	

SIEVE	PERCENT
SIZE (mm)	PASSING
2.00	100
0.9	100
0.425	100
0.250	100
0.150	100
0.075	98.9
0.029	94
0.018	90
0.011	88
0.008	86
0.005	84
0.003	82
0.002	80
0.001	78
	1 mm

Percent of: GRAVEL (0.0 %), SAND (1.1 %), SILT (18.6 %), CLAY (80.3 %) Classification: ASTM D2487, CH, Fat clay

ASTM D3282: A-7-6 (80)

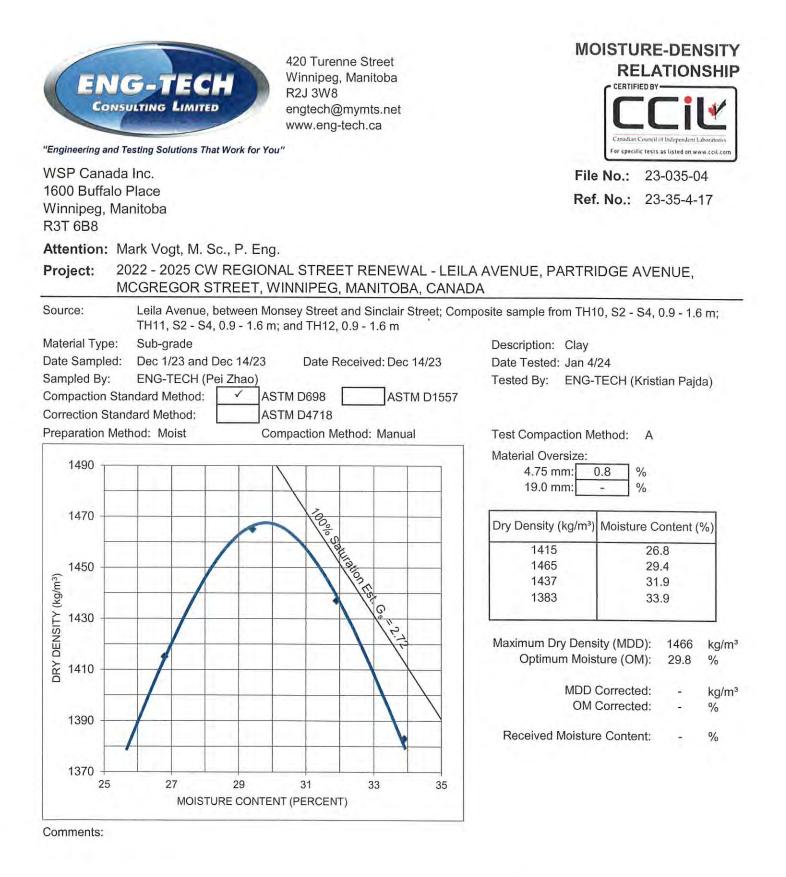

As Received Moisture Content (%): 36.2 Comments:

Email: WSP Canada Inc. Contact Group

additional fees may apply.

Supplementary information may be provided upon request. Restrictions and

1999 25 2024 yours at incorrelian ENG-TECH Consulting Limited



Email: WSP Canada Inc. Contact Group

ENG-TECH Consulting Limited Per Darci Babisky, C.E.T.

Operations Manager – Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

Email: WSP Canada Inc. Contact Group

ENG-TECH Consulting Limited

Per Darci Babisky, C.E.T. Operations Manager – Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

Supplementary information may be provided upon request. Restrictions and additional fees may apply.

CALIFORNIA BEARING RATIO

'Engineering and	d Testing Solutio	ons That Work I	for You"									
WSP Canad	a Inc.									File	No.:	23-035-04
1600 Buffalc										Ref.	No.:	23-35-4-16
Winnipeg, M R3T 6B8	anitoba											20 00 1 10
Attention:	Mark Vogt,	M. Sc., P.	Eng.									
Project:	2022 - 202 MCGREG	5 CW REG	IONAL T, WINI	STREET	RENE	WAL - DBA, C	LEILA ANAD	AVE A	ENUE	, PAF	RTRIDO	GE AVENUE,
Source:	McGregor S TH2, S3, 1.2	street, betwee	en Seve I, 1.6 m;	n Oaks A	venue a	nd Fore	st Aver	nue: C	Compo 6, S3, 1	site s 1.2 m;	amples TH6, S	from TH1, S4, 1.6 4, 1.6 m; TH7, S4
Material Type		b-grade					Dat	e San	npled:	D	ec 1/23	
Material Desc	ription: Cla	ay							eived:		ec 7/23	
Sampled By:	EN	G-TECH (De	enys Ost	rovskyi)			Dat	e Tes	ted:	D	ec 26/2	3
mmersion Pe	riod: 95	Hours					Tes	ted B	y:	E	NG-TEC	CH (Kevin Dowbe
Required Con	npactive Effor	t (Density):	95%	Actual	: 94.4	4%	Test Methods:					98, D1883
				Californ	ia Beari	ing Ratio	С					
	0.20				-	TT		1	1	T		
	0.18	3		-	-			-	-	-	-	
	0.16	5				-	-	-				
	0.14							-			-	
	201					-			1			
	dIN		-									
	= 0.10 SS											
	21.0 3) 80.0 Stress 80.0 Stress				-				1	-	-	
	0.06			-			-	_		-		
	0.04					-						
	0.02		1.110								1	
	0.00	0.0 1.0 2.	0 3.0	4.0 5.0		7.0 8.0 netration	9.0 (mm)	10.0	11.0	12.0 1	3.0 14.0	T.
					Test Da	ta						
				5	Soaked			U	nsoake	ed		
Dry Density:	As Compacte	ed;			1377	kg/n	n ³		÷.		kg/m ³	
Moisture Cor	ntent: As Com	pacted;			30.7	%			- 1		%	
Moisture Content: Top 25 mm;				46.0	%			-		%		
CBR Values: 2.54mm (0.1in);				1.5	%					%		
CBR Values: 5.08mm (0.2in);				1.2	%			÷		%		
Swell: 5.4 % of Initial Height						0.0				4.54 kg		
				Penetration Depth:								

Email: WSP Canada Inc. Contact Group

ENG-TECH Consulting Limited

2024

Per

CALIFORNIA BEARING RATIO

Engineering and	d Testing Solutions That Work	for You"								
NSP Canad								F	File No.:	23-035-04
1600 Buffalo								F	Ref. No.:	23-35-4-18
Winnipeg, M R3T 6B8	anitoba									
Attention:	Mark Vogt, M. Sc., P	. Eng.								
Project:	2022 - 2025 CW REG MCGREGOR STREE					LEILA	AVE	NUE,	PARTRID	GE AVENUE,
Source:	Leila Avenue, between TH11, S2 - S4, 0.9 - 1.6				Street;	Comp	osite	sample	from TH10	, S2 - S4, 0.9 - 1.6m;
Vaterial Type	: Sub-grade					Date	e Sam	pled:	Dec 1/23	and Dec 14/23
Material Desc				Date Received: Date Tested:			i: Dec 14/23			
Sampled By:	ENG-TECH (F	ei Zhao)					Jan 12/24			
Immersion Period: 95.5 Hours				Tested By:			ENG-TECH (Kevin Dowbeta)			
Required Con	npactive Effort (Density):	95%	Actual :	94.1	%	Test	t Meth	nods:	ASTM D	698, D1883
			California	Beari	ng Rat	io				
	0.20			1			-1-			(- 10)
	0.18		-	-			_	-		
	0.16								-	
	0.14		1				-	-		
					-	_				
	0.12 (Wb Stitess 80.08									
	≥ 0.10	-		-				-		
	0.08			-			_	-		
	ت 0.06									
	0.04									
	0.02					-		-		
	0.00		,							
	0.0 1.0	2.0 3.0	4.0 5.0		7.0 8.0 netration		10.0	11.0	12.0 13.0 14	ł.0
			Те	st Dat	ta					
			Soa	ked			Ur	nsoake	d	
Dry Density: As Compacted;			1388 kg/			n ³ -			kg/m ³	
Moisture Content: As Compacted;			30.0		%			3 - ,2	%	
Moisture Content: Top 25 mm;			44	1.4	%			÷	%	
CBR Values: 2.54mm (0.1in);			1	.5	%			-	%	
CBR Values: 5.08mm (0.2in);			1.1 %		%			4	%	
Swell:	Swell: 4.6 % of Initial Height		Oversize Correction:			0.8	%	Surch	4.54 kg	
Maximum Load: 313.1 N			Penetration Depth:			12.7				

Email: WSP Canada Inc. Contact Group

ENG-TECH Consulting Limited

Per