APPENDIX 'B'

GEOTECHNICAL REPORT

P 204-896-1209 **F** 204-896-0754

kgsgroup.com

April 7, 2022

KGS Group 865 Waverley Street Winnipeg, Manitoba R3T 5P4

Attention: Mr. Craig Rowbotham, P.Eng. Municipal Assistant Department Head

Re: 2022 Redwood Avenue Reconstruction – Winnipeg, Manitoba Report of Geotechnical Investigation and Test Results

Dear Mr. Rowbotham

This letter summarizes KGS Group's geotechnical results for the 2022 Redwood Avenue Reconstruction Project in Winnipeg, Manitoba. KGS Group's scope of services for this project was outlined in our proposal no. 22-000-0100 titled "2022 Redwood Avenue Reconstruction - Geotechnical" dated February 3, 2022.

KGS Group was retained to complete subsurface investigations along Redwood Avenue. This report details the results of the investigation.

1.0 PAVEMENT INVESTIGATIONS

1.1 Coring and Sampling

Coring and sampling were completed at five (5) locations along Redwood Avenue between Main Street and Salter Street, in accordance with the City of Winnipeg RFP 476-2021 Appendix B – CoW Site Investigation Requirements for Public Works Street Projects. Figure 1 shows the locations of the test holes and Table 1 provides the location descriptions and coordinates of the test holes.

P 204-896-1209 **F** 204-896-0754

kgsgroup.com

FIGURE 1: TEST HOLE LOCATION PLAN

TABLE 1: TEST HOLE	LOCATION DESCRIPTIONS	AND COORDINATES
--------------------	-----------------------	-----------------

Location	Locations	Approximate UTM	Surface Elevation	
ID	Locations	Northing (m)	Easting (m)	(m)
TH22-01	Redwood Ave - 2m from EB curb, 36m E of Salter St.	5,531,321	633,725	231.27
TH22-02	Redwood Ave - 2m from EB curb, 14m W of Aikins St.	5,531,259	633,852	231.44
TH22-03	Redwood Ave - 2m from EB curb, 79m E of Aikins St.	5,531,215	633,947	231.01
TH22-04	Redwood Ave - 2m from EB curb, 15m E of Charles St.	5,531,157	634,067	231.14
TH22-05	Redwood Ave - 2m from EB curb, 25m W of Main St.	5,531,133	634,122	231.06

Notes: 1. Test hole locations were recorded in the field using a handheld GPS unit with accuracy of ±5m.

Test holes were advanced to sufficient depth below the pavement surfacing to explore subgrade and subsurface soil, moisture and groundwater conditions. Test holes TH22-01 to TH22-03 were only drilled to depths of 1.5 m (5 ft) due to limited utility locate information in the area north of Aikins Street. Test holes TH22-04 and TH22-05

P 204-896-1209 F 204-896-0754 kgsgroup.com

were drilled to the planned depths of 3.0 m (10 ft). Test holes were backfilled with auger cuttings and patched at the surface with 100 mm of asphalt cold patch.

Subsurface soil samples were retrieved every 0.3 m (1 ft) throughout the subgrade investigations. Bulk samples of the pavement subgrade material was also retrieved from each test hole to be used for moisture-density relationship (standard Proctor) and California Bearing Ratio (CBR) tests.

1.2 Laboratory Testing

Laboratory tests were completed on select soil samples. Testing was completed in a Winnipeg, Manitoba laboratory certified by the Canadian Council of Independent Laboratories (CCiL). Laboratory testing included 30 moisture contents, four (4) Atterberg Limits, four (4) particle size analysis. One composite sample of subgrade soil collected from TH22-03, TH22-04 and TH22-05 was tested for standard Proctor, and CBR.

2.0 INVESTIGATION RESULTS

2.1 Pavement Surfacing

Coring and sampling were completed for five (5) test holes along Redwood Avenue. The 150 mm diameter cores obtained of the existing pavement were measured in the field, and pavement types and thicknesses are shown in Table 2 below. Upon completion of coring, KGS measured the base and investigated the subgrade below the pavement structure using a truck mounted drill rig.

Location ID	Pavement Type	Pavement Thickness (mm)	Subgrade / Base Type	Base Thickness (mm)
TH22-01	Asphalt over Concrete	101 over 180	Clay (CH)	-
TH22-02	Asphalt over Concrete	25 over 203	Clay (CH)	-
TH22-03	Asphalt over Concrete	76 over 177	Gravel (GP)	104
TH22-04	Asphalt over Concrete	114 over 152	Sandy Gravel (GP)	38
TH22-05	Asphalt over Concrete	76 over 229	Clay (CH)	-

TABLE 2: PAVEMENT SURFACING THICKNESSES

P 204-896-1209 F 204-896-0754 kgsgroup.com

Five (5) test holes were drilled rather than the six (6) as mentioned in the proposal because the project team agreed that sufficient data would be collected from five (5) evenly spaced test holes along Redwood Ave., and would also allow the drilling investigation be completed in less time.

A photo log of the road surfacing cores is attached in Appendix A.

2.2 Stratigraphy

The attached Figure 2, Section A-A', provides a profile of the stratigraphy encountered between each test hole and summary test hole logs are attached in Appendix B. The results of the laboratory testing are incorporated with soil type descriptions listed below. A summary table of index tests and the laboratory test reports are attached in Appendix C. Descriptions of the general stratigraphy encountered in the test holes are summarized below.

Asphalt – Asphalt surfacing was encountered at all five (5) test hole locations. The asphalt was black with 25 mm (max) diameter sub-rounded aggregate and ranged in thickness from 25 to 114 mm.

Concrete – Concrete was encountered underlying the asphalt in all five (5) test holes. The concrete was grey with 40 mm (max) rounded aggregate and ranged in thickness from 152 to 229 mm.

Poorly Graded Gravel (GP) – 40mm (1.6 in) of poorly graded gravel base was observed underlying the concrete pavement in test holes TH22-03 and TH22-04. The gravel was brown in colour, damp, compact and frozen.

Clay (CH) – High plasticity clay was encountered below the surfacing pavement in test holes TH22-01, TH22-02 and TH22-05 and underlying the poorly graded gravel in TH22-03 and TH22-04. The clay was dark brown in colour, moist and frozen.

Undrained shear strength of the clay was estimated in the field during drilling using a handheld Torvane and ranged from 50 to 90 kPa below the frost. Two (2) Atterberg limits completed on clay soil samples from a depth of 0.3 m (1 ft) classified the material as having high plasticity. An Atterberg limit on a sample from 0.9 m (3 ft) was classified as having low plasticity. Grain size analyses completed on the same samples indicated 0% gravel, 2% sand, 36 to 76% silt and 22 to 62% clay. Moisture contents ranged from 26 to 51%.

A standard Proctor was completed on a composite sample from test holes TH22-03, TH22-04 and TH22-05 from depths ranging from 0.30 to 0.91 m. The test indicated a standard proctor maximum dry density (SPMDD) of 1,520 kg/m³ and an optimum moisture content of 24.5%. The CBR-value for the same sample recompacted to 95% of the SPMDD at 0.1% above optimum, was measured to be 2.

Clay (CL) – A 1.2 m (3.9 ft) thick layer of low plasticity clay was encountered at a depth of 0.6 below grade in test hole TH22-05. The clay was light brown in colour, moist, soft, frozen and contained trace sand.

An Atterberg limit completed on the clay soil from a depth of 0.6 m (2 ft) classified the soil as having low plasticity. A grain size analysis completed on the same sample indicated 0% gravel, 1% sand, 79% silt and 20% clay. Moisture contents ranged from 22 to 28%.

P 204-896-1209 F 204-896-0754 kgsgroup.com

Silt (ML) – Low plasticity silt was encountered below the clay in test holes TH22-01 and TH22-03. The silt was light brown in colour, damp to moist, soft, frozen and contained trace clay and trace sand. Moisture contents in the silt ranged from 23 to 48%.

3.0 CLOSURE

Should you have any questions regarding the enclosed information or require additional information, please contact the undersigned.

Prepared By:

for hughthe

Trevor Schellenberg, P.Eng. Geotechnical Engineer

KH/te/cs Attached Approved By:

Taunya Ernst, P.Eng., P.E., P.G. Senior Geotechnical Engineer

P 204-896-1209 F 204-896-0754 kgsgroup.com

STATEMENT OF LIMITATIONS AND CONDITIONS

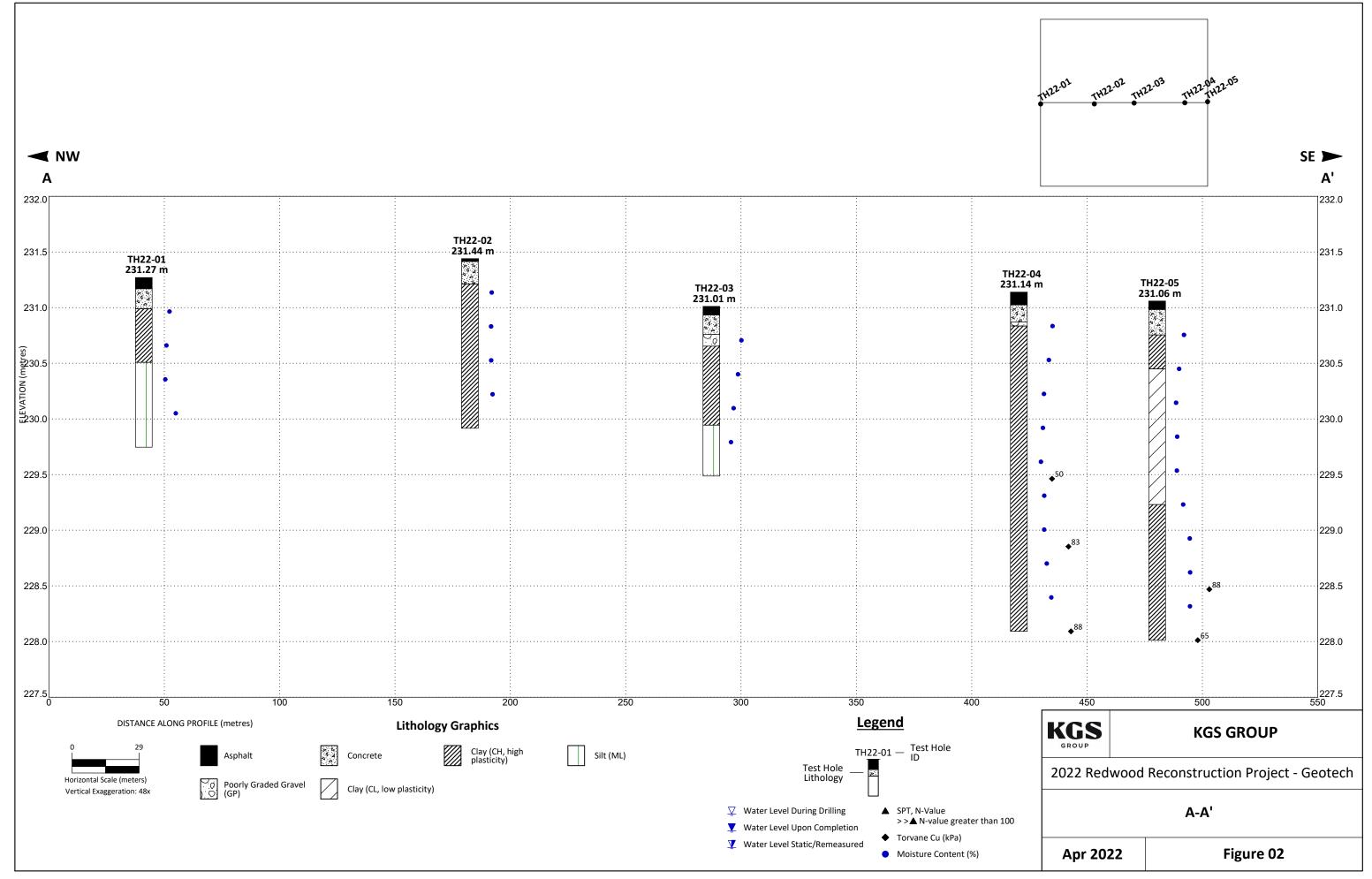
Limitations

This report has been prepared for KGS Group in accordance with the agreement between KGS Group's Geotechnical and Municipal departments (the "Agreement"). This report represents KGS Group's professional judgment and exercising due care consistent with the preparation of similar reports. The information, data, recommendations and conclusions in this report are subject to the constraints and limitations in the Agreement and the qualifications in this report. This report must be read as a whole, and sections or parts should not be read out of context.

This report is based on information made available to KGS Group by KGS Group. Unless stated otherwise, KGS Group has not verified the accuracy, completeness or validity of such information, makes no representation regarding its accuracy and hereby disclaims any liability in connection therewith. KGS Group shall not be responsible for conditions/issues it was not authorized or able to investigate or which were beyond the scope of its work. The information and conclusions provided in this report apply only as they existed at the time of KGS Group's work.

Third Party Use of Report

Any use a third party makes of this report or any reliance on or decisions made based on it, are the responsibility of such third parties. KGS Group accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions undertaken based on this report.


Geotechnical Investigation Statement of Limitations

The geotechnical investigation findings and recommendations of this report were prepared in accordance with generally accepted professional engineering principles and practice. The findings and recommendations are based on the results of field and laboratory investigations, combined with an interpolation of soil and groundwater conditions found at and within the depth of the test holes drilled by KGS Group at the site at the time of drilling. If conditions encountered during construction appear to be different from those shown by the test holes drilled by KGS Group or if the assumptions stated herein are not in keeping with the design, KGS Group should be notified in order that the recommendations can be reviewed and modified if necessary.

FIGURE 2

Section A-A'

APPENDIX A

Core Photo Log

Photo 1: TH22-01 Core Surface

Photo 2: TH22-01 Core Profile

Photo 3: TH22-02 Core Surface

Photo 4: TH22-02 Core Profile

Photo 5: TH22-03 Core Surface

Photo 6: TH22-03 Core Profile

Photo 7: TH22-04 Core Surface

Photo 8: TH22-04 Core Profile

Photo 9: TH22-05 Core Surface

Photo 10: TH22-05 Core Profile

APPENDIX B

Test Hole Logs

CUENT PROJECT PROJECT UCATION Winninge, Manitola DECRIPTION DECRIPTION Redwood Reconstruction Project - Getech Winninge, Manitola Redwood Reconstruction Project - Getech Winninge, Manitola Redwood Reconstruction Project - Getech Winninge, Manitola Redwood Reconstruction Project - Getech WINNER (ELV, DATE BRILLED UTM (m) 22.0535.006 2.31.77 m 2.45.531.221 E.633.725 UTM (m) DECRIPTION Redwood Reconstruction Project - Getech WINNER DISCRIPTION Redwood Reconstruction Project - Getech WINNER DISCRIPTION Redwood Reconstruction Project - Getech WINNER DISCRIPTION AND CLASSIFICATION 22.053.006 UTM (m) Image: state Sector Profile Control Contro Control Control Contro Control Control Control Control Control Co	k	GROUP	5	TEST HOLE LOG	HOLE NO. TH22-01		SHEET 1 of 1		
United by the second	PR LO DE DR	DJECT CATION SCRIPTION ILL RIG / HA	MME	 2022 Redwood Reconstruction Project - Geotech Winnipeg, Manitoba Redwood Ave - 2m from EB curb, 36m E of Salter St. R Mobile B40 Truck Mounted Drill Rig 0.0 m to 0.3 m: Roadway coring 	SURFACE ELEV. DATE DRILLED	231.27 m 2-25-2022 N 5,531,321			
231 - CONCRETE - 130 nm, Grey, sub-rounded granular (diameter < 40mm). 231.0 -	ELEVATION (m)		GRAPHICS	CLASSIFICATION			Cu TORVANE (kPa) \blacklozenge qu POCKET PEN (kPa) \star SPT (N) BLOWS/0.30 m \blacktriangle 20 40 60 80		
231 - 231 - 231 - 231 - 231 - 231 - 231 - 231 - - 231 - - 231 -	-		~ K d		231.2		S1		
Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 54 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 55 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 55 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 56 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 56 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 56 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 56 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 56 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 56 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 56 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 57 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. • • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. • <td< th=""><th> 231 </th><th></th><th></th><th>CLAY (CH) - Dark brown, moist, stiff, high plasticity, and silt, trace sat - LL=74, PL=24, PI=50 at 0.3 m.</th><th>231.0</th><th>F</th><th></th></td<>	 231 			CLAY (CH) - Dark brown, moist, stiff, high plasticity, and silt, trace sat - LL=74, PL=24, PI=50 at 0.3 m.	231.0	F			
Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 54 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 55 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 55 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 56 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 56 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 56 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 56 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 56 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 56 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 56 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. 57 • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. • • Image: Site (ML) - Light brown, damp to moist, soft, low plasticity, trace clay, frozen. • <td< td=""><th>-</th><td></td><td></td><td>- silty, trace sand, light brown, low plasticity below 0.6 m.</td><td></td><td>Ħ</td><td></td></td<>	-			- silty, trace sand, light brown, low plasticity below 0.6 m.		Ħ			
not frozen below 1.4 m. 229.7 5 ● not frozen below 1.4 m. 229.7 5 5 ● not frozen below 1.4 m. 229.7 5 5 ●	- - -				230.5 y, frozen.	****	54		
WATER V During Drilling/Digging on 2-25-2022 None Encountered on 2-25-2022 Dry CONTRACTOR Maple Leaf Drilling Ld. INSPECTOR K. GAUTHIER		_ _							
WATER ✓ During Drilling/Digging on 2-25-2022 None Encountered on 2-25-2022 Dry CONTRACTOR Maple Leaf Drilling Ltd. INSPECTOR K. GAUTHIER	5			- not frozen below 1.4 m.	229.7	H			
LEVELS Y Upon Completion on 2-25-2022 Dry Maple Leaf Drilling Ltd. K. GAUTHIER APPROVED DATE				 End of test hole at 1.5 m. Test hole caved to 1.3 m upon completion of drilling. Test hole backfilled with auger cuttings. Test hole sealed at the surface with 100mm of asphalt cold patch 		51			
APPROVED DATE	WAT LEVE								
		- <u>+</u> 040			APPROVED				

	GROUP	5	HOLE NO.TEST HOLE LOGTH22-02						
LOC DES DRIL	NT JECT ATION CRIPTION LL RIG / H/ THOD(S)	AMME	KGS GROUP 2022 Redwood Reconstruction Project - Geotech Winnipeg, Manitoba Redwood Ave - 2m from EB curb, 14m W of Aikins St. R Mobile B40 Truck Mounted Drill Rig 0.0 m to 0.2 m: Roadway coring 0.2 m to 1.5 m: 125 mm Ø SSA	PROJECT NO. SURFACE ELEV. DATE DRILLED UTM (m)	:	22-0535-006 231.44 m 2-25-2022 N 5,531,259 E 633,852 Zone 14			
ELEVATION (m)	(m) (ft)	GRAPHICS		ELEV (m)	WATER LEVEL	SAIMPLE 177E NUMBER / RUN	PL MC LL Cu TORVANE (kPa) ◆ qu POCKET PEN (kPa) ★ SPT (N) BLOWS/0.30 m ▲ 20 40 60 80		
	_		ASPHALT - 25 mm, Black, sub-angular granular (diameter < 25mm). CONCRETE - 203 mm, Grey, rounded granular (diameter < 40mm).	/231.4		S1			
-	_		CLAY (CH) - Dark grey, moist, stiff, high plasticity, frozen.	231.2					
- 231 						T 52	•		
-	 1		- silty, brown below 0.8 m.				•		
230	_ 		- not frozen below 1.4 m.	229.9		1 S5			
	- - - - 2 - -		 Notes: End of test hole at 1.5 m. Test hole remained open to 1.5 m upon completion of drilling. Test hole backfilled with auger cuttings. Test hole sealed at the surface with 100mm of asphalt cold patch 						
_	_								
229 									
WATE			lling/Diggingon 2-25-2022 None Encounteredpletionon 2-25-2022 Dry	CONTRACTOR Maple Leaf Drilling Ltd.	. I		NSPECTOR K. GAUTHIER		
				APPROVED DRAFT		D	DATE		

CLIENT PROJECT LOCATION DESCRIPTION DRILL RIG / HAMMER METHOD(S)			EXAMPLE AND INTEGRATION CONTINUES OF CONTIN	HOLE NO. TH22-03 PROJECT NO. SURFACE ELEV. DATE DRILLED UTM (m)	SHEET 1 22-0535-006 231.01 m 2-25-2022 N 5,531,215 E 633,947 Zone 14			
ELEVATION (m)	(m) (ft)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	ELEV (m)	WATER LEVEL SAMPLE TYPF	NUMBER / RUN	PL MC LL ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←	
			ASPHALT - 76 mm, Black, sub-angular granular (diameter < 25mm).	230.9				
		2 4 4 2 4 4	<u>CONCRETE</u> - 177 mm, Grey, rounded granular (diameter < 45mm).	230.8		\$1		
	+		POORLY GRADED GRAVEL (GP) - 104 mm, Brown, damp, compact, diam frozen.	eter < 20mm,230.7	ł	5		
			<u>CLAY (CH)</u> - Dark grey, moist, stiff, high plasticity, frozen.	/	Į	S2	•	
	+				ł	5		
	-				ł	S3		
					ł			
230	1		 brown, grading to low plasticity, and silt, trace sand below 0.9 m. LL=28, PL=17, PI=11 at 0.9 m. 	229.9	ł	5		
	-		- PSA: 0% gravel, 2% sand, 76% silt, 22% clay at 0.9 m.		ł	S4	₽━	
	-		<u>SILT (ML)</u> - Light brown, moist, soft, low plasticity, trace clay, frozen.		ł	{		
			- not frozen below 1.4 m.		ł	S5	•	
	5		Notes:	229.5	ł	2		
220	 2		 End of test hole at 1.5 m. Test hole remained open to 1.5 m upon completion of drilling. Test hole backfilled with auger cuttings. Test hole sealed at the surface with 100mm of asphalt cold patch. 					
229								
	_							
	4							
	-							
	2							
228	3							
	4							
	4							
	-							
	-							
			ng/Diaging on 2.25.2022 Name Free states of					
EVEL		ing Drilli n Comp		NTRACTOR Maple Leaf Drilling Ltd.		IN	ISPECTOR K. GAUTHIER	
		P		PROVED			ATE	

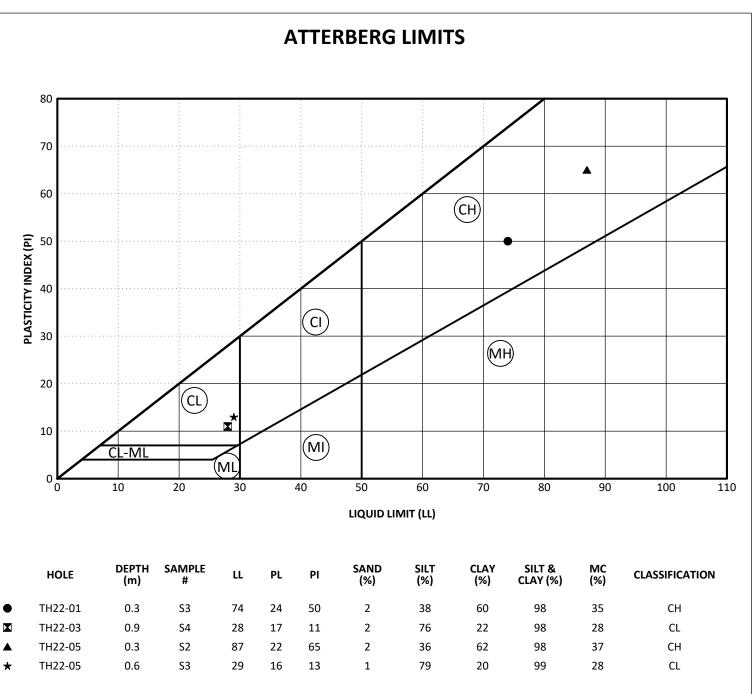
			5	TEST HOLE LOG	HOLE NO. TH22-04			SHEET 1 of			
CLIENT PROJECT LOCATION DESCRIPTION DRILL RIG / HAMMER METHOD(S)			KGS GROUP PROJECT NO. 2022 Redwood Reconstruction Project - Geotech SURFACE ELEV. Winnipeg, Manitoba DATE DRILLED N Redwood Ave - 2m from EB curb, 15m E of Charles St. UTM (m)				22-0535-006 231.14 m 2-25-2022 N 5,531,157 E 634,067 Zone 14				
ELEVATION (m)	(m) DEPTH	(ft)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	ELEV (m)		SAMPLE TYPE NUMBER / RUN	PL MC LL ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←			
231	_		A 6 4	ASPHALT - 114 mm, Black, sub-angular granular (diameter < 25mm). CONCRETE - 152 mm, Grey, rounded granular (diameter < 40mm).	231.0	-	S1				
		_		<u>POORLY GRADED GRAVEL AND SAND (GP)</u> - 38 mm, Brown, damp, co <u>CLAY (CH)</u> - Dark grey, moist, stiff, high plasticity, frozen.	230.9 ompact, frozen. 230.8		52 52				
	 1	_					<u>777777777</u>	•			
30	-			- brown, soft, with silt, not frozen below 1.4 m.			54 54 55	•			
		—5		- brown, sort, with sit, not frozen below 1.4 m.			7-7-17-7 -7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-	• •			
29	2	_		- firm, trace silt below 1.8 m.			1 1 1 1 1 1 1 1 1 1	•			
	-	_		- stiff below 2.4 m.			58				
							510				
228		—-10 —		 Notes: End of test hole at 3.0 m. Test hole remained open to 3.0 m upon completion of drilling. Test hole backfilled with auger cuttings. Test hole sealed at the surface with 100mm of asphalt cold patch. 	228.1		1				
			ing Drill		CONTRACTOR Maple Leaf Drilling Ltd.			NSPECTOR K. GAUTHIER			
	¥	οpt			APPROVED DRAFT		[DATE			

K			5	TEST HOLE LOG	HOLE NO. TH22-05		SHEET 1			
CLIEF PROJ LOCA DESC DRIL MET	JECT ATION CRIPT L RIG	ION i / HA	AMMEF	KGS GROUP 2022 Redwood Reconstruction Project - Geotech Winnipeg, Manitoba Redwood Ave - 2m from EB curb, 25m W of Main St. Mobile B40 Truck Mounted Drill Rig 0.0 m to 0.3 m: Roadway coring 0.3 m to 3.0 m: 125 mm Ø SSA	PROJECT NO. SURFACE ELEV. DATE DRILLED UTM (m)		22-053 231.06 2-25-2 N 5,53 E 634,:	022 1,133		
ELEVATION (m)	a) DEPTH		GRAPHICS	DESCRIPTION AND CLASSIFICATION	ELEV (m)	WATER LEVEL	SAMPLE TYPE NUMBER / RUN	PL MC LL Cu TORVANE (kPa) ♦ qu POCKET PEN (kPa) ★ SPT (N) BLOWS/0.30 m ▲ 20 40 60 80		
231 		_		 <u>ASPHALT</u> - 76 mm, Black, sub-angular granular (diameter < 20mm). <u>CONCRETE</u> - 229 mm, Grey, rounded granular (diameter < 40mm). <u>CLAY (CH)</u> - Grey, moist, stiff, high plasticity, and silt, trace sand, fro - LL=87, PL=22, PI=65 at 0.3 m. - PSA: 0% gravel, 2% sand, 36% silt, 62% clay at 0.3 m. <u>CLAY (CL)</u> - Light brown, moist, soft, low plasticity, trace sand, frozei 	230.5	• • • •	51 52 52	F • •		
 230	- - 1 -	_		- LL=29, PL=16, PI=13 at 0.6 m. - PSA: 0% gravel, 1% sand, 79% silt, 20% clay at 0.6 m.			53 54 54	•		
		5		- not frozen below 1.5 m. <u>CLAY (CH)</u> - Mottled grey/brown, moist, very stiff, high plasticity.	229.2		55 55 56	•		
 229 	2	_					57 57 58 59	•		
 228	- - - 3-			Notes:	228.0		59 510 510	•		
		_		 End of test hole at 3.0 m. Test hole remained open to 3.0 m upon completion of drilling. Test hole backfilled with auger cuttings. Test hole sealed at the surface with 100mm of asphalt cold patch 	ι.					
URATE				ling/Diggingon 2-25-2022 None Encounteredoletionon 2-25-2022 Dry	CONTRACTOR Maple Leaf Drilling Ltd. APPROVED DRAFT			I ISPECTOR K. GAUTHIER ATE		

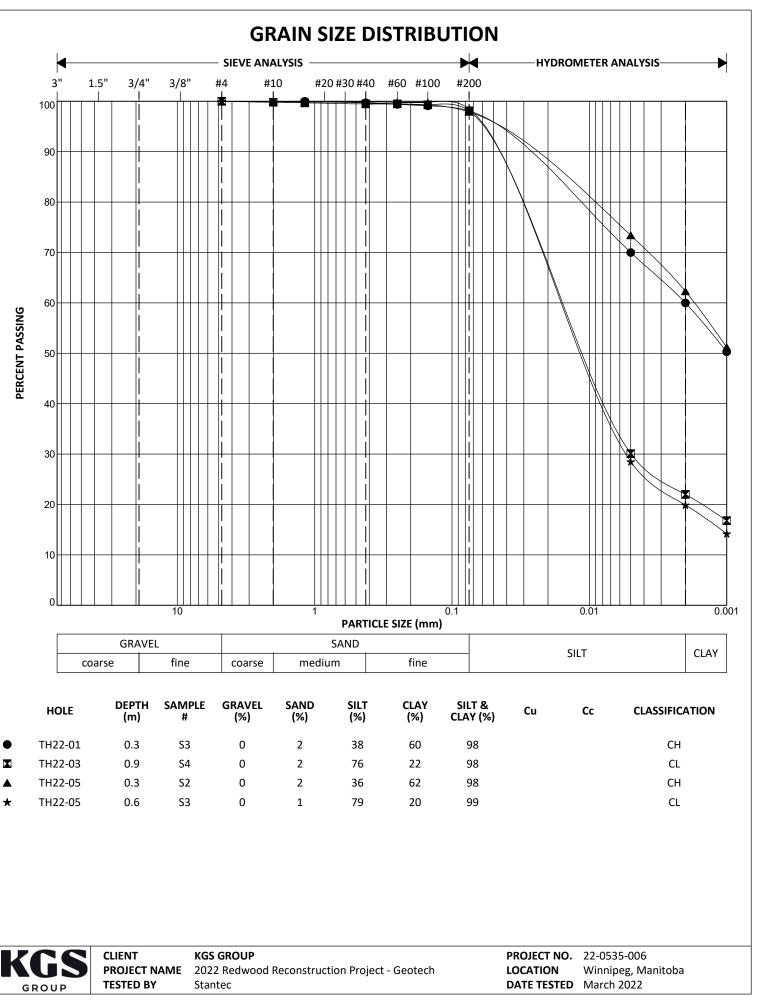
KEY TO S	SYMBOLS
LITHOLOGIC SYMBOLS	SAMPLER SYMBOLS
Asphalt	Auger Grab
Clay (CH, high plasticity)	Core Barrel
Clay (CL, low plasticity)	
Concrete	
Poorly Graded Gravel (GP)	
Silt (ML)	
	WELL CONSTRUCTION SYMBOLS
LL – Liquid Limit	VIATIONS PN - Pneumatic Piezometer
PL - Plastic Limit PI - Plastic Index	VW - Vibrating Wire Piezometer PID - Photoionization Detector
MC - Moisture Content DD - Dry Density	ppm - Parts Per Million Vater Level During
NP - Non-Plastic	≚ Drilling
-200 - Percent Passing No. 200 Sieve TV - Torvane (kPa)	Water Level Upon
PP - Pocket Penetrometer (kPa) PSA - Particle Size Analysis	Water Level Remeasured/Static
TOC - Top Of Casing	Nemeasureu/static
KGS CLIENT KGS GROUP	PROJECT NO. 22-0535-006
GROUP PROJECT NAME 2022 Redwood Reconstruction Proj	ject - Geotech LOCATION Winnipeg, Manitoba

APPENDIX C

Laboratory Testing Results


				SUM	MARY	OF IN[DEX TE	STS			Sheet	1 of 1
Test Hole ID	Depth (m)	Class- ification	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<75 μm Sieve	Water Content (%)	Dry Density (kN/m3)	Specific Gravity	Satur- ation (%)	Void Ratic
TH22-01	0.3	СН	74	24	50	1.18	98.1	35				
TH22-01	0.6	СН						29				
TH22-01	0.9	ML						27				
TH22-01	1.2	ML						48				
TH22-02	0.3	СН						27				
TH22-02	0.6	СН						26				
TH22-02	0.9	СН						26				
TH22-02	1.2	СН						29				
TH22-03	0.3	СН						44				
TH22-03	0.6	СН						37				
TH22-03	0.9	ML	28	17	11	4.75	98.1	28				
TH22-03	1.2	ML						23				
TH22-04	0.3	СН						51				
TH22-04	0.6	СН						44				
TH22-04	0.9	СН						34				
TH22-04	1.2	СН						32				
TH22-04	1.5	СН						28				
TH22-04	1.8	СН						35				
TH22-04	2.1	СН						34				
TH22-04	2.4	СН						40				
TH22-04	2.7	СН						49				
TH22-05	0.3	СН	87	22	65	2	97.9	37				
TH22-05	0.6	CL	29	16	13	4.75	98.5	28				
TH22-05	0.9	CL						22				
TH22-05	1.2	CL						24				
TH22-05	1.5	CL						23				
TH22-05	1.8	СН						36				
TH22-05	2.1	СН						49				
TH22-05	2.4	СН						50				
TH22-05	2.7	СН						49				1

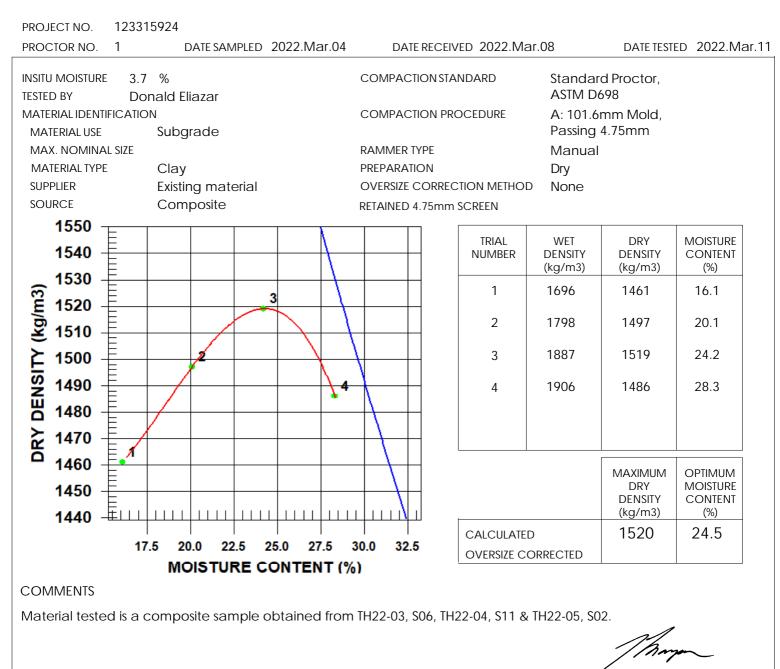
* Moisture conditioned and remolded sample. ** Assumed specific gravity.



KGS GROUP PROJECT NAME 2022 Redwood Reconstruction Project - Geotech **TESTED BY** Stantec

PROJECT NO. 22-0535-006 LOCATION Winnipeg, Manitoba DATE TESTED March 2022

199 Henlow Bay Winnipeg, Manitoba R3Y 1G4 Tel: (204) 488-6999



PROCTOR TEST REPORT

TO KGS Group Inc. 3rd Floor - 865 Waverley St Winnipeg, MB R3T 5P4 CLIENT KGS Group Inc. C.C. KGS Group Inc.

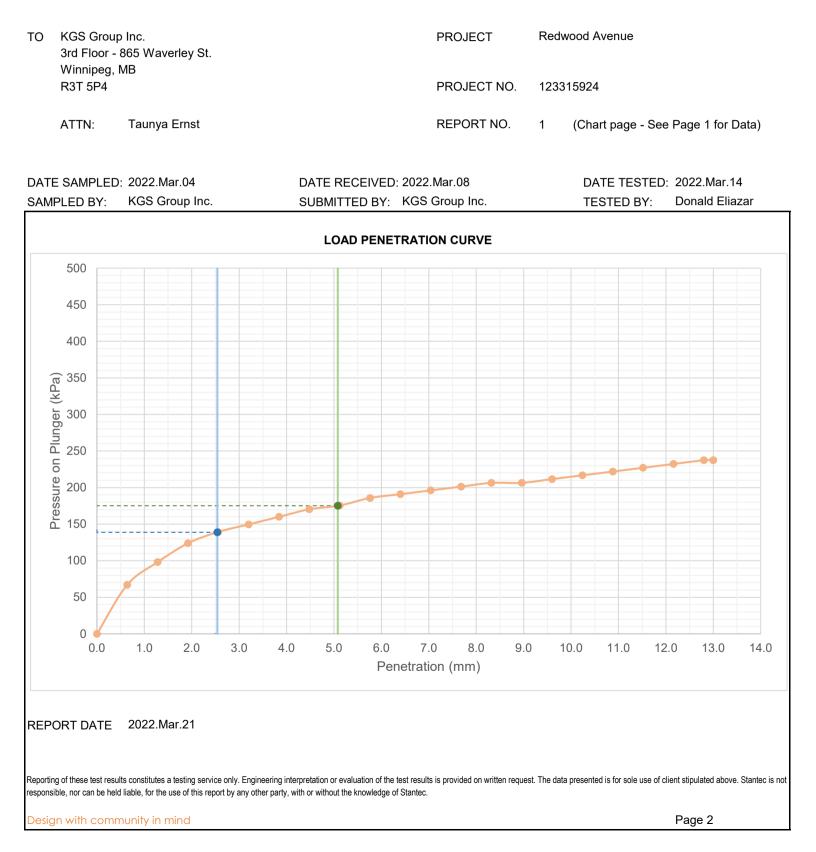
ATTN: Kayden Gauthier

PROJECT Redwood Avenue

Page 1 of 1 2022.Mar.11

REVIEWED BY Kason Thompson, C.E.T.

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be helder by a System Softward many service and service and the softward many service and the softward man


ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

то	KGS Group 3rd Floor - Winnipeg,	865 Wa	verley St.			PROJECT	Re	edwood Avenue	
	R3T 5P4					PROJECT NO.	12	3315924	
	ATTN:	Taunya	a Ernst			REPORT NO.	1	(Data page - see Pa	age 2 for Chart)
	E SAMPLED PLED BY:		/lar.04 Group Inc.	DATE RECEIVED SUBMITTED BY:				DATE TESTED: 2 TESTED BY:	2022.Mar.14 Donald Eliazar
SAIVI	FLED DT.	100 0		SUDIVITIED DT.	100 0			TESTED DT.	
MAT	ERIAL IDEN	TIFICAT	ION						
	TERIAL US		Subgrade		SUPP	LIER	Ex	tisting Material	
MA	X. NOMINA	L SIZE	< 4.75 mm		SOUR	CE	Re	edwood Avenue	
MA	TERIAL TYP	ΡE	Clay		SAMP	LE LOCATION	Те	stholes	
SP	ECIFICATIC	N	Not Applicable		STAN	TEC SAMPLE NO.	. 41	05	
IM	MERSION P	ERIOD		96 ± 2 hr		TARGET MAX. DF	RY [DENSITY	1520 kg/m ³
						TARGET OPTIMU	JM N	MOISTURE	24.5 %
СО	NDITION O	F SAMPI	LE	Soaked					
						AS-COMPACTED) MA	X. DRY DENSITY	1444 kg/m ³
SU	RCHARGE	MASS		4.54 kg		AS-COMPACTED	MC	DISTURE CONTENT	24.6 %
SW	ELL OF SA	MPLE		4.2%		POST-TEST MOIS	STU	IRE CONTENT	37.4 %
						(TOP 25 mm)			
			CB	R VALUE AT 2.54 mm	I PENE	ETRATION		2.0	
			CB	R VALUE AT 5.08 mm	I PENE	TRATION		1.8	
	MENTS:								
-				dry density at the optimum				ned from ASTM D698.	
		-	-	ained fron TH22-03 S06, Th					
Wea	ippreciate th	e opport	unity to assist yo	ou on this project. Please co	ontact th	ie undersigned if y	/ou ł	have any questions rega	arding this report.
							21	1	
		2022.1	1or 21			WED BY asor	n.		
	ORT DATE	2022.1	/iai .2 I				ii in inal	- Manager of Materials	Testing Services
							pu	manager of materials	
	•			igineering interpretation or evaluation of the other party, with or without the knowledge c		is provided on written request	t. The	data presented is for sole use of clien	t stipulated above. Stantec is not

Page 1

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

