

CITY OF WINNIPEG

Newton Avenue Force Main Red River Crossing Geotechnical Data Report

Revision: KGS Group Project: Final Rev 0 22-0107-021

Date: Client Project: October 19, 2022 621-2021

PREPARED BY:

Triston Elolidge Kelly Fordyce, P.Eng. for

Geotechnical Engineer

APPROVED BY:

Dami Adedapo, Ph.D., P.Eng.

Geotechnical Department Head / Principal

TABLE OF CONTENTS

1.0 INTRODUCTION	5
1.1 General	5
1.2 Purpose of Report	5
1.3 Report Limitations	5
2.0 BACKGROUND INFORMATION	6
2.1 Other Geotechnical Investigations Near the Site	6
2.2 Regional Geologic Setting	7
3.0 SCOPE OF 2021 INVESTIGATION PROGRAM	8
3.1 General	8
3.2 Test Hole Drilling and Soil Sampling	8
3.3 Groundwater Monitoring	9
3.4 Geophysical Seismic Refraction Survey	10
3.5 Laboratory Testing	10
4.0 SUBSURFACE CONDITIONS	11
4.1.1 Overburden	11
4.1.2 Bedrock	18
5.0 REFERENCES	21

List of Tables

- Table 1: Summary of 2021 Test Hole Locations
- Table 2: Groundwater Monitoring Data
- Table 3: Alluvial Deposits KGS Group 2021 Geotechnical Investigation
- Table 4: Alluvial Deposits Geotechnical Investigations within 1.5 km Downstream of Newton Crossing Site
- Table 5: Summary of Laboratory Test Results for Alluvial Deposits
- Table 6: Glaciolacustrine Deposits KGS Group 2021 Geotechnical Investigation
- Table 7: Summary of Laboratory Test Results for Glaciolacustrine Clay
- Table 8: Glacial Till KGS Group 2021 and Background Geotechnical Investigations
- Table 9: Summary of Laboratory Test Results for Glacial Till
- Table 10: Summary of Bedrock 2021 Laboratory Testing

List of Figures

- Figure 1: Test Hole and Seismic Refraction Survey Location Plan (Reference 3).
- Figure 2: Undrained Shear Strength with Elevation for Alluvial Soil
- Figure 3: Undrained Shear Strength with Elevation for Glaciolacustrine Clay
- Figure 4: Uncorrected SPT Values with Elevation for Glacial Till
- Figure 5: Bedrock RQD with Elevation
- Figure 6: Histogram of Distribution of RQD within Test Holes
- Figure 7: Bedrock Total Core Recovery with Elevation

List of Appendices

- Appendix A: Northeast Interceptor Sewer Replacement Geotechnical Data Report (AECOM 2018)
- Appendix B: 2021 Geotechnical Investigation Test Hole Logs
- Appendix C: 2021 Bedrock Core Photos
- Appendix D: Geophysical Seismic Refraction Survey Report (Frontier Geoscience 2021)
- Appendix E: 2021 Geotechnical Investigation Laboratory Data

STATEMENT OF LIMITATIONS AND CONDITIONS

Limitations

This report has been prepared for City of Winnipeg in accordance with the agreement between KGS Group and City of Winnipeg (the "Agreement"). This report represents KGS Group's professional judgment and exercising due care consistent with the preparation of similar reports. The information, data, recommendations and conclusions in this report are subject to the constraints and limitations in the Agreement and the qualifications in this report. This report must be read as a whole, and sections or parts should not be read out of context.

This report is based on information made available to KGS Group by City of Winnipeg. Unless stated otherwise, KGS Group has not verified the accuracy, completeness or validity of such information, makes no representation regarding its accuracy and hereby disclaims any liability in connection therewith. KGS Group shall not be responsible for conditions/issues it was not authorized or able to investigate or which were beyond the scope of its work. The information and conclusions provided in this report apply only as they existed at the time of KGS Group's work.

Third Party Use of Report

Any use a third party makes of this report or any reliance on or decisions made based on it, are the responsibility of such third parties. KGS Group accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions undertaken based on this report.

Geotechnical Investigation Statement of Limitations

The geotechnical investigation findings and recommendations of this report were prepared in accordance with generally accepted professional engineering principles and practice. The findings and recommendations are based on the results of field and laboratory investigations, combined with an interpolation of soil and groundwater conditions found at and within the depth of the test holes drilled by KGS Group at the site at the time of drilling. If conditions encountered during construction appear to be different from those shown by the test holes drilled by KGS Group or if the assumptions stated herein are not in keeping with the design, KGS Group should be notified in order that the recommendations can be reviewed and modified if necessary.

1.0 INTRODUCTION

1.1 General

KGS Group was retained by the City of Winnipeg Water and Waste Department to perform geotechnical investigations to facilitate the design and construction of the proposed replacement of the 350 mm force main crossing between Fraser's Grove Park and Newton Avenue / Scotia Street in Winnipeg, Manitoba.

It is our understanding the new force main crossing will consist of 350 mm internal diameter (ID) DR9 HDPE pipe from Fraser's Grove Park and Kildonan Park; crossing beneath the Red River. It is further understood that Horizontal Directional Drilling (HDD) construction methods will be employed for the installation of the proposed conduits.

The purpose of our investigation was to identify the subsurface soil, bedrock, and groundwater conditions along the alignment of the proposed works. This factual report contains a description of the geotechnical investigations program performed by KGS Group and our findings. This GDR should be read in conjunction with the Geotechnical Baseline Report (GBR) prepared by KGS Group for the Project.

1.2 Purpose of Report

This report summarizes the geotechnical conditions observed along the alignment of the proposed force main crossing between Fraser's Grove Park and Kildonan Park and provides geotechnical considerations that would form part of the basis of design for the Work. This report includes geotechnical data collected at the project site and summary of encountered subsurface conditions along the alignment.

1.3 Report Limitations

This report has been prepared for the exclusive use of the City of Winnipeg for the specific application to the proposed Newton Avenue Force Main Red River Crossing project. It has been prepared in accordance with generally accepted geotechnical engineering practice. No other warranty, express or implied, is made.

The geotechnical data presented in this report are based on the observations and test results obtained from field investigation programs completed between 1988 and 2021. The information provided indicate soil and bedrock conditions and water levels only at specific locations and times, and only to the depths penetrated. Subsurface conditions and water levels at other locations may differ from conditions occurring at these explored locations. Also, the passage of time may result in a change in conditions at these locations. KGS Group is not responsible for any claims, damages, or liability associated with interpretation of subsurface data or for reuse of subsurface data, without KGS Group's express written authorization.

2.0 BACKGROUND INFORMATION

2.1 Other Geotechnical Investigations Near the Site

A review of available geotechnical information pertinent to the project was conducted, including the 2021 investigation program completed by KGS Group, and presented in this report. The main objective of the review was to obtain and present information similar to the subsurface and groundwater conditions with respect to the Newton Force Main Crossing from areas in close proximity to the project site. The background geotechnical information, specifically for the overburden soils, summarized in this GDR is primarily from the City of Winnipeg North Kildonan Feedermain and Northeast Interceptor Sewer replacement project sites located approximately 1.5 km downstream of the Newton Force Main Crossing site. The geotechnical drilling and laboratory material testing data from the historical investigations itemized below was relied upon to supplement the description of the overburden and bedrock for the Newton Force Main Crossing obtained from the KGS Group 2021 investigations.

- AECOM Canada Ltd., 2017. City of Winnipeg Northeast Interceptor Sewer Red River Crossing Geotechnical Report.
- Trek Geotechnical, January 2014. North Kildonan Feedermain Detailed Design Geotechnical Report.
- KGS Group, November 2012. Forcemain Sub-Surface Investigation.
- Dyregrov and Burgess Consulting Geotechnical Engineers, February 1988. Kildonan Corridor Geotechnical Report.

These historical investigations located downstream of the proposed Newton Force Main Crossing project site have been summarized by AECOM (2017) in a Geotechnical Data Report prepared for the Northeast Interceptor Sewer replacement project. A copy of the GDR prepared by AECOM is included in Appendix A. In general, a review of the relevant reports above indicated the following (Reference #1):

- The riverbank soils consist of both lacustrine and alluvial soils overlying glacial till and limestone bedrock.
- Groundwater monitoring data indicate that the subsurface soil, till and bedrock are all hydraulically connected.
- Constructability challenges (sloughing, seepage, etc.) are anticipated, dewatering and temporary shoring will be required.
- Bedrock contains zones of large fractures and weak rock.

A site plan showing the locations of boreholes, borehole log records, and laboratory data from the previous investigations downstream are included in the AECOM (2017) GDR in Appendix A.

In general, the local geology and till to bedrock contact elevation is generally consistent between the proposed Newton Force Main Crossing site and the geotechnical data collected downstream from previous investigations. As such, the depositional structure between the sites are similar and it is appropriate that the characterization of the overburden soil units at the Newton Force Main Crossing site has been supplemented with the data obtained from the downstream project sites, as described in Section 4.0.

2.2 Regional Geologic Setting

The geology in Winnipeg generally consists of carbonate sedimentary bedrock overlaying Precambrian era granite and gneiss. The sedimentary rock consists of alternating layers of limestone, and dolomite and to a lesser extent shale. The proposed pipeline crossing is located within the limestone Selkirk member of the Red River Formation.

The surface of the bedrock is usually highly fractured and disturbed, often mixed with gravels and sands. Geological maps for Winnipeg indicate karst topography caused from dissolution of the soluble rock, and a heavily fractured upper bedrock layer. The karst topography is typically infilled with mixtures of silt, sand and gravel till soils.

During the last glacial advance and retreat, Winnipeg's glacial till was deposited by ice masses.

Glaciolacustrine deposits suspended in glacial lakes confined by ice masses settled to overlie the tills.

Additional information on the regional geology can be found in the Geological Engineering Report for Urban Development of Winnipeg, University of Manitoba (Reference #2).

3.0 SCOPE OF 2021 INVESTIGATION PROGRAM

3.1 General

This section provides a summary of the 2021 field investigation program, and laboratory test results; as well as the subsurface conditions encountered at the project site.

The 2021 geotechnical and geophysical investigations were completed to determine the subsurface conditions along the proposed force main conduit alignment. The results of the investigation program are presented in this Geotechnical Data Report.

3.2 Test Hole Drilling and Soil Sampling

The test hole drilling and sampling program was completed by KGS Group from August 4 to 12, 2021. A total of four (4) test holes were advanced into bedrock to investigate the subsurface stratigraphic conditions and evaluate the suitability of the bedrock for Horizontal Directional Drilling (HDD). Test hole TH21-01 was drilled on the west side of the Red River in Kildonan Park. Test hole TH21-02 was drilled within the approximate thalweg of the Red River. Test holes TH21-03 and TH21-04 were drilled on the east side of the Red River in Fraser's Grove Park. The locations of the test holes are shown on Figure 1 and a summary of the locations is presented in Table 1.

Maple Leaf Drilling of Winnipeg, Manitoba provided the drilling services using track-mounted and portable drill rig equipped with 125 mm solid stem augers, casing advancer, NQ coring, and HQ coring. The drilling was completed under the supervision and direction of KGS Group personnel. Soil samples were collected at intervals of 1.5 m (5 ft.) or at any changes in soil strata encountered during drilling. The soil samples were visually inspected for material type and classified according to the Modified Unified Soil Classification System (USCS).

Standard Penetration Tests (SPTs) were completed in the glacial till material to evaluate the in-situ density. Clay samples were tested with a field Torvane to evaluate the consistency and estimate the undrained shear strengths of cohesive soils. Upon completion of drilling, the test holes were examined for indications of sloughing and seepage and then backfilled. Test hole log records incorporating field observations, and field test results are provided in Appendix B. Photographs of the bedrock samples are included in Appendix C.

TABLE 1: SUMMARY OF 2021 TEST HOLE LOCATIONS

Test Hole ID	Location	Approx. Ground Surface Elevation (m)	Approx. Borehole Depth (m)	Approx. Bedrock Contact Elevation (m)
TH21-01	Scotia St. at Rainbow Dr. (Kildonan Park)	228.19	43.2	209.7
TH21-02	Center of Red River	217.70	33.8	209.1
TH21-03	Kildonan Drive at Larchedale Crescent (Fraser's Grove Park)	227.14	41.7	207.8
TH21-04	Kildonan Drive at Rowandale Crescent (Fraser's Grove Park)	227.14	44.7	207.9

City of Winnipeg

RIVERVIEW DR. OWANDALE CR.

FIGURE 1: TEST HOLE AND SEISMIC REFRACTION SURVEY LOCATION PLAN (REFERENCE 3)

3.3 Groundwater Monitoring

A total of two (2) standpipes piezometers were installed at the project site. One (1) standpipe was installed in the glacial till at TH21-01; and one (1) standpipe was installed in the bedrock at TH21-03. Table 2 summarizes the installation details and the piezometer monitoring completed to date. The installation details of the piezometers are shown on the borehole log records provided in Appendix B.

TABLE 2: GROUNDWATER MONITORING DATA

Test Hole ID		TH21-01	TH21-03
Ground Elevation (m)		228.19	227.14
Piezometer Type		Standpipe	Standpipe
Tip Elevation (m)		211.40	205.74
Monitoring Zone		Glacial Till	Bedrock
Date	River Level		
9/10/2021	223.77 ⁽¹⁾	222.20	222.58
10/28/2021	222.28 ⁽¹⁾	223.29	223.11
5/5/2022	226.37 ⁽²⁾	224.19	225.01

Notes:

- (1) River Level estimated at James Avenue approximately 7.5 km upstream of the project site.
- (2) River Level estimated at Kildonan Bridge approximately 1.5 km downstream of the project site.

3.4 Geophysical Seismic Refraction Survey

KGS Group retained the services of Frontier Geoscience Inc. to complete seismic refraction surveys along the two (2) preferred force main alignments. The seismic refraction surveys were completed on August 10 and 11, 2021. The objective of the geophysical survey was to obtain estimates of the depth to glacial till and bedrock along the preferred force main alignments. The locations of the seismic lines are shown on Figure 1 and the results of the seismic refraction survey are included in the Seismic Refraction Survey Report included in Appendix D. The final alignment of the proposed pipeline has shown on the construction drawings is slightly skewed from the seismic refraction lines.

3.5 Laboratory Testing

Laboratory testing was performed on select bedrock samples for use in the characterization of the subsurface. Laboratory testing on the bedrock samples was completed to determine the following mechanical properties:

- Unconfined Compressive Strength
- Youngs Modulus (E)
- Shear Modulus (G)

All testing was performed at a Canadian Council of Independent Laboratories (CCIL) certified laboratory in general accordance with ASTM International standards.

The Laboratory test results are summarized in Section 4.0 and included in Appendix E.

4.0 SUBSURFACE CONDITIONS

Summary of the local geology across the site as determined from the field investigation programs completed in 2021 and supplement by the historical geotechnical investigations completed within 1.5 km downstream of the Newton Force Main Crossing site are provided herein.

4.1.1 OVERBURDEN

The overburden deposits encountered at the project site generally consist of alluvium soils over lacustrine clay, glacial silt till deposit, and underlain by the carbonate bedrock. Variable layers of fill and silt were observed in the test holes within the upper complex zone.

UPPER COMPLEX ZONE

The Complex Zone in Winnipeg generally consists of stratified clays, and silts with variable amounts of organics, granular and fill material. This zone has high soil variability. The base of the Complex Zone is typically defined by the base of the silt layer. The silt interlayers in the Complex Zones can vary from 100 mm to up to 3 m in thickness and are typically approximately 1 m. Typically the silt is tan in colour, soft in consistency, of no to low plasticity and may have a perched groundwater table. The moisture content of the silt ranges from 20 to 35% and the unit weight is within the range of 18.8 to 20.4 kN/m³ (Reference 2).

Adjacent to the Red River in Winnipeg, alluvial soils consisting of alternating layers of clays, silts, and sands; and are known to extend below the average depth of the upper complex zone. The extent of the alluvial deposits identified in KGS Group's 2021 geotechnical investigation is outlined in Table 3 below.

TABLE 3: ALLUVIAL DEPOSITS - KGS GROUP 2021 GEOTECHNICAL INVESTIGATION

Location	Location Profile Alluvial Clay Alluvial Silt		Alluvial Silt	Alluvial Sand
Elevation at Base (m)		213.4 to 213.9	225.7 to 225.8	211.6 to 213.9
East Riverbank	Thickness (m)	11.9 to 12.3	1.3 to 1.4	1.9 to 11.9
West Riverbank	Elevation at Base (m)	223.6		219
West Riverbalik	Thickness (m)	4.6		4.6
River Channel	Elevation at Base (m)		216.6	
River Channel	Thickness (m)		1.1	

Alluvial deposits were also encountered in the background geotechnical investigations completed within 1.5 km downstream of the Newton Forcemain Crossing site and are summarized in Table 4 (Reference 1).

TABLE 4: ALLUVIAL DEPOSITS - GEOTECHNICAL INVESTIGATIONS WITHIN 1.5 KM DOWNSTREAM OF NEWTON CROSSING SITE

Location	Location Profile Alluvial Clay Alluvial Silt		Alluvial Silt	Alluvial Sand
Elevation at Base (m)		217.7 to 226.3	214.7 to 226.0	214.4 to 222.5
East Riverbank	Thickness (m)	1.7 to 4.1	1.2 to 4.8	2.4 to 13.5
West Riverbank	Elevation at Base (m)	225.1 to 228.8	217.7 to 227.6	213 to 216.3
West Riverbank	Thickness (m)	0.3 to 2.6	0.6 to 9.1	9.2 to 12.1
River Channel	Elevation at Base (m)	217.7 to 218.7	220.6 to 220.8	216.7
River Channel	Thickness (m)	1.9 to 1.3	0.9 to 1.3	2

A summary of the laboratory material testing results on the alluvial deposits from the KGS Group 2021 geotechnical investigations and the background geotechnical investigations completed downstream of the Newton Force Main Crossing site as reported by AECOM are summarized in Table 5 (Reference 1).

TABLE 5: SUMMARY OF LABORATORY TEST RESULTS FOR ALLUVIAL DEPOSITS

Laboratory Test	Alluvial Clay ⁽¹⁾	Alluvial Silt	Alluvial Sand
Moisture Content (%)	14 to 36	22 to 42.5	17.5 to 37
Atterberg – Plastic Limit (%)	13.0 to 17.1	NP	NP
Atterberg – Liquid Limit (%)	27.4 to 41.5	NP	NP
Plasticity Index	14.4 to 25.4	NP	NP
Grain Size – Gravel (%)	0	0	0 to 2.0
Grain Size – Sand (%)	35.7	24	31 to 74
Grain Size – Silt (%)	36.6	53 to 57	4 to 39
Grain Size - Clay (%)	27.7	19 to 23	5 to 30
Unconfined Compressive Strength (kPa)	46.4 to 106.6	45.1 to 57.3	
Undrained Shear Strength (kPa) above El. 222 m	10 to 145	5 to 70	
Undrained Shear Strength (kPa) below El. 222 m	10 to 80	15 to 180	
Bulk Unit Weight (kN/m³)	17.4 to 18.2	15.0 to 18.7	
Dry Unit Weight (kN/m³)	13.7	14	

⁽¹⁾ One grain size test was completed on the alluvial clay during the 2016 AECOM geotechnical investigation program.

Values of undrained shear strength (Su) with elevation for the alluvial deposits as estimated from a field Torvane during the KGS Group 2021 investigation at the Newton Force Main Crossing site are summarized in Figure 2.

⁽²⁾ NP stands for non-plastic.

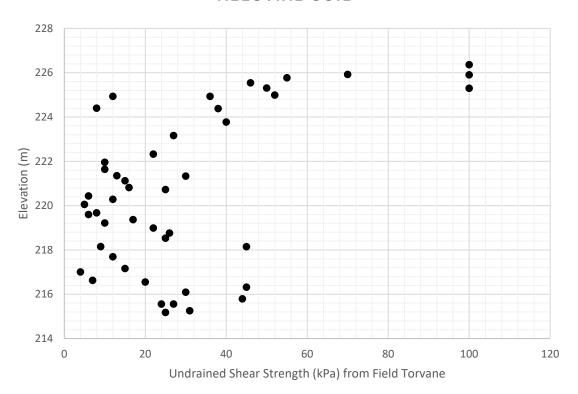


FIGURE 2: UNDRAINED SHEAR STRENGTH WITH ELEVATION FOR ALLUVIAL SOIL

GLACIOLACUSTRINE CLAY

Underlying the Upper Complex Zone is typically 9 to 12 m of glaciolacustrine clay deposit. In decreasing occurrence, typically the predominant mineral composition of the lacustrine clay generally consists of montmorillonite (a member of the smectite family), illite, kaolinite and some mica (Graham and Shields 1985). The clay deposit changes from brown to grey (sometimes referred to as blue clay) at depths of approximately 4.6 to 7.6 m. Within this depth range, the brown and grey clays often appear mottled, making it sometimes difficult to observe a discrete contact between the two colours. It is believed the colour change is due to the oxidation of the brown clay (Graham and Shields 1985).

The brown clay is typically stiff in consistency and of a high plasticity. The brown clay is highly fissured with the frequency of fissures decreasing with depth. White gypsum pockets and veins are typically observed within the brown clay, often filling in the fissures. The lower grey clay is firm to stiff in consistency and of intermediate to high plasticity. Fine to coarse grained gravel and boulders are found occasionally in the grey clay, near the till interface.

Typical moisture content in the clay ranges from 40 to 60%. Atterberg Limit tests within the brown and grey clay has shown the brown clay is typically more plastic than the underlying grey clay. Liquid Limits in the brown clay typically range from 80 to 110% and the Plastic Index from 60 to 80%. Liquid Limits in the grey clay typically range from 65 to 95% and the Plastic Index ranges from 40 to 65%. Unconfined compressive strengths usually range from 70 to 100 kPa within the brown clay. Measured values within the upper brown

clay are variable due to fissures. Typically the unconfined compressive strengths generally yield a lower bound to undrained shear strengths (Reference 2).

Undrained shear strengths measured from unconfined compression tests are generally higher within the upper clay zone (~ top 2 to 3 m), typically in the order of 70 to 100 kPa. Below a depth of about 4 to 5 metres, strengths typically decrease approximately uniformly with increasing depth. As the underlying till layer is approached, strengths are typically in the order of 40 kPa but may be as low as 25 kPa. The higher undrained shear strengths with the upper brown clay and lower shear strengths at depth near the till is caused by weathering near the ground surface and decreasing over consolidation ratios to approximately normally consolidated conditions near the bottom of the deposit. They may also reflect artesian ground water conditions (and therefore low vertical effective stresses).

Effective shear strength parameters of the brown and grey clay obtained from consolidated undrained compression triaxial strength testing of a large number of relatively undisturbed samples yielded intact peak strength of c'=19.6 kPa and $\varphi'=20.5^\circ$ and c'=29.8 kPa and $\varphi'=15.8^\circ$, respectively. While the effective large strain shear strength parameter for the brown and grey clay were c'=14.5 kPa and $\varphi'=13.3^\circ$ and c'=7.7 kPa and $\varphi'=15.7^\circ$, respectively (Reference 2). The effective shear strength parameters typically used by local geotechnical engineers in Winnipeg for slope stability analysis are c'=5 kPa and $\varphi'=14^\circ$ for both clays.

The extent of the glaciolacustrine deposits identified in KGS Group's 2021 geotechnical investigation is outlined in Table 6 below.

TABLE 6: GLACIOLACUSTRINE DEPOSITS - KGS GROUP 2021
GEOTECHNICAL INVESTIGATION

Location	Profile	Glaciolacustrine Clay
East Riverbank	Elevation at Base (m)	213.2
East Riverbalik	Thickness (m)	0.7
West Riverbank	Elevation at Base (m)	213.1
West Riverbank	Thickness (m)	5.9
Diver Channel	Elevation at Base (m)	213.6
River Channel	Thickness (m)	3.0

Glaciolacustrine deposits were also encountered during the previous geotechnical investigations completed within 1.5 km downstream of the Newton Force Main Crossing site with thickness ranging from 0.6 m to 15.9 m. It was noted by AECOM that the clay thickness was generally thinner on the east riverbank compared to the west riverbank which is consistent with observations at the Newton Force Main Crossing site.

A summary of the laboratory material testing results on the glaciolacustrine clay from the KGS Group 2021 geotechnical investigations and the background geotechnical investigations completed downstream of the Newton Forcemain Crossing site as reported by AECOM are summarized in Table 7 (Reference 1).

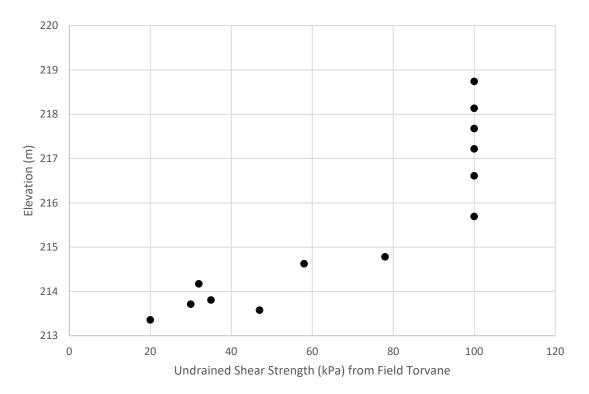


TABLE 7: SUMMARY OF LABORATORY TEST RESULTS FOR GLACIOLACUSTRINE CLAY

Laboratory Test	Glaciolacustrine Clay
Moisture Content (%)	20.8 to 52.6
Atterberg – Plastic Limit (%)	16.2 to 19.4
Atterberg – Liquid Limit (%)	49.7 to 75.0
Plasticity Index	33.5 to 50.8
Unconfined Compressive Strength (kPa)	47 to 245
Undrained Shear Strength (kPa) above El. 220 m	25 to 85
Undrained Shear Strength (kPa) below El. 220 m	20 to 85
Bulk Unit Weight (kN/m³)	16.0 to 19.9
Dry Unit Weight (kN/m³)	11.7 to 13.0

Values of undrained shear strength (Su) with elevation for the glaciolacustrine clay as estimated from a field Torvane during the KGS Group 2021 investigation at the Newton Force Main Crossing site are summarized in Figure 3.

FIGURE 3: UNDRAINED SHEAR STRENGTH WITH ELEVATION FOR GLACIOLACUSTRINE CLAY

GLACIAL TILL DEPOSITS

The glaciolacustrine clays are underlain by glacial silty tills. Based on the borehole drilling, glacial silt till was encountered at elevations ranging from 211.6 to 212.9 m. The glacial till ranged in thickness from 3.1 to 5.8 m. The glacial till may include a transition zone of till lenses in clay and clay inclusions in the till. The composition of the till is variable. The till is of varying consistency with the dense to very dense portions of the deposits being a basal till (hardpan). The upper horizon of the till deposit may be frequently loose and considerably softer, and water bearing likely an ablation till (putty till). The upper ablation till typically may have water contents ranging from 10 - 15% while the denser basal till will typically have water contents in the range of 7 - 10%. The upper tills contain more clay, and have a slightly higher plasticity than the lower tills with high silt contain. Unconfined compressive strengths ranging from 3.4 - 3.6 MPa have been reported for very dense tills with a moisture content of about 5% (Ref 1). Young's moduli typically range from 170 to 240 MPa (Ref 1). The tills are highly variable in terms of thickness, density and boulder content. Pockets of noncombustible gas, often under pressure are occasionally encountered in the till layer (Reference 3).

The uncorrected Standard Penetration Test blow counts ranged from 17 to greater than 50 blows/0.3 m, classifying the material as compact to very dense.

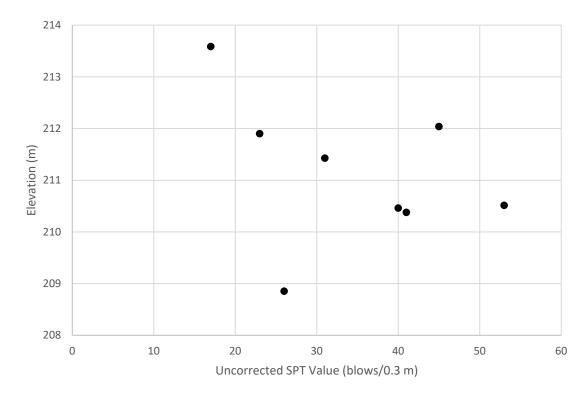
Boulders and cobbles are commonly found within till and should be anticipated within the deposits at the project site.

The extent of the glacial till deposit identified in KGS Group's 2021 geotechnical investigation is outlined in Table 8 below. Glacial till was also encountered during the geotechnical investigations completed within 1.5 km downstream of the Newton Forcemain Crossing site and are also summarized in Table 8 (Reference 1).

TABLE 8: GLACIAL TILL - KGS GROUP 2021 AND BACKGROUND GEOTECHNICAL INVESTIGATIONS

Location	Location Profile Glacial Till (KGS Group 2021)		Glacial Till (1.5 km downstream)	
East Riverbank	Elevation at Base (m)	207.8	208.8 to 210.9	
East Riverbalik	Thickness (m)	3.8 to 5.4	0.7 to 0.6	
Mast Diverbank	Elevation at Base (m)	209	209.8 to 210.2	
West Riverbank	Thickness (m)	3.4	1.0 to 6.6	
Divor Champal	Elevation at Base (m)	209.1	209.8 to 211.0	
River Channel	Thickness (m)	4.5	1.7 to 6.3	

A summary of the laboratory material testing results on the glacial till deposits from the KGS Group 2021 geotechnical investigations and the background geotechnical investigations completed downstream of the Newton Force Main Crossing site as reported by AECOM are summarized in Table 9 (Reference 1).


TABLE 9: SUMMARY OF LABORATORY TEST RESULTS FOR GLACIAL TILL

Laboratory Test	Glacial Till
Moisture Content (%)	8.9 to 20
Atterberg – Plastic Limit (%)	11.0 to 15.0
Atterberg – Liquid Limit (%)	29.0 to 32.0
Uncorrected Standard Penetration Test – Blow Count	8 to >50
Grain Size – Gravel (%)	0
Grain Size – Sand (%)	86.7
Grain Size – Silt (%)	7.4
Grain Size - Clay (%)	5.9

⁽¹⁾ One grain size test was completed on the glacial till during the 2016 AECOM geotechnical investigation program.

Uncorrected Standard Penetration Test (SPT) blow count values (blows/0.3 m) with elevation for the glacial till encountered during the KGS Group 2021 investigation at the Newton Forcemain Crossing site are summarized in Figure 4.

FIGURE 4: UNCORRECTED SPT VALUES WITH ELEVATION FOR GLACIAL TILL

4.1.2 BEDROCK

The limestone bedrock in the area of the Newton Force Main Crossing site belongs to the Selkirk member of the Red River Formation. The Selkirk member typically is medium strength with compressive strengths that vary from 30 to 40 MPa. The Young's modulus (E) generally ranges from 15 to 25 GPa (Reference 2). The bulk modulus (k) typically ranges from 40 to 50 GPa, and the shear modulus ranges from 5 to 10 GPa.

Bedrock was cored in all four (4) test holes at the site. Based on the borehole drilling, bedrock was encountered below the silt till at elevations ranging from 207.1 to 209.7 m. The seismic refraction survey suggests that top of bedrock may be lower on the east side of the river, at an elevation of approximately El. 198 m along the proposed force main alignment. The estimated bulk compressive wave velocity (Vp) for the upper bedrock is 4100 m/s and 3200 m/s on the east side and west side, respectively. These estimated velocities suggest that the bedrock is more fractured on the west side which is consistent with the RQD values presented in Figure 5.

The bedrock consists of limestone and mottled limestone. Dolomite was observed in test hole TH21-01 from elevation 208.0 to 209.7 m. The measured RQD of the bedrock with elevation is shown Figure 5 below, and a histogram with the RQD distribution is shown on Figure 6.

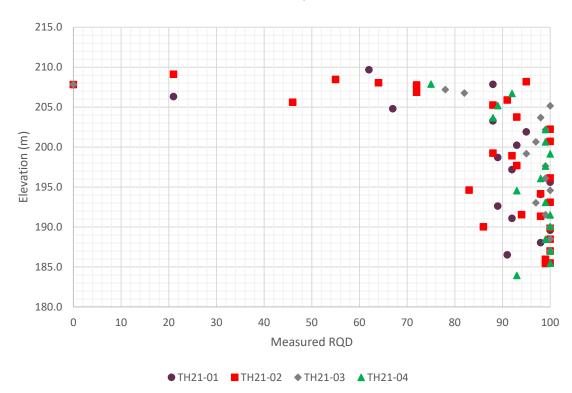
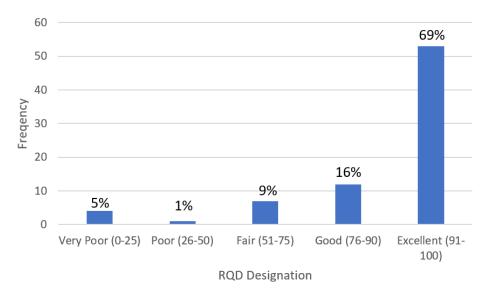



FIGURE 5: BEDROCK RQD WITH ELEVATION

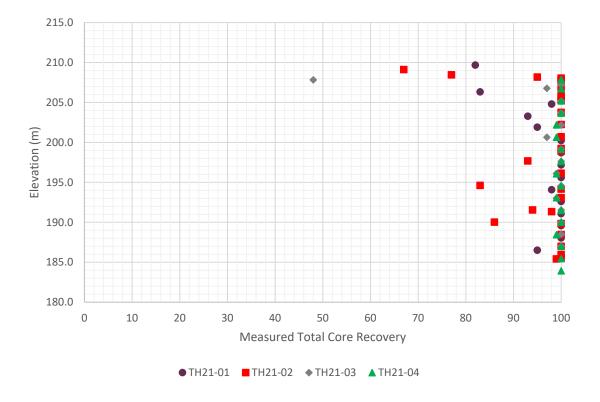


FIGURE 6: HISTOGRAM OF DISTRIBUTION OF RQD WITHIN TEST HOLES

Total Core Recovery (TCR) is the total length of the bedrock core recovered and is expressed as the percentage of actual length of the core run (typically 1.5 m). A summary of the TCR values is provided in Figure 7.

FIGURE 7: BEDROCK TOTAL CORE RECOVERY WITH ELEVATION

Laboratory testing was completed on two (2) mottled limestone bedrock samples from test hole TH21-01, at elevations 200.5 and 202.7 m. The results for compressive strength, Young's Modulus, and Shear Modulus are summarized in Table 10. The Shear Modulus was calculated using the following relationship:

E = 2G (1+v)

Where:

E = Young's Modulus

G = Shear Modulus

v = Poisson's Ratio

TABLE 10: SUMMARY OF BEDROCK 2021 LABORATORY TESTING

Test Hole ID	Sample ID	Sample Depth (Elevation) [m]	Description	Compressive Strength (MPa)	Young's Modulus, E (GPa)	Shear Modulus, G (GPa)¹	Poisson's Ratio (v)
TH21-01	R5	25.17 (203.02)	Mottled Limestone	14.37	12.17	5.38	0.13
TH21-01	R6	27.58 (200.61)	Mottled Limestone	28.40	19.31	8.32	0.16

Notes:

1. The relationship between Young's Modulus (E) and Shear Modulus (G) is: E = 2G (1+v)

5.0 REFERENCES

- 1. AECOM Canada Ltd., (2018). Northeast Interceptor Sewer Red River Crossing Geotechnical Data Report.
- 2. Department of Geological Engineering, the University of Manitoba, (1983). Geological Engineering Report for Urban Development of Winnipeg.
- 3. Frontier Geoscience Inc. (2021). Seismic Refraction Survey Report, Newton Force Main Red River Crossing, Winnipeg, MB.
- 4. KGS Group, Acres Engineering, UMA Engineering (2004). Appendix B, Floodway Channel Pre-Design, Floodway Expansion Project, Project Definition and Environmental Assessment, Preliminary Engineering Report.

APPENDIX A

Northeast Interceptor Sewer Replacement Geotechnical Data Report (AECOM 2018)

City of Winnipeg

Northeast Interceptor Sewer - Red River Crossing Geotechnical Data Report

Prepared by: AECOM Canada Ltd. 99 Commerce Drive Winnipeg MB R3P 0Y7 Prepared for: City of Winnipeg 110 - 1199 Pacific Avenue Winnipeg, MB R3E 3S8

Date: March, 2018
Project #: 60509089

Distribution List

# Hard Copies	PDF Required	Association / Company Name
	Yes	City of Winnipeg
_		

AECOM Canada Ltd. 99 Commerce Drive Winnipeg MB R3P 0Y7 Canada

T: 204.477.5381 F: 204.284.2040 aecom.com

Date March 23, 2018

Mr. Stacy Cournoyer, P.Eng Senior Project Engineer City of Winnipeg 110 - 1199 Pacific Avenue Winnipeg, MB R3E 3S8

Our Reference: 60509089

Dear Mr. Cournoyer:

Regarding: Northeast Interceptor Sewer Crossing- Geotechnical Data Report

We are pleased to submit this Geotechnical Data Report for the Northeast Interceptor Sewer Crossing to be constructed in northeast Winnipeg, Manitoba. The report provides a summary of the subsurface soil, bedrock, and groundwater encountered along the final alignment of the Northeast Sewer Interceptor and the laboratory test results for the soil and bedrock.

If you have any questions concerning this report please contact the undersigned at (780) 486-7905.

Sincerely,

AECOM Canada Ltd.

ALOBAIO

Faris Alobaidy, M.Sc., P.Eng. Senior Geotechnical Engineer

March 23, 2018

FA:rz

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("AECOM") for the benefit of the Client ("Client") in accordance with the agreement between AECOM and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the report (the "Limitations");
- represents AECOM's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to AECOM which has not been independently verified;
- has not been updated since the date of issuance of the report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

AECOM shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. AECOM accepts no responsibility for any events or circumstances that may have occurred since the date on which the report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

AECOM agrees that the report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the report and the Agreement, but AECOM makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by AECOM represent AECOM's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since AECOM has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, AECOM, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by AECOM and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the report and the Information may be used and relied upon only by Client.

AECOM accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the report or any of the Information ("improper use of the report"), except to the extent those parties have obtained the prior written consent of AECOM to use and rely upon the report and the Information. Any injury, loss or damages arising from improper use of the report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the report and any use of the report is subject to the terms hereof.

General Statement – Normal Variability of Subsurface Conditions

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to the suitability of the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. The description of the project represents an understanding of the significant aspects of the project relative to the design and construction of earth work, foundations, and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, AECOM Canada Ltd. should be given the opportunity to review the changes and to modify or reaffirm, in writing, the conclusions and recommendations of this report.

The analyses and recommendations represented in this report are based on the data obtained from the test holes drilled at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere on the site are not significantly different from those encountered at the test hole locations. However, variation in the soil conditions between the test holes may exist. Also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions different from those encountered in the exploratory borings are observed or encountered during construction, or appear to be present beneath or beyond excavations, AECOM Canada Ltd. should be advised at once so that the conditions can be observed and reviewed and, where necessary, the recommendations reconsidered.

Since it is possible for conditions to vary from those identified at the test hole locations and from those assumed in the analysis and preparation of recommendations, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.

In order to observe compliance with the design concepts, specifications, or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, it is recommended that all construction operations dealing with earthwork and the foundations be observed by an experienced geotechnical engineer. In addition, it is recommended that a qualified geotechnical engineer review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in the report.

Quality Information

Report Prepared By:

Alexander Hill, P.Geo., FGS

Engineering Geologist

Report Reviewed By:

Faris Alobaidy, M.Sc., P.Eng. Senior Geotechnical Engineer

Table of Contents

				page		
Intro	oduction1					
1.1	Gener	al		1		
1.2	Aims	and Obje	ctives	1		
1.3	Projec	t Details		2		
1.4	Scope	of Work		2		
Bacl	kground	l Informa	ation	4		
2.1	Revie	w of Back	ground Reports	4		
	2.1.1	TREK GODITIONS	eotechnical (December 2015) – Northeast Interceptor Crossing Study, Geotechnical Assessment	5		
	2.1.2		Drawings			
2.2	Backg	round In	formation from Previous Geotechnical Investigations	6		
	2.2.1		eotechnical (January 2014) - Detailed Design Geotechnical Report			
	2.2.2	Dyregrov	and Burgess (February 1988)- Kildonan Corridor Geotechnical			
2.3	Regio	nal Geolo	ogy	11		
	2.3.1		Geology			
	2.3.2		Geology			
	2.3.3		ology			
	,,	2.3.3.1	Friesen Drillers Ltd. (February 2018)- Hydrological Assessment/Aquifer			
			Characterization			
2.4			pecific Investigation			
2.5			ng and Soil Sampling			
	2.5.1	Laborato	ry Testing	14		
Sub	surface	Conditio	ons	15		
3.1	Gener	al		15		
3.2	Subsu	ırface Pro	ofile	15		
	3.2.1	Clay Fill		15		
	3.2.2	•	Deposits			
		3.2.2.1	Alluvial Clay			
		3.2.2.2	Alluvial Silt			
		3.2.2.3	Alluvial Sand	19		
		3.2.2.4	Organics	20		
	3.2.3	Glacio-La	acustrine Clay	20		
		3.2.3.1	Reported Geotechnical Properties	20		
		3.2.3.2	Geotechnical Investigation Findings- Glacio-Lacustrine Clay			
	3.2.4	Glacial T	ill	24		
		3.2.4.1	Reported Geotechnical Properties - Glacial Till	24		
		3.2.4.2	Geotechnical Investigation Findings- Glacial Till			
	3.2.5	Carbona	te Bedrock			
		3.2.5.1	Total Core Recovery (TCR)			
		3.2.5.2	Rock Quality Designation (RQD)			

			A summary of the RQD values is provided below:	
			3.2.5.3 Uniaxial Compressive Strength (UCS)	
	3.3	Groui	ndwater Conditions	
		3.3.1		
		3.3.2	Flood Elevations	36
4.	Rofo	rancas		37
╼.	IXCIC	i Ci i CC3		07
Lic	t of Ei	auroc		
LI2	t of Fi	gures	•	
Figui			ion "A" taken from TREK Geotechnical 2014 North Kildonan Feedermain	
			cal Report	8
Figui			Shear Strength with Elevation for Alluvial Soil Deposits- AECOM (2017), TREK	10
Figui	•	,	ontent with Elevation for Glacio-Lacustrine Clay- AECOM (2017), TREK (2014) and	10
ı ıguı			and Burgess (1988)	23
Figui			ontent with Elevation for Glacial Till- AECOM (2016), TREK (2013) and Dyregrov	
			ss (1987)	26
	–			
LIS	t of Ta	abies		
Table	e 1-2-1: S	ummary	of NEIS Lengths, Sizes and Proposed Installation Methods	2
Table	e 2-1: Sur	nmary of	f Site Specific Geotechnical Investigations	6
Table	e 2-2: Sur	nmary of	f Geotechnical Investigations Offset from NEIS Alignment	6
Table	e 2-3: Sur	mmary of	f North Kildonan Feedermain Geotechnical Investigation- TREK Geotechnical	
	•	-	014)	
Table	e 2-4: Soi	l Propert	ies Used in Stability Modelling- TREK Geotechnical (January 2014)	9
		-	f Kildonan Corridor Geotechnical Investigation (Dyregrov and Burgess)	
Table	e 2-6: We	II Constru	uction Details- Friesen Drillers (February 2018)	13
Table	e 2-7: Sur	mmary of	f Type and Number of Geotechnical Laboratory Tests (AECOM 2016)	14
Table	e 2-8: Sur	nmary of	f Type and Number of Laboratory Tests- Historic Geotechnical Programs	14
Table	e 3-1: Allu	ıvial Dep	osits- Soil Profile along NEIS Alignment (AECOM 2016 and KGS 2012)	16
Table		-	osits-Soil Profile offset from NEIS Alignment (TREK 2013, Dyregrov and Burgess	
		•		
		-	f Laboratory Test Results for Alluvial Deposits- AECOM 2016 Investigation	
		-	f Laboratory Test Results for Alluvial Deposits- Previous Geotechnical Investigations	
		•	f Consolidation Test Results for Alluvial Clay- Previous Geotechnical Investigations	
		-	f Dilatometer Test Results for Alluvial Deposits- Dyregrov and Burgess (1987)	
			Seotechnical Soil Parameters- Glacio-Lacustrine Clay	
			ear Strength Parameters of Glacio-Lacustrine Clay	
			16 Investigation- Summary of Laboratory Test Results – Glacio-Lacustrine Clay	22
Table			of Laboratory Test Results for Glacio-Lacustrine Clay - Previous Geotechnical	
-		_	ons.	22
ıable		-	of Consolidation Test Results for Glacio-Lacustrine Clay- Previous Geotechnical	20
Tabl		•		
ı abl	5 J- 12. DI	I GOL OHE	ar Test Results- Dyregrov and Burgess (1988)	∠4

Table 3-13: General Profile for Glacial Till	24
Table 3-14: Obstructions Encountered within the Glacial Till	25
Table 3-15: Summary of Laboratory Test Results- Glacial Till	25
Table 3-16: Summary of Carbonate Bedrock Unit Types and Contact Elevations	27
Table 3-17: Designation of Rock Quality	31
Table 3-18: Rock Quality Designation- Carbonate Bedrock	31
Table 3-19: Summary of Unconfined Compression Test Results	34
Table 3-20: Summary of GWL Monitoring Results	35
Table 3-21: Summary of GWL Monitoring Results- Dyregrov and Burgess (1987)	36
Table 3-22: Summary of River Flood Event Elevations	36

Appendic	ces			
Appendix A	Figures			
	Figure 1: Site Location Plan and NEIS Alignment			
	Figure 2: Surfical Geology Plan			
	Figure 3: Test Hole Location Plan			
	Figure 4: Stratigraphic Section			
Appendix B	Record Drawings			
Appendix C	Previous Geotechnical Investigation Test Hole Logs			
Appendix D	AECOM 2016 Test Hole Logs			
Appendix E	Geotechnical Laboratory Reports			
Appendix F	Friesen Drillers Ltd. Hydrogeological Assessment Report			
Appendix G	Consolidation Test Results (Dyregrov & Burgess. 1988)			
Appendix H	Dilatometer Results (Dyregrov & Burgess. 1988)			

1

1. Introduction

1.1 General

AECOM Canada Ltd. (AECOM) was retained by the City of Winnipeg Water and Waste Department (the City) to provide geotechnical engineering services to support the design and construction of the proposed Northeast Interceptor Sewer (NEIS). AECOM understands that installation of the proposed NEIS below the Red River will be completed by microtunnelling from the western siphon outlet chamber to the eastern siphon inlet chamber.

This Geotechnical Data Report (GDR) presents the results of a detailed geotechnical investigation conducted by AECOM along the proposed NEIS alignment. The detailed geotechnical investigation was conducted in general accordance with the American Society of Civil Engineers (ASCE) guidelines (Essex 2007 and ASCE/CI 36-15).

This report also provides a detailed summary of previous geotechnical investigation programs undertaken at the site and locations in close proximity to the site. The results and factual outcomes of these studies are included within Section 3 of this report.

This GDR should be read in conjunction with the Geotechnical Baseline Report (GBR). The GDR is subject to AECOM's Statement of Qualification and Limitations and General Statement regarding the Normal Variability of the Subsurface Conditions.

1.2 Aims and Objectives

The main objectives of the AECOM 2016 geotechnical investigation were to determine the subsurface soil/bedrock/groundwater conditions and engineering properties of the soil/bedrock encountered at the test hole locations drilled along the NEIS alignment. The primary focus of this report is to present and document the factual findings from the AECOM and other relevant geotechnical investigations and laboratory testing programs. The results of AECOM's laboratory testing program and test hole logs are included within this report.

The analyses and results presented in this report are based on the data obtained from the test holes drilled at discrete locations along the NEIS alignment. This report does not reflect any variations which may occur between the test hole locations. In the performance of subsurface explorations, specific information is obtained at specific locations at specific times. However, it is well known that variations in soil, bedrock, and groundwater conditions exist at most sites between test hole locations. The nature and extent of the variations may not become evident until the course of construction. If variations are then evident, it will be necessary to re-evaluate the findings and results presented in this report after performing on-site observations during the construction period and noting the characteristics of any variations.

This report is subject to the general statement regarding the normal variability of subsurface conditions provided above.

Rpt-2018-03-23-Gdr_Ne-Interceptor_60509089

1.3 Project Details

The proposed NEIS will be constructed within the Kildonan area in the northeast region of Winnipeg. The proposed NEIS alignment crosses the Red River directly to the south of the existing Kildonan Settlers Bridge.

It is understood that the current siphon is under capacity and experiences surcharging during large wet weather events and the additional capacity is required to meet current and future wet weather flow conditions. A trenchless solution is understood to be the preferred method for installation of additional conveyance capacity. The proposed NEIS alignment across the Red River will be installed via microtunnelling through the use of a Microtunnelling Boring Machine (MTBM). With the configuration of the existing siphon, installation of a new crossing via microtunnelling will require the construction of new siphon chambers.

Construction of the NEIS will begin from the downstream siphon chamber (western siphon outlet chamber) located to the south/southeast of the Kildonan Settlers Bridge, and will be terminated at the southwest of the Kildonan Settlers Bridge (eastern siphon inlet chamber) as shown on **Figure 1** shown in **Appendix A**. The proposed siphon will be connected to the existing 1800 mm mono concrete interceptor sewer via a trenchless solution or access shaft. A summary of the NEIS lengths, sizes and installation methods are provided in Table 1-1.

Location	Length (m)	Size (mm)	Installation Method
Start: 1+288.61 – Western Outlet Chamber End: 1+539.70 – Eastern Inlet Chamber	251.09	900 - Carrier Pipe Casing Pipe (optional)	Microtunnelling
Eastern Inlet and Western Outlet Chambers Sewer Connection	4.1 to 6.2	1200- Carrier Pipe 2400 – Casing Pipe (optional)	Pipe Jacking

Table 1-2-1: Summary of NEIS Lengths, Sizes and Proposed Installation Methods

The NEIS will be installed using two (2) shafts to facilitate the trenchless forms of siphon installation. The shafts will be used to launch and/or retrieve the MTBM. The locations of the proposed shafts are shown on **Figure 1** shown in **Appendix A**. Based on current geotechnical information and groundwater depths, it is understood that sealed methods of shaft construction are permitted, while dewatering or lowering of the groundwater table is not permitted.

The overburden depth (fill and surficial soils, not including bedrock thickness) above the pipe crown varies from 5.0 to 21.7 m along the NEIS alignment. Typically, a minimum soil cover of approximately two (2) times the tunnel diameter is required above the pipe crown. The river crossing will be constructed via microtunnelling methods, either installed as a two pass system (i.e. large diameter casing pipe with a 900 mm carrier pipe) or as a single pass installation comprising of a single 900 mm pipe. The surficial geology of the site and NEIS alignment is shown on **Figure 2** in **Appendix A**.

1.4 Scope of Work

The scope of work for the detailed geotechnical investigation along the NEIS alignment is summarized below:

1. Review of geological survey maps and relevant background information.

AECOM

- 2. Obtain and review geotechnical reports provided to AECOM with respect to the subject site. AECOM will also review geotechnical reports available in AECOM's library to collect information on the soil and bedrock within and near to the subject site.
- 3. Prepare a GDR that documents the findings from AECOM's 2016 investigation and from previous geotechnical investigations and laboratory testing.

Rpt-2018-03-23-Gdr_Ne-Interceptor_60509089

2. Background Information

2.1 Review of Background Reports

A review of available geotechnical information pertinent to the project was conducted including the geotechnical report prepared by AECOM Canada Ltd (2017). The main objective of the review was to obtain and present information specific to the subsurface and groundwater conditions with respect to the NEIS alignment and areas adjacent to the site. The available memorandums and reports were also reviewed to prepare a GDR that presents the factual information collected from the site investigation and laboratory testing. The following information was provided to the project team by the City and Associated Engineering:

- 1. Friesen Drillers Ltd (February 2018). Hydrogeological Assessment/Aquifer Characterization, Northeast Interceptor Sewer River Crossing Project- River Lot 25 Parish of Kildonan, Kildonan Settlers Bridge- Chief Peguis Trail, Winnipeg, Manitoba.
- 2. AECOM Canada Ltd (2017). City of Winnipeg Northeast Interceptor Sewer Red River Crossing Geotechnical Report.
- TREK Geotechnical (December 2015). Northeast Interceptor Crossing Options Study Geotechnical Assessment.
- 4. TREK Geotechnical (January 2014). North Kildonan Feedermain Detailed Design- Geotechnical Report.
- 5. KGS Group (November 2012). Forcemain Sub-Surface Investigation.
- 6. Dyregrov and Burgess Consulting Geotechnical Engineers (February 1988). Kildonan Corridor Geotechnical Report.
- 7. Settlers Bridge Design and Construction (Various Reports 1988 to 1990): Relevant information includes test logs, record drawings of the construction works which included riprap and riverbank stabilization on the west bank (rock columns), and performance monitoring results related to ground movements and groundwater levels.

The location of pertinent exploratory holes from past and existing geotechnical investigations relevant to the site are shown on **Figure 3** in **Appendix A**.

Additional information was requested from the City by the project team with regard to riverbank stability issues encountered during construction of the west abutment of the Kildonan Settlers Bridge. The City provided the following documents for the project team review:

- Kildonan Bridge at the Red River Geotechnical Report (Dyregrov & Burgess, February 1988).
- Various Riverbank Stability Monitoring Results Reports (Dyregrov & Burgess, June 1989 to April 1991).
- Kildonan Bridge West Embankment Monitoring Program Letter Reports (A. Dean Gould, June 1990, July 1990, November 1990 and December 1990).
- Opinion on Request for Amendment to River and Streams Permit no. 78-89 Kildonan Bridge over the Red River, West Bank (A. Baracos, May 1990).

The above information was reviewed to improve the project team's understanding of specific site conditions and behaviour of the riverbank during the construction of the Kildonan Bridge approximately 20 to 30 m north of the proposed interceptor pipe location.

In summary, a review of the identified reports indicated the following:

- The riverbank soils consist of both lacustrine and alluvial soils overlying glacial till and limestone bedrock.
- Groundwater monitoring data indicate that the subsurface soils, till and bedrock are all hydraulically connected.
- The west riverbank will likely require stabilization measures if disturbed during construction.
- Constructability challenges (sloughing, seepage etc.) are anticipated, dewatering and temporary shoring will be required.
- Bedrock contains zones of large fractures and weak rock.
- Ground stabilization (1989/90) was completed on the west bank adjacent to the existing bridge location.

A detailed summation of the Associated Engineering Ltd. (February 2016) Crossing Options Assessment Study is not included as part of this report given the absence of any relevant subsurface ground and/or groundwater information derived from geotechnical investigation.

2.1.1 TREK Geotechnical (December 2015) – Northeast Interceptor Crossing Options Study, Geotechnical Assessment

A geotechnical assessment was provided to review potential crossing options (subsequently incorporated as part of the Associated Engineering Ltd. 2016 report) with respect to the potential geotechnical impacts along the proposed interceptor alignment. The TREK Geotechnical (TREK) report included the following scope of work:

- Review of existing information.
- Review of subsurface conditions.
- Slope stability assessment.
- Geotechnical recommendations for crossing options.

No additional geotechnical investigation was undertaken as part of this assessment, and as such utilized information and data obtained from the KGS (2012) and Dyregrov and Burgess (1987) investigations. Subsurface information was also derived from the TREK (2013) geotechnical investigation and extrapolated along the NEIS alignment.

2.1.2 Record Drawings

The following as-built record drawing has been obtained as part of this study and is provided in **Appendix B**:

1. North-East Interceptor River Crossing (1970). Drawing No. 494.

2.2 Background Information from Previous Geotechnical Investigations

AECOM has reviewed the previous geotechnical investigations relevant to the NEIS alignment and adjacent structures offset from the NEIS alignment. The primary objective of the review was to collect information on the subsurface soil/bedrock conditions in the project area.

Table 2-1 summarizes the geotechnical investigations that have been completed at and in near proximity to the site.

				_	
Organization	Type and Number of Investigation	Drilling Date	Associated Structure	Distance (m) and Relevancy to NEIS Alignment	Comments
Friesen Drillers	MR (4 no.)	October 12 to17,	Existing NEIS	Distance: 0 to 30	TH-01, 02, 03 and 04
Ltd.		2017	alignment	Drilled at or near to eastern inlet and western outlet chambers	Groundwater monitoring and sampling wells on eastern and western riverbanks.
AECOM	SSA/RC (4 no.)	August 19 to	Existing NEIS	Distance: 0 to 25	TH16-01, 02, 03 and 04
		September 9,	alignment	Directly along proposed	
		2016		NEIS alignment.	
KGS Group*	SSA/RC (3 no.)	November 7	Existing NEIS	Distance: 0 to 25	TH12-01, 02, 02B, 03, 03B
	SSA (2 no.)	to14, 2012	alignment	North and south of	
				existing siphon alignment	

Table 2-1: Summary of Site Specific Geotechnical Investigations

Notes: MR- Mud Rotary; SSA- Solid Stem Auger; RC- Rock Core; *- Report not available for review at the time of preparation.

Geotechnical investigations which have previously been undertaken within the areas adjacent to the site but not specific to the NEIS alignment are also summarised in Table 2-2 below.

Organization	Type and Number of Investigation	Drilling Date	Associated Structure	Distance (m) and Relevancy to NEIS Alignment	Comments
TREK Geotechnical	SSA/RC (3. No)	November 7 to 18, 2013	North Kildonan Feedermain	Distance: 150 to 200 North of existing and proposed NEIS alignment	TH13-01, 04 and 05
Dyregrov and Burgess	SSA (10 no.) HSA (3 no.) RC (14 no.) DMT (5 no.)	June 6, 1987 to October 15, 1987	Kildonan Settlers Bridge	Distance: 75 to 100 North of proposed and existing NEIS alignment	Boring 1 to 23 DMT 3 to 7

Table 2-2: Summary of Geotechnical Investigations Offset from NEIS Alignment

 $Notes: SSA-Solid \ Stem \ Auger; \ HAS-Hollow \ Stem \ Auger; \ RC-Rock \ Core; \ DMT-Dilatometer \ Test.$

The locations of the exploratory holes outlined in Table 2-1 are shown on **Figure 3** in **Appendix A**. Test hole logs related to previous geotechnical investigations are included as **Appendix C** in this report. Test hole records for the AECOM 2016 geotechnical investigation are included in **Appendix D**. The laboratory testing results for all geotechnical investigation phases (including AECOM 2016) is provided in **Appendix**

E of this report with the exception of the KGS 2012 investigation. The results of the KGS (2012) laboratory testing program were not made available at this time of this report.

2.2.1 TREK Geotechnical (January 2014) - Detailed Design Geotechnical Report

In support of the Kildonan Feedermain replacement/rehabilitation project, TREK was engaged to provide geotechnical engineering services to facilitate the detailed design of the feedermain. As part of the scope of work, TREK completed the following in relation to the detailed design phase of the project:

- Background information and literature review.
- Sub-surface geotechnical investigation.
- Soil and groundwater assessment.
- Riverbank stability analysis and assessment.
- Geotechnical design recommendations.

Based on the preliminary design completed by Associated Engineering (July 2013), installation of the proposed feedermain was to be completed using Horizontal Directional Drilling (HDD) methods. In order to identify potential geotechnical concerns along the feedermain alignment, and to provide geotechnical design parameters, a geotechnical investigation was undertaken by TREK in 2013.

The TREK geotechnical investigation consisted of three (3) test holes drilled into the carbonate bedrock within the eastern and western riverbanks. Groundwater monitoring wells were installed at each of the test hole locations (see Section 3.3 of this report). The geotechnical testing program consisted of index classification testing and strength testing of soils and rocks. The results of the geotechnical laboratory tests are included within the TREK report (2014). Further information concerning the encountered subsurface soil and groundwater conditions are provided in Section 3.0 of this report. A summary of the drilling and testing components are shown in Table 2-3, below. The test hole records for the 2013 investigation are provided in **Appendix C** along with representative subsurface soil profiles. The geotechnical material testing results are also provided within **Appendix E** of this report.

Table 2-3: Summary of North Kildonan Feedermain Geotechnical Investigation- TREK Geotechnical (January 2014)

Test Hole	Test Hole Elevation (m)	Location	Drilling Method	Completion Depth (m)	Thickness of Overburden Soils (m)	Elevation of Bedrock Contact (m)
TH13-01	227.36	Eastern Riverbank	Solid Stem Auger and Diamond Drill Core	36.9	18.2	209.2
TH13-04	227.19	Western Riverbank	Solid Stem Auger and Diamond Drill Core	21.6	17.1	210.1
TH13-05	226.63	Western Riverbank	Solid Stem Auger and Diamond Drill Core	35.1	16.3	210.0

The TREK 2014 report indicates that the subsurface ground profile along the feedermain generally consists of alluvial soils overlying glacio-lacustine clay and glacial till. Carbonate bedrock was encountered underlying the glacial till in all test holes. The TREK (2013) test holes are presented in **Appendix C** of this report.

A slope stability analysis was performed on five cross-sections along or near to the feedermain alignment. The five cross-sections selected for analysis were chosen based upon topographical and bathymetric survey profiles of existing conditions (along the eastern and western riverbanks) to determine the potential impact of existing slope instability on the future crossing. Cross section A was constructed directly along the feedermain alignment, and is shown as **Figure 2-1**, below.

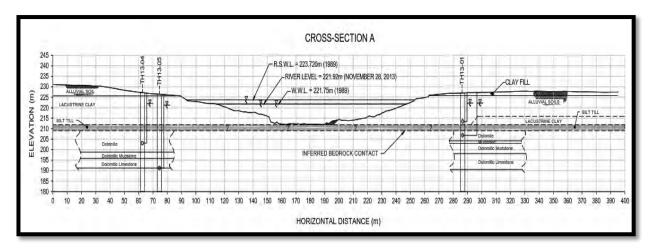


Figure 2-1: Cross Section "A" taken from TREK Geotechnical 2014 North Kildonan Feedermain Geotechnical Report

The slope stability analysis incorporated soil parameters based on the findings of the geotechnical investigation and material testing program. Typical slope heights analyzed as part of the assessment ranged between 13.5 m and 18.0 m with varying slope profiles as illustrated in **Figure 2-1**. The adopted soil strength parameters used within the slope stability analysis are summarised below.

Soil Description	Unit Weight (kN/m³)	Cohesion (kPa)	Friction Angle	Hydraulic Conductivity (m/s)
Glacio-Lacustrine Clay	17	5	14	1 x 10 ⁻¹⁰
Alluvial Soils	18	2	23	1 x 10 ⁻⁰⁹
Glacial Till	19	10	30	1 x 10 ⁻⁰⁷
Engineered Fill (Clay)	18	2	23	1 x 10 ⁻⁰⁹

Table 2-4: Soil Properties Used in Stability Modelling-TREK Geotechnical (January 2014)

Notes: Groundwater Information for the TREK (2013) Geotechnical Information is provided in Section 3.3.1 of this Report.

TREK concluded that the existing eastern and western riverbank slopes have a Factor of Safety (FS) between 1.3 and 1.5. The report also recommended that erosion protection in the form of stone rip-rap be placed along the lower riverbanks.

2.2.2 Dyregrov and Burgess (February 1988)- Kildonan Corridor Geotechnical Report

The report was commissioned to provide geotechnical engineering recommendations for the detailed design of the Settlers Bridge crossing of the Red River within the Kildonan Corridor. The report summarizes the findings of the geotechnical investigation and geotechnical laboratory testing results. The test hole records related to the investigation are included in **Appendix C** of this report. The corresponding laboratory test results are included in **Appendix E** of this report. The report also presents the findings and outcomes of slope stability analyses performed to determine the impacts of the bridge crossing on the existing slopes and adjacent structures.

The geotechnical investigation consisted of an extensive drilling and testing program focused at locations along the eastern and western riverbanks and in-channel crossing points. A summary of the drilling and testing components are shown in Table 2-5, below.

Table 2-5: Summary of Kildonan Corridor Geotechnical Investigation (Dyregrov and Burgess)

Test Hole	Test Hole Elevation (m)	Location	Drilling Method	Completion Depth (m)	Thickness of Overburden Soils (m)	Elevation of Bedrock Contact (m)	Groundwater Elevation at Completion of Drilling (m)
Boring 1	230.63	Western Riverbank	Solid Stem Auger	7.6	NP	NP	228.2 (Seepage)
Boring 2	230.91	Western Riverbank	Solid Stem Auger	10.7	NP	NP	228.3 (Seepage)
Boring 3	230.58	Western Riverbank	Solid Stem Auger	13.7	NP	NP	-
Boring 4	230.64	Western Riverbank	Solid Stem Auger	20.4	20.4	210.2*	221.2 (Inflow)

Test Hole	Test Hole Elevation (m)	Location	Drilling Method	Completion Depth (m)	Thickness of Overburden Soils (m)	Elevation of Bedrock Contact (m)	Groundwater Elevation at Completion of Drilling (m)
Boring 5	228.72	Western Riverbank	Solid Stem Auger	18.7	18.7	210.0*	-
Boring 6	227.47	Eastern Riverbank	Hollow Stem Auger	12.5	NP	NP	-
Boring 7	227.13	Eastern Riverbank	Solid Stem Auger	16.2	16.2	210.9*	Seepage (no elevation)
Boring 8	227.17	Eastern Riverbank	Solid Stem Auger	17.7	17.7	209.4*	220.0
Boring 9	230.08	Eastern Riverbank	Solid Stem Auger	6.4	NP	NP	-
Boring 10	230.02	Eastern Riverbank	Solid Stem Auger	6.1	NP	NP	-
Boring 11	229.48	Eastern Riverbank	Solid Stem Auger	6.1	NP	NP	-
Boring 12	226.74	Western Riverbank	Hollow Stem Auger	12.8	NP	NP	-
Boring 13	227.60	Western Riverbank	Hollow Stem Auger	18.6	18.6	NP	-
Boring 14	223.64	In-Channel	Rock Coring	19.1	5.7	210.3	-
Boring 15	223.67	In-Channel	Rock Coring	21.7	3.4	210.6	-
Boring 16	223.61	In-Channel	Rock Coring	20.1	3.8	210.6	-
Boring 16A	NR	In-Channel	Rock Coring	23.6	5.3	209.7	-
Boring 16B	NR	In-Channel	Rock Coring	20.0	4.7	209.7	-
Boring 16C	NR	In-Channel	Rock Coring	22.3	4.9	209.9	-
Boring 16D	NR	In-Channel	Rock Coring	22.5	3.9	210.2	-
Boring 17	223.65	In-Channel	Rock Coring	22.6	5.6	209.7	-
Boring 18	223.68	In-Channel	Rock Coring	22.3	1.6	211.1	-
Boring 19	223.62	In-Channel	Rock Coring	20.7	4.9	209.8	-
Boring 20	223.61	In-Channel	Rock Coring	22.6	6.0	210.1	-
Boring 21	223.63	In-Channel	Rock Coring	22.4	11.9	210.2	-

Test Hole	Test Hole Elevation (m)	Location	Drilling Method	Completion Depth (m)	Thickness of Overburden Soils (m)	Elevation of Bedrock Contact (m)	Groundwater Elevation at Completion of Drilling (m)
Boring 22	223.68	In-Channel	Rock Coring	19.0	11.5	210.7	-
Boring 23	223.70	In-Channel	Rock Coring	20.9	11.8	210.7	-
DMT 3	223.70	In-Channel	Dilatometer Testing	7.9	NP	NP	-
DMT 4	223.61	In-Channel	Dilatometer Testing	7.5	NP	NP	-
DMT 5	223.61	In-Channel	Dilatometer Testing	8.5	NP	NP	-
DMT 6	223.60	In-Channel	Dilatometer Testing	10.6	NP	NP	-
DMT 7	223.60	In-Channel	Dilatometer Testing	13.1	2.6	NP	-

Notes: NP- Not Proven; *- Inferred; NR- Not Reported

Groundwater information collected from the Dyregrov and Burgess (1987) geotechnical investigation is summarized in Section 3.3.1 of this report.

2.3 Regional Geology

2.3.1 Bedrock Geology

The shallow bedrock geology of the Winnipeg area generally comprises of carbonate rock of the Selkirk and Fort Garry Members belonging to the Red River Formation. The Red River Formation consists of alternating layers of limestone and dolomite (with basal shale layers). The NEIS alignment is located on either side of the geological contact between the Selkirk Member and the lower part of the Fort Garry Member of the Red River Formation (TREK - January 2014).

The upper surface of the bedrock is generally characterised with poor rock mass characteristics and is highly fractured. Karstic features are also common within the upper zone of the carbonate bedrock. The Karst topography is typically infilled with mixtures of silt, sand and gravel till material. The Winnipeg Formation underlies the Red River Formation, and typically consists of sandstone and shale units. The basement bedrock geology is comprised of the Pre-Cambrian Basal Granites at depth. The actual bedrock conditions encountered at the site are described in Section 3.0 of this report below.

2.3.2 Surficial Geology

The overlying surficial soils generally comprise of alluvial deposits, glacio-lacustrine silty clays and glacial till soils of varying thicknesses and compositions. The glacial till soils were laid down by the advancing and retreating glacial ice masses. This in-turn resulted in disturbance of the upper zone within the

shallow carbonate bedrock. The glacio-lacustrine soils are a product of fine materials deposited through suspension within the glacial lakes.

The glacio-lacustrine soils are typically 9 to 12 m thick, but vary significantly spatially within the Red River Valley of southern central Manitoba. The glacio-lacustrine soils are further sub-divided into two distinct sub-units; the Upper and Lower (brown and grey clay, respectively) clay. The transition zone between the two sub-units is typically located between an approximate depth of 4.6 and 7.6 m (Graham and Shields 1985).

Glacial till soils underlie the glacio-lacustrine soils, and the soil boundary interface is usually marked by a transition zone consisting of clay and silt lenses surrounded by a sand/gravel matrix.

2.3.3 Hydrogeology

There are three significant bedrock aquifers beneath the City of Winnipeg. The largest is known as the Upper Carbonate Aquifer which is generally found within the upper 7 m of the carbonate bedrock profile. This aquifer is contained in an extensive network of fractures and Karstic solution cavities formed by the dissolution of the Upper carbonate rocks. Other aquifers include the Lower and Middle Carbonate Aquifers at the base of the carbonate bedrock profile and the underlying Winnipeg Formation sandstones. A Middle Carbonate Aquifer has also been encountered locally. In general, these Lower and Middle aquifers are not utilized due either to the presence of saline water or the higher productivity of the Upper Carbonate Aquifer.

Groundwater flow within the Upper Carbonate Aquifer is towards the Red River (the major discharge point for this aquifer), and in particular towards the St. Boniface Industrial Park on the east side of the river where consumptive groundwater use occurs. West of the Red River, the water quality varies from brackish to saline, except beneath the northwest part of the city. Therefore, groundwater in this aquifer is mostly used for commercial and industrial heating and cooling. The majority of these systems recycle the water back into the subsurface and there is very little consumptive use.

Prior to the start of development of this aquifer in the late 1800's, the potentiometric surface was estimated to be approximately 3 to 6 m below ground surface in the central Winnipeg area. Extensive consumptive use of this groundwater resulted in a decline in the potentiometric surface to depths of 21 to 24 m. Consumptive use has declined since the early 1970's and since that time the potentiometric surface has been rising. Currently in the downtown area, the potentiometric surface is approximately 7 m below grade. This rise in water level has resulted in groundwater related problems with some deeper foundations in the city and must be considered in components design for this project. At the subject site, overburden up to 18 m including silt till was encountered during the investigation. Carbonate bedrock up to depths of 9.8 m (200.4 m Elv.), 16.7 m (193.3 m Elv.) and 9.9 m (200.5 m Elv.), was proofed at the west riverbank, river channel and east riverbank, respectively.

2.3.3.1 Friesen Drillers Ltd. (February 2018)- Hydrological Assessment/Aquifer Characterization

Friesen Drillers conducted a hydrogeological investigation to determine the potential for aquifer depressurization which would allow for deep excavations at the project (as well as at locations within the tunnel). The hydrogeological investigation included; test well drilling, aquifer pump testing and technical analysis. In summary, the scope of investigation comprised the installation of four (4) 5-inch (127 mm) diameter PVC cased test wells into the carbonate bedrock to a maximum depth of 61 m. The groundwater wells were installed within both the eastern and western riverbanks (two wells at each

riverbank), and details of each groundwater well are summarized in Table 2-6. The groundwater well construction report for each location is shown as **Appendix C** of this report.

Test Hole	Test Hole Coordinates	Casing Depth (m)	Response Zone (m)	Total Drilling Depth (m)
TH-01	5534768 N	18.0	18.0 to 36.0	36.0
(Eastern Riverbank)	636562 E			
TH-02	5534792 N	23.0	23.0 to 60.0	60.0
(Eastern Riverbank)	636568 E			
TH-03	5534844 N	19.0	19.0 to 60.0	60.0
(Western Riverbank)	636365 E			
TH-04	5534879 N	18.0	18.0 to 60.0	60.0
(Western Riverbank)	636380 E			

Table 2-6: Well Construction Details- Friesen Drillers (February 2018)

Notes: Ground Elevations not surveyed

The results of the detailed hydrogeological investigation are presented in a separate report entitled included as **Appendix F**.

2.4 AECOM Site Specific Investigation

The AECOM 2016 geotechnical investigation field program (including laboratory test results) is summarised as below. The 2016 AECOM geotechnical investigation was completed to determine the subsurface conditions at the proposed NEIS alignment.

2.5 Test Hole Drilling and Soil Sampling

From August 19 to September 9, 2016, four (4) test holes (TH16-01 to TH16-04) were drilled at the approximate locations shown on **Figure 3** in **Appendix A**. Test holes TH16-01 and TH16-02 were drilled along the northwest riverbank in the vicinity of the western outlet chamber location, while test hole TH16-03 was drilled within the Red River channel, and test hole TH16-04 was drilled in the vicinity of the eastern inlet chamber location.

Drilling was completed by Maple Leaf Drilling using the following equipment: track-mounted Acker Renegade drill rig equipped with 125 mm solid stem augers and HQ sized (96 mm OD) core barrel for test holes TH16-01 and TH16-02, Cricket B20 equipped with BQ sized (60 mm OD) core barrel mounted on a floating barge for test hole TH16-03, and track mounted Mobile B54X drill rig equipped with 125 mm solid stem augers and NQ sized (75.7 mm OD) core barrel for test hole TH16-04. Subsurface conditions observed during drilling were visually classified and documented by AECOM geotechnical personnel. Other pertinent information such as groundwater and drilling conditions were also recorded during the field investigation.

Disturbed soil samples collected from auger cuttings and split-spoon samplers, as well as relatively undisturbed Shelby Tube samples were obtained at regular intervals. Standard penetration tests (SPTs) were completed at selected intervals in the test holes and blow counts for 300 mm penetration (SPT "N"

blow counts) were recorded. NQ and HQ rock core samples were logged in the field and collected for further analysis. Recovered soil and rock core samples were transported to AECOM's materials testing laboratory in Winnipeg for further visual examination and testing.

Detailed test hole logs have been prepared for each test hole, and are attached as **Appendix D**. The test hole logs include description and depth of the soil units encountered, sample type, sample location, results of field and laboratory testing, and other pertinent information such as seepage and sloughing.

2.5.1 Laboratory Testing

The laboratory testing program included the determination of moisture contents, grain size distribution (hydrometer method), and Atterberg Limits. Laboratory test results are included in **Appendix E**, and the type and number of laboratory tests are summarized in Table 2-7.

The bedrock core samples were also tested to estimate Unconfined Compressive Strength (UCS) as per ASTM D7012 Methods C and D and were outsourced to other laboratories.

Laboratory Test	Number of Tests Completed	Data Location
Moisture Content Determination	54	Test Hole Logs & Appendix D
Atterberg Limits (3 Points)	12	Test Hole Logs & Appendix D
Grain Size Distribution (Hydrometer Method)	8	Test Hole Logs & Appendix D
Unconfined Compressive Strength of Rock	6	Test Hole Logs & Appendix D

Table 2-7: Summary of Type and Number of Geotechnical Laboratory Tests (AECOM 2016)

The geotechnical testing program undertaken as part of the historic geotechnical investigation programs (see Section 2.2) has been summarized in Table 2-8, below.

Table 2-8: Summary of Type and Number of Laboratory Tests- Historic Geotechnical Programs

Laboratory Test	TREK Geotechnical (2014) Number of Tests Completed	Dyregrov and Burgess (1987) Number of Tests Completed
Moisture Content Determination	50	76
Atterberg Limits (3 Points)	3	2
Grain Size Distribution (Hydrometer Method)	2	6
Unconfined Compressive Strength of Soil	4	25
Pocket Penetrometer	4	35
Torvane	4	30
Bulk Density	4	33
Unconfined Compressive Strength of Rock	7	Not Tested

The results of the KGS (2012) laboratory testing program were not available during preparation of this report.

3. Subsurface Conditions

3.1 General

The following sections describe the subsurface conditions encountered during the AECOM 2016 geotechnical investigation and information referenced from review of geotechnical investigations previously carried out at the site. The results of the AECOM 2016 investigation are in general agreement with investigations carried out in the past by other firms for City owned projects in the site area. It is however prudent to note that subsurface conditions can vary significantly between test holes within the same site. A schematic of the soil stratigraphy based on the findings of the AECOM 2016 investigation and relevant historic soils data (derived from past geotechnical reports) along the NEIS pipe profile is presented as **Figure 4** shown in **Appendix A**. A subsurface soil profile obtained from the TREK 2014 detailed design report is presented in **Appendix C**.

Detailed descriptions of the subsurface conditions encountered at the test hole locations as part of the AECOM 2016 investigation are provided on the test hole logs presented in **Appendix D**. A description of the terms and symbols used on the test hole logs are also included in **Appendix D**. A brief description of the subsurface soil/bedrock units encountered along the NEIS and adjacent locations are provided in the following sections.

3.2 Subsurface Profile

Soils encountered during the investigation consisted of the following:

- Clay Fill
- Alluvial Deposits
 - o Clay Interlayer
 - Silt Interlayer
 - Sand Interlayer
 - Organics
- Glacio-Lacustrine Clay
- Glacial Till
- Carbonate Bedrock

Each of these units is described below.

3.2.1 Clay Fill

Clay fill was not encountered in any of the test hole locations undertaken by AECOM in 2016, however was noted in several other test holes carried out by other engineering firms, including; TREK (2013), KGS (2012) and Dyregrov & Burgess (1987).

Silty clay fill was encountered as part of the KGS 2012 geotechnical investigation on both the eastern and western riverbank locations directly along the proposed NEIS alignment. The silty clay fill was noted in four KGS test holes (TH12-02, 02B, 03 and 03B), with a corresponding thickness of between 0.40 m and 0.60 m.

The TREK 2013 geotechnical investigation encountered clay fill in one test hole (TH13-01) drilled near to the eastern bridge abutment north of the proposed NEIS alignment with a thickness of 1.5 m. The clay fill was described as silty clay with trace to some sand and gravel and trace organics, brown, moist, stiff and was of high plasticity. The laboratory testing results state that the moisture content ranged from 23 percent to 26 percent, with an average value of 25 percent. In seven test holes, the 1987 Dyregrov and Burgess investigation further encountered silty clay fill to depths of between 0.2 m and 1.2 m below ground surface.

3.2.2 Alluvial Deposits

Alluvial deposits were encountered at ground surface in all of the AECOM 2016 test holes (TH16-01, TH16-02, TH16-03 and TH16-4) drilled along the NEIS alignment. The alluvial deposit comprised of alternating layers of clays, silts, sands and/or organics with varying properties and classifications.

The extent of the alluvial deposits identified as part of the AECOM 2016 geotechnical investigation is outlined in Table 3-1, below. The findings of the 2012 KGS investigation are also included within Table 3-1 as these test holes are located along the proposed NEIS alignment.

Table 3-1: Alluvial Deposits- Soil Profile along NEIS Alignment (AECOM 2016 and KGS 2012)

Location	Profile	Alluvial Clay	Alluvial Silt	Alluvial Sand
Eastern Riverbank	Elevation at Base (m)	217.7 to 226.3		214.4 to 219.7
	Thickness (m)	1.7 to 3.8	NR	7.5 to 13.5
	Average Thickness (m)	3.2		10.3
Western Riverbank	Elevation at Base (m)	225.1 to 228.8	225.4 to 227.5	213.0 to 216.3
	Thickness (m)	0.3 to 2.1	0.6 to 1.4	9.2 to 12.1
	Average Thickness (m)	1.3	1.0	10.7
River Channel	Elevation at Base (m)			
	Thickness	NR	NR	NR
	Average Thickness (m)			

Notes: NR- Not Recorded

Alluvial deposits were also encountered as part of the TREK (2013) and Dyregrov and Burgess (1987) geotechnical investigations and the extent of the alluvial deposits are illustrated in Table 3-2, below.

Table 3-2: Alluvial Deposits-Soil Profile offset from NEIS Alignment (TREK 2013, Dyregrov and Burgess 1987)

Location	Profile	Alluvial Clay	Alluvial Silt	Alluvial Sand
Eastern Riverbank	Elevation at Base (m)	223.4 to 224.6	214.7 to 226.0	215.2 to 222.5
	Thickness (m)	2.8 to 4.1	1.2 to 4.8	2.4 to 7.3
	Average Thickness (m)	3.4	3.7	4.2
Western Riverbank	Elevation at Base (m)	225.6 to 228.6	217.7 to 227.6	
	Thickness (m)	1.5 to 2.6	0.8 to 9.1	NR
	Average Thickness (m)	2.1	2.7	
River Channel	Elevation at Base (m)	217.7 to 218.7	220.6 to 220.8	216.7
	Thickness	1.9 to 3.1	0.9 to 1.3	2.0
	Average Thickness (m)	2.5	1.1	2.0

A summary of the laboratory testing results for the alluvial deposits conducted as part of the AECOM 2016 geotechnical investigation is presented in Table 3-3.

Table 3-3: Summary of Laboratory Test Results for Alluvial Deposits- AECOM 2016 Investigation

Laboratory Test	Alluvial Clay	Alluvial Silt	Alluvial Sand	Organics
Moisture Content (%)	14 to 36 (26)	22 to 28	18 to 37 (30.6)	44
SPT 'N' Blow Counts (uncorrected)	-	-	1 to 19	-
Atterberg - Plastic Limit (%)	15.0 to 17.1 (16.0)	-	NP to 16.0 (14.4)	NP
Atterberg - Liquid Limit (%)	38.2 to 40.2 (39.2)	1	NP to 41.5-(32.3)	NP
Grain Size - Gravel (%)	0.0	-	0.0 to 2.0 (0.4)	-
Grain Size - Sand (%)	35.7	-	39.1 to 68.8 (60.0)	-
Grain Size - Silt (%)	36.6	-	3.9 to 33.0 (20.7)	-
Grain Size - Clay (%)	27.7	-	4.6 to 28.0 (19.0)	-

Notes: NP- Non-Plastic; (26) - Average Value

The reported laboratory results from the previous geotechnical investigations have also been summarized in Table 3-4 below. The geotechnical laboratory results for the KGS 2012 investigation have not been made available to AECOM and therefore none are reported.

Table 3-4: Summary of Laboratory Test Results for Alluvial Deposits- Previous Geotechnical Investigations

Laboratory Test	Alluvial Clay	Alluvial Silt	Alluvial Sand
Moisture Content (%)	18.2 to 35 (29)	23.5 to 42.5 (31.2)	17.5 to 31.3 (26.7)
Atterberg - Plastic Limit (%)	24.0	15.0 (15.0)	NT
Atterberg - Liquid Limit (%)	70.0	45.0 (45.0)	NT
Grain Size - Gravel (%)	NT	0 (0)	0 (0)
Grain Size - Sand (%)	NT	24.(24)	31 to 74 (55)
Grain Size - Silt (%)	NT	53 to 57 (55)	18 to 39 (28)
Grain Size - Clay (%)	NT	19 to 23 (21)	8 to 30 (17)
Unconfined Compressive Strength (kPa)	46.4 to 106.6 (76.5)	45.1 to 57.3 (51.2)	NT
Undrained Shear Strength (kPa)	23.2 to 53.30 (38.3)	22.6 to 28.7 (25.6)	NT
Dilatometer Testing - Undrained Shear Strength (kPa)	8.7 to 144.6 (56.7)	14.2 to 45 (21.3)	NT
Pocket Penetrometer - Undrained Shear Strength (kPa)	55.6 to114.9 (81.8)	52.7 to 183.8 (96.0)	NT
Torvane - Undrained Shear Strength (kPa)	27.8	15.8 to 68.7 (46.3)	NT
Bulk Unit Weight (kN/m³)	17.4 to 18.2 (17.9)	15.0 to 18.7 (17.3)	NT
Dry Unit Weight (kN/m³)	13.7 (13.7)	14.0 (14.0)	NT

Notes: (29) - Average Value; NT- Not Tested

In addition to the soil classification and strength testing as outlined in Table 3-4, consolidation testing was performed as part of the Dyregrov and Burgess (1987) investigation on one sample. The results of the consolidation testing is summarized in Table 3-5, and is also presented in **Appendix G** of this report.

Table 3-5: Summary of Consolidation Test Results for Alluvial Clay- Previous Geotechnical Investigations

Test Hole	Sample Depth (m)	In-Situ Moisture Content (%)	Preconsolidation Pressure (kPa)	Compression Index (Cc)	Recompression Index (Cr)
Boring 6	3.0	31	122	0.31*	0.09*

Notes: Based on AECOM Interpretation; Initial Void Ratio (eo) not reported as part of test. Atterberg Limits not undertaken.

The results of the dilatometer testing conducted by Dyregrov and Burgess (1987) are provided in further detail in Table 3-6, and are also provided in **Appendix H** of this report.

Table 3-6: Summary of Dilatometer Test Results for Alluvial Deposits- Dyregrov and Burgess (1987)

Test Hole	Location	Alluvial Soil Unit		
		Alluvial Clay-Test Results (kPa)	Alluvial Silt- Test Results (kPa)	
DMT 1	Western Riverbank	8.7 to 63.5 (42.2)	1.8 to 27.2 (13.7)	
DMT 2	Eastern Riverbank	58.2 to 144.6 (86.1)	28.6	
DMT 3	In-Channel	10.3 to 38.6 (20.2)	NT	
DMT 4	In-Channel	51.0 to 59.0 (56.0)	27 to 45 (33.7)	
DMT 5	In-Channel	24.0 to 34.0 (29)	NT	
DMT 8	In-Channel	10.3 to 37.0 (23.4)	14.2 to 30.5 (22.4)	

Notes: Testing performed for the purposes of detailed design for the North Settlers Bridge; (13.7) - Average Value; NT- Not Tested

Values of undrained shear (S_u) with elevation for the alluvial soil deposits are illustrated in **Figure 3-1** below.

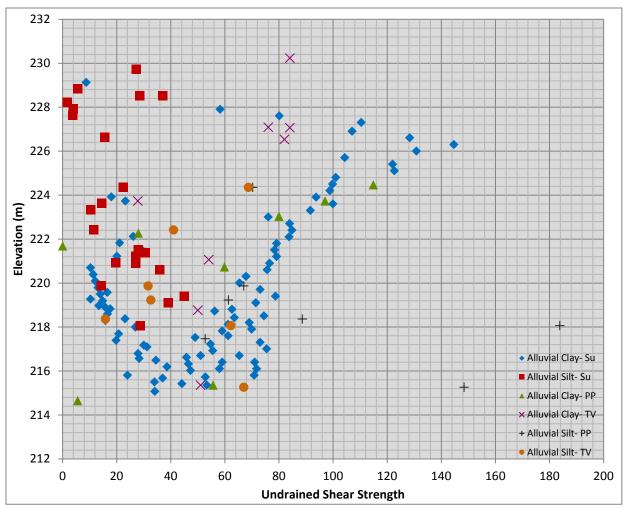


Figure 3-1: Undrained Shear Strength with Elevation for Alluvial Soil Deposits- AECOM (2017), TREK (2014) and Dyregrov and Burgess (1988)

3.2.2.1 Alluvial Clay

The alluvial clay contained trace silt to silty, trace sand to sandy, trace gravel and trace organics. The alluvial clay was brown to dark grey, very soft to firm, dry to wet, and was of an intermediate plasticity.

3.2.2.2 Alluvial Silt

The alluvial silt contained trace clay to clayey, trace to some sand, and was dark brown to light brown, soft to stiff, dry to moist, and of low to intermediate plasticity.

3.2.2.3 Alluvial Sand

The alluvial sand contained trace clay to clayey, trace silt to silty, trace to some gravel, and was brown to grey, very loose to compact, moist to wet, and fine to medium grained.

City of Winnipeg

3.2.2.4 Organics

An organic layer measuring 0.6 m in thickness was encountered in the AECOM 2016 test hole TH16-04 within the alluvial deposit at an elevation of approximately 217 m. The organic layer was sandy, contained trace to some silt and trace clay. The organic was described as dark brown to black, very loose, and wet.

Topsoil was also encountered in four test holes completed as part of the Dyregrov and Burgess (1987) investigation with a recorded thickness of between 0.2 and 0.3 m.

3.2.3 Glacio-Lacustrine Clay

A layer of Glacio-Lacustrine clay was encountered in all test holes drilled along the NEIS alignment with a corresponding thickness of between 0.6 m and 15.9 m. It was generally noted that the clay was thinnest beneath the river channel, and generally increased in thickness with distance away from the river channel. The Glacio-Lacustrine clay was however thinner in the east when compared to the test hole findings located along the western riverbanks. Glacio-lacustrine clay was encountered in AECOM's test hole TH16-04 below the alluvial sand deposit. Elsewhere the findings of previously undertaken geotechnical investigations by TREK (2013) and Dyregrov and Burgess (1987) generally agreed with the findings of the test holes drilled along the NEIS alignment by AECOM (2016) and KGS (2012).

3.2.3.1 Reported Geotechnical Properties

Published literature and technical reports were reviewed to obtain data with respect to the subsurface soils and bedrock within the Winnipeg area, specifically along the proposed NEIS alignment. Each soil and bedrock unit is outlined below.

Geotechnical parameters of the glacio-lacustrine clay (Upper and Lower Clays) have been referenced from the Floodway Channel Pre-design Floodway Expansion Project (KGS Group, Acres Engineering and UMA Engineering. 2004) report and are presented within Table 2-7. The Floodway Channel project is located approximately 10 to 20 km east and southeast of the NEIS alignment and comprised of extensive study of the glacio-lacustine soils.

The Upper clay is typically stiff in consistency, highly plastic, fissured and containing gypsum pockets. The Lower clay is typically soft to firm in consistency and has an intermediate to high plasticity. Fine to coarse grained gravel and boulders are found occasionally in the Lower clay near the glacial till interface (Graham and Shields, 1985). Clay minerals account for between 67 and 81 percent of the total composition of the Lake Agassiz clay (glacio-lacustrine clay) in Winnipeg. The clay size fractions typically consist of up to 75 percent montmorillonite, 10 percent illite and 10 percent kaolinite and approximately 5 percent quartz mineral. Over-consolidation ratio of the clay is generally less than 2.

The typical soil index classification and unconfined compressive strength parameters are summarized in Table 3-7.

Soil Property	Typical Range of Values	
Moisture Content (%)	40 to 60- Upper and Lower Clay	
Liquid Limit (%)	80 to 110- Upper Clay 65 to 95- Lower Clay	
Plasticity Index (%)	60 to 80- Upper Clay 40 to 65- Lower Clay	
Undrained Shear Strength (kPa)	70 to 100- Upper Clay 25 to 40- Lower Clay	

Table 3-7: Published Geotechnical Soil Parameters- Glacio-Lacustrine Clay

Notes: Based on Graham & Shields (1985)

Effective shear strength parameters of the Upper and Lower clay obtained from consolidated undrained compression triaxial strength testing of a large number of relatively undisturbed samples yielded intact peak strengths of:

- Upper Clay- c' = 19.6 kPa and φ'= 20.5° and;
- Lower Clay- c' = 29.8 kPa and φ'= 15.8°.

While the effective large strain shear strength (fully softened) parameters for the Upper and Lower clay were reported as follows:

- Upper Clay- c' = 14.5 kPa and φ'= 13.3° and;
- Lower Clay- c' = 7.7 kPa and φ'= 15.7°.

Typical industry accepted effective shear strength parameters used in the Winnipeg area for the glaciolacustrine clay for slope stability analysis are summarised in Table 3-8.

ParameterValueEffective Cohesion (c'), kPa5.0Effective Friction Angle (φ'), degrees14.0

Table 3-8: Effective Shear Strength Parameters of Glacio-Lacustrine Clay

3.2.3.2 Geotechnical Investigation Findings- Glacio-Lacustrine Clay

The glacio-lacustrine clay generally contained trace to some silt, trace sand to sandy, trace to some gravel, trace organics, and was brown to grey, very soft to stiff, moist to wet, and of an intermediate to high plasticity. A summary of the laboratory testing results for the glacio-lacustrine clay layer conducted as part of the AECOM 2016 investigation is presented in Table 3-9. Undrained shear strength values obtained from torvane testing has been referenced from the KGS 2012 test hole logs and included within Table 3-10.

Laboratory Test	Minimum Value	Average Value	Maximum Value
Moisture Content (%)	20.8	46.6.0	52.6
Atterberg - Plastic Limit (%)	16.2	17.8	19.4
Atterberg - Liquid Limit (%)	49.7	60.0	70.2
Uncorrected Standard Penetration Test- Blow Counts	2	5	4
Pocket Penetrometer- Undrained Shear Strength (kPa)	28.0	45.3	75.8
Torvane- Undrained Shear Strength (kPa)*	28.0	45.1	100.0

The reported laboratory results from the previous geotechnical investigations have also been summarized in Table 3-10.

Table 3-10: Summary of Laboratory Test Results for Glacio-Lacustrine Clay - Previous Geotechnical Investigations

Laboratory Test	Minimum Value	Average Value	Maximum Value	
Moisture Content (%)	10.2	49.5	63.0	
Atterberg - Plastic Limit (%)		18.0		
Atterberg - Liquid Limit (%)		75.0		
Unconfined Compressive Strength (kPa)	47.2	103.0	245.1	
Undrained Shear Strength (kPa)	24.0	53.0	123.0	
Pocket Penetrometer- Undrained Shear Strength (kPa)	31.1	105.5	148.4	
Torvane- Undrained Shear Strength (kPa)	24.5	60.5	84.7	
Bulk Unit Weight (kN/m³)	16.0	17.1	19.9	
Dry Unit Weight (kN/m³)	11.7	14.2	13.0	

Notes: (Average Value); NT- Not Tested

In addition to the soil classification and strength testing as outlined in Table 3-10, consolidation testing was performed as part of the Dyregrov and Burgess (1987) investigation on two samples. The results of the consolidation testing are summarized in Table 3-11 and are presented in **Appendix G** of this report.

Table 3-11: Summary of Consolidation Test Results for Glacio-Lacustrine Clay- Previous Geotechnical Investigations

Test Hole	Sample Depth (m)	In-Situ Moisture Content (%)	Preconsolidation Pressure (kPa)	Compression Index (Cc)	Recompression Index (Cr)
Boring 4	4.6	59	390	0.47*	0.20*
Boring 5	13.7	NR	250	0.79	0.12*

Notes: NR- Not Recorded; *- Based on AECOM Interpretation; Initial Void Ratio (eo) not reported as part of test. Atterberg Limits not undertaken

Plots of moisture content with elevation and undrained shear strength (Su) with elevation are shown below as Figure 3-2 and Figure 3-3, respectively.

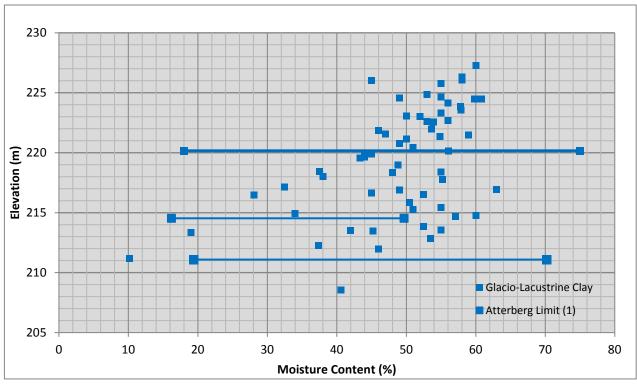


Figure 3-2: Moisture Content with Elevation for Glacio-Lacustrine Clay- AECOM (2017), TREK (2014) and Dyregrov and Burgess (1988)

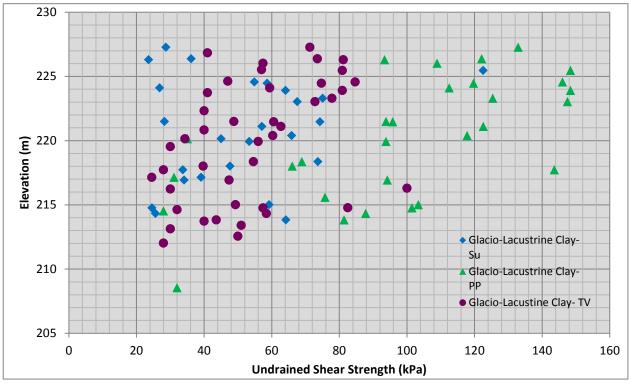


Figure 3-3: Undrained Shear Strength with Elevation for Glacio-Lacustrine Clay- AECOM (2016), TREK (2013) and Dyregrov and Burgess (1987)

The results of a single direct shear strength test for the Glacio-Lacustrine clay performed by Dyregrov & Burgess (1988) is provided in Table 3-12.

	Strength Parameters		
Test Results Condition	Effective Cohesion	Effective Angle of Shearing Resistance	
	(kPa)	(°)	
Peak	18	16.0	
Post Peak	4.1	13.0	
Residual	1.4	10.5	

Notes: Performed on remoulded samples

The reported laboratory test results are generally consistent with the published findings for the glacio-lacustrine clay within the Winnipeg area. The undrained shear strength profile (as shown in **Figure 3-3**) for the glacio-lacustrine clay trends gradually towards lower undrained shear strength values closer to the clay/glacial till boundary.

3.2.4 Glacial Till

A glacial till layer was encountered in all test holes below the Glacio-Lacustrine clay with of varying thicknesses. The glacial till layer was noted to overlie the carbonate bedrock. The profile of the encountered glacial till layer is outlined in Table 3-13.

Table 3-13: General Profile for Glacial Till

Location	Profile	Glacial Till
Eastern Riverbank	Elevation at Base (m)	208.8 to 210.9
	Thickness (m)	0.7 to 6.0
	Average Thickness (m)	2.5
Western Riverbank	Elevation at Base (m)	209.8 to 210.2
	Thickness (m)	1.0 to 6.6
	Average Thickness (m)	2.3
River Channel	Elevation at Base (m)	209.8 to 211.0
	Thickness	1.7 to 6.3
	Average Thickness (m)	3.9

Notes: Based on information from the AECOM 2016 and previous geotechnical investigations.

3.2.4.1 Reported Geotechnical Properties - Glacial Till

Within the Winnipeg area, the composition of the glacial till deposit is highly variable and its density varies both with depth and with distance. Near the glacio-lacustrine/glacial till interface, the upper zone of the till is typically characterized by a softer sub-unit (locally termed "putty till"), and has a typical moisture content ranging from 10 and 15 percent. The lower sub-unit has typical in-situ moisture content values of between 7 and 10 percent.

Reported unconfined compressive strength values of the very dense tills (with in-situ moisture contents of 5 percent) range between 3.4 and 3.6 MPa (Baracos, A.G. Shields, D.H., and Kjartenson, B. 1983). The elastic modulus of the glacial till soils has also been reported at a range of between 170 and 240 MPa (Baracos, A.G. Shields, D.H., and Kjartenson, B. 1983). These parameters are based upon the results of

material testing performed on representative samples of glacial till deposits from within the Winnipeg area.

3.2.4.2 Geotechnical Investigation Findings- Glacial Till

The glacial till was generally described as a sand containing some silt to silty, trace to some clay and gravel, and was light brown in colour, very loose to very dense, and moist to wet. The glacial till generally transitioned from a low plasticity soil to a non-plastic soil with depth.

Whilst not encountered during the advancement of the AECOM 2016 test holes, the glacial till is known to contain cobble and boulder size obstructions. A summary of boulder and cobble size obstructions noted within the glacial till layer as part of other geotechnical investigations adjacent to the NEIS alignment is outlined in Table 3-14.

Table 3-14: Obstructions Encountered within the Glacial Till

Test Hole	Approximate Elevation of Obstruction (m)	Comment
TREK Geotechnical (2013)- TH13-01	210.70	Boulder
Dyregrov and Burgess (1987)- Boring 13	209.00 - 210.60	Boulder Zone

A summary of the lab testing results for the glacial till layer is presented in Table 3-15.

Table 3-15: Summary of Laboratory Test Results- Glacial Till

Laboratory Test	Minimum Value	Average Value	Maximum Value	Comments
Moisture Content (%)	8.9	17.0	35.0	
Atterberg - Plastic Limit (%)	11.0	13.0	15.0	
Atterberg - Liquid Limit (%)	29.0	30.5	32.0	Low to Intermediate Plasticity
Uncorrected Standard Penetration Test - Blow Count	8	26	>50	Loose to Very Dense (Average- Compact)
Grain Size - Gravel (%)		0.0		
Grain Size - Sand (%)		86.7		
Grain Size - Silt (%)		7.4		One Sample
Grain Size - Clay (%)		5.9		

A plot of moisture content with elevation is shown as **Figure 3-4**, below.

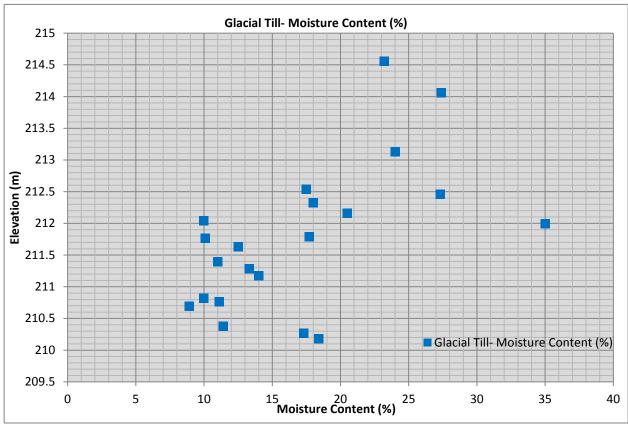


Figure 3-3: Moisture Content with Elevation for Glacial Till- AECOM (2016), TREK (2013) and Dyregrov and Burgess (1987)

3.2.5 Carbonate Bedrock

Carbonate bedrock was encountered below the glacial till in all AECOM 2016 test holes drilled along the NEIS alignment. Bedrock was also proven in a large number of test holes carried out as part of the previous geotechnical investigations. The carbonate bedrock was largely composed of limestone, dolomitic limestone and dolomitic mudstone/mudstone. The lithology of the bedrock geology varies slightly along the length of the NEIS alignment, with bedrock beneath the western bank largely dolomite and limestone, whereas dolomitic limestone and mudstone have been identified below the eastern bank. These findings are generally consistent with the pre-established bedrock mapping of the area and published literature. The bedrock lithology and elevations are summarized in Table 3-16. Where different bedrock units were encountered, the elevations of these units have also been provided.

Table 3-16: Summary of Carbonate Bedrock Unit Types and Contact Elevations

Test Hole	Location	Bedrock Surface Elevation (m)	Type of Bedrock Unit
AECOM (2016) TH16-01	Western Riverbank	209.9	Dolomitic Limestone
AECOM (2016) TH16-02	Western Riverbank	210.2	Limestone
TREK (2014) TH13-04	Western Riverbank	210.1	Dolomite
		210.0	Dolomite
TREK (2014) TH13-05	Western Riverbank	198.8	Dolomitic Mudstone
		195.8	Dolomitic Limestone
KGS (2012) TH12-03	Western Riverbank	209.8	Limestone
KGS (2012) TH12-03B	Western Riverbank	209.9	Inferred Limestone
Dyregrov & Burgess (1987) Boring 4	Western Riverbank	210.2	Inferred Limestone
Dyregrov & Burgess (1987) Boring 13	Western Riverbank	209.0	Inferred Limestone
AECOM (2016) TH16-03	River Channel	210.0	Limestone
Dyregrov & Burgess (1987) Boring 14	River Channel	210.3	Limestone
Dyregrov & Burgess (1987) Boring 15	River Channel	210.6	Limestone
Dyregrov & Burgess (1987) Boring 16	River Channel	210.6	Limestone
Dyregrov & Burgess (1987) Boring 16A	River Channel	209.7	Limestone
Dyregrov & Burgess (1987) Boring 16B	River Channel	209.8	Limestone
Dyregrov & Burgess (1987) Boring 16C	River Channel	210.0	Limestone
Dyregrov & Burgess (1987) Boring 16D	River Channel	210.2	Limestone
Dyregrov & Burgess (1987) Boring 17	River Channel	209.7	Limestone
Dyregrov & Burgess (1987) Boring 18	River Channel	211.0	Limestone
Dyregrov & Burgess (1987) Boring 19	River Channel	209.8	Limestone
Dyregrov & Burgess (1987) Boring 20	River Channel	209.8	Limestone
Dyregrov & Burgess (1987) Boring 21	River Channel	210.2	Limestone
Dyregrov & Burgess (1987) Boring 22	River Channel	210.7	Limestone
Dyregrov & Burgess (1987) Boring 23	River Channel	210.7	Limestone
AECOM (2016) TH16-04	Eastern Riverbank	210.2	Dolomitic Limestone
ALGOM (2010) 11110-04	Lastom Niverbank	204.2	Limestone

Test Hole	Location	Bedrock Surface Elevation (m)	Type of Bedrock Unit				
		209.2	Dolomite				
TREK (2014) TH13-01	Eastern Riverbank	204.2					
MER (2014) 1110-01	Lastem Riverbank	203.0	Dolomitic Mudstone				
		198.1 Dolomitic Lim					
KGS (2012) TH12-01	Eastern Riverbank	209.6	Limestone				
KGS (2012) TH12-02	Eastern Riverbank	210.0	Limestone				
KGS (2012) TH12-02B	Eastern Riverbank	209.7	Inferred Limestone				

Notes: Based on the findings of NEIS alignment and subject area geotechnical investigations

In terms of the NEIS alignment, the following test holes are most applicable:

- AECOM (2016)- TH16-01
- AECOM (2016)- TH16-02
- AECOM (2016)- TH16-03
- AECOM (2016)- TH16-04
- KGS (2012)- TH12-02
- KGS (2012)- TH12-02B
- KGS (2012)- TH12-03
- KGS (2012)- TH12-03B

3.2.5.1 Total Core Recovery (TCR)

Total Core Recovery (TCR) is the total length of the bedrock core recovered and is expressed as the percentage of actual length of core run (typically 1.5 m). A summary of the TCR values is provided in Table 3-17 (core-run depths in meters displayed in brackets). Where the TCR has not been recorded, the drill core data has been omitted from Table 3-17.

Table 3-17: Total Core Recovery- Carbonate Bedrock

Test Hole		Total Core Recovery (%) per Core Run (meters)											
	R1/C1	R2/C2	R3/C3	R4/C4	R5/C5	R6/C6	R7/C7	R8/C8	R9/C9	R10/C10	R11/C11		
AECOM-	100	98	95	100	99	98	-	-	-	-	-		
TH16-01	(17.1 to 18.4)	(18.4 to 19.7)	(19.7 to 21.2)	(21.2 to 22.7)	(22.7 to 24.2)	(24.2 to 25.8)							
AECOM- TH16-02	100	96	91	99	100	100	99	-	-	-	-		
TH16-02	(16.2 to 16.8)	(16.8 to 18.3)	(18.3 to 20.0)	(20.0 to 21.4)	(21.4 to 22.9)	(22.9 to 24.4)	(24.4 to 26.0)						

Test Hole	Total Core Recovery (%) per Core Run (meters										
	R1/C1	R2/C2	R3/C3	R4/C4	R5/C5	R6/C6	R7/C7	R8/C8	R9/C9	R10/C10	R11/C11
AECOM-	94	100	100	36	89	98	97	96	99	100	99
TH16-03	(13.8 to 15.3)	(15.3 to 16.7)	(16.7 to 18.1)	(18.1 to 19.8)	(19.8 to 21.4)	(21.4 to 22.9)	(22.9 to 24.5)	(24.5 to 25.9)	(25.9 to 27.5)	(27.5 to 29.0)	(29.0 to 30.5)
AECOM-	100	97	97	85	100	100	100	-	-	-	-
TH16-04	(17.8 to 18.6)	(18.6 to 20.0)	(20.0 to 21.7)	(21.7 to 23.2)	(23.2 to 24.7)	(24.7 to 26.2)	(26.2 to 27.7)				
KGS- TH12-01	85	98	100	100	100	100	100	-	-	-	-
	(16.8 to 17.3)	(17.3 to 18.6)	(18.6 to 20.1)	(20.1 to 21.6)	(21.6 to 23.2)	(23.2 to 24.7)	(24.7 to 25.9)				
KGS- TH12-02	98	98	98	100	100	-	-	-	-	-	-
	(18.3 to 19.9)	(19.9 to 21.5)	(21.5 to 23.0)	(23.0 to 24.5)	(24.5 to 26.1)						
KGS- TH12-03	88	100	97	100	97	100	100	-	-	-	-
	(21.0 to 21.5)	(21.5 to 23.0)	(23.0 to 24.5)	(24.5 to 26.0)	(26.0 to 27.6)	(27.6 to 29.1)	(29.1 to 30.2)				
Dyregrov &	100	91	94	100	_	_				_	
Burgess-	(13.8 to	(14.6 to	(16.1 to	(17.6 to	-	-	-	-	-	-	-
Boring 14	14.6)	16.1)	17.6)	19.1)							
Dyregrov &	99	99	99	100	84	100	-	-	-	-	-
Burgess- Boring 15	(13.1 to 14.9)	(14.9 to 15.8)	(15.8 to 17.1)	(17.1 to 18.7)	(18.7 to 20.2)	(20.2 to 21.7)					
Dyregrov &	75	95	98	93	0-	-	-	-	-	-	-
Burgess- Boring 16	(13.0 to 14.6)	(14.6 to 16.2)	(16.2 to 17.1)	(17.1 to 18.9)	(18.9 to 20.1)						
Dyregrov &	100	0	0	30	-	-	-	-	-	-	-
Burgess- Boring 16A	(13.9 to 14.5)	(14.5 to 19.7)	(19.7 to 22.1)	(22.1 to 23.6)							
Dyregrov &	100	98	96	96	94	-	-	-	-	-	-
Burgess- Boring 16B	(13.9 to 14.8)	(14.8 to 16.3)	(16.3 to 17.9)	(17.9 to 19.5)	(19.5 to 20.0)						

Test Hole				Total Co	re Recove	ry (%) per	Core Run	(meters)			
	R1/C1	R2/C2	R3/C3	R4/C4	R5/C5	R6/C6	R7/C7	R8/C8	R9/C9	R10/C10	R11/C11
Dyregrov &	100	92	98	100	0	0	93	-	-	-	-
Burgess- Boring 16C	(13.7 to 14.6)	(14.6 to 16.2)	(16.2 to 17.7)	(17.7 to 18.6)	(18.6 to 19.8)	(19.8 to 20.7)	(20.7 to 22.3)				
Dyregrov &	69	0	88	100	0	30	80	-	-	-	-
Burgess- Boring 16D	(13.4 to 14.9)	(14.9 to 15.8)	(15.8 to 16.4)	(16.4 to 17.9)	(17.9 to 19.4)	(19.4 to 21.0)	(21.0 to 22.5)				
Dyregrov &	0	99	97	97	100	0	100	93	-	-	-
Burgess- Boring 17	(14.0 to 15.5)	(15.5 to 16.5)	(16.5 to 18.1)	(18.1 to 19.6)	(19.6 to 19.9)	(19.9 to 20.2)	(20.2 to 21.1)	(21.1 to 22.6)			
Dyregrov &	0	87	95	95	95	95	93	-	-	-	-
Burgess- Boring 18	(13.1 to 13.9)	(13.9 to 14.6)	(14.6 to 16.2)	(16.2 to 17.7)	(17.7 to 19.2)	(19.2 to 20.7)	(20.7 to 22.3)				
Dyregrov &	30	100	96	96	97	-	-	-	-	-	-
Burgess- Boring 19	(13.8 to 14.6)	(14.6 to 16.2)	(16.2 to 17.7)	(17.7 to 19.2)	(19.2 to 20.7)						
Dyregrov &	64	97	95	92	97	92	-	-	-	-	-
Burgess- Boring 20	(13.5 to 14.9)	(14.9 to 16.5)	(16.5 to 18.0)	(18.0 to 19.5)	(19.5 to 21.0)	(21.0 to 22.6)					
Dyregrov &	0	99	97	95	98	100	-	-	-	-	-
Burgess- Boring 21	13.4 to 14.8)	(14.8 to 16.3)	(16.3 to 17.8)	(17.8 to 19.4)	(19.4 to 20.9)	(20.9 to 22.4)					
Dyregrov &	0	99	99	96	93	-	-	-	-	-	-
Burgess- Boring 22	(13.0 to 13.8)	(13.8 to 14.4)	(14.4 to 16.0)	(16.0 to 17.6)	(17.6 to 19.0)						
Dyregrov &	87	97	100	95	97	-	-	-	-	-	-
Burgess- Boring 23	(13.0 to 14.8)	(14.8 to 16.3)	(16.3 to 17.8)	(17.8 to 19.4)	(19.4 to 20.9)						

Notes: R1/C1- Core Run Designation; (13.8 to 14.6)- Depth of Core Run in meters; D&B- Dyregrov & Burgess (1987) Investigation.

3.2.5.2 Rock Quality Designation (RQD)

The Rock Quality Designation (RQD) values were obtained by measuring the total length of the recovered bedrock core pieces longer than 100 mm expressed as a percentage of the length of the core run.

The RQD values are a general indicator of the rock mass quality. The relationship between the rock mass quality and RQD values as suggested by Deere (1969) is presented in Table 3-18

Table 3-17: Designation of Rock Quality

RQD (%)	Designation of Rock Quality
0-25	Very Poor
25-50	Poor
50-75	Fair
75-90	Good
90-100	Excellent

A summary of the RQD values is provided in Table 3-19.

Table 3-18: Rock Quality Designation- Carbonate Bedrock

Test Hole					Rock Qu	ality Des	ignatior	ı (%) pe	r Core R	un (met	ers)			
	R1/C1	R2/C2	R3/C3	R4/C4	R5/C5	R6/C6	R7/C7	R8/C8	R9/C9	R10 /C10	R11 /C11	R12 /C12	R13 /C13	R14 /C14
AECOM-	82	96	87	100	79	98	-	-	-	-	-	-	-	-
TH16-01	(17.1	(18.4	(19.7	(21.2 to	(22.7 to	(24.2 to								
	to	to	to	22.7)	24.2)	25.8)								
	18.4)	19.7)	21.2)											
AECOM-	71	87	91	96	93	96	99	-	-	-	-	-		-
TH16-02	(16.2	(16.8	(18.3	(20.0 to	(21.4 to	(22.9 to	(24.4							
	to	to	to	21.4)	22.9)	24.4)	to							
	16.8)	18.3)	20.0)		·	ŕ	26.0)							
AECOM-	83	89	94	27	62	39	33	80	68	73	87	-	-	-
TH16-03	(13.8	(15.3	(16.6	(18.1 to	(19.8 to	(21.4 to	(22.9	(24.5	(25.9	(27.5	(29.0 to			
	to	to	to	19.8)	21.4)	22.9)	to	to	to	to	30.5)			
	15.3)	16.6)	18.1)		·	ŕ	24.5)	25.9)	27.5)	29.0)	,			
AECOM-	92	96	86	75	81	98	95	-	-	-	-	-	-	-
TH16-04	(17.8	(18.6	(20.0	(21.7 to	(23.2 to	(24.7 to	(26.2							
	to	to	to	23.2)	24.7)	26.2)	to							
	18.6)	20.0)	21.7)	,	,	,	27.7)							
TREK-	0	75	30	0	17	91	96	62	73	35	31	74	94	-
TH13-01	(16.8	(18.6	(20.1	(21.6 to	(23.1 to	(24.6 to	(26.1	(27.7	(29.3	(30.8	(32.3 to	(33.8 to	(35.3 t0	
	to	to	to	23.1)	24.6)	26.1)	to	to	to	to	33.8)	35.3)	36.9)	
	18.6)	20.1)	21.6)	,	,	,	27.7)	29.3)	30.8)	32.3)		,		
TREK-	86	100	100	-	-	-	-	-	-	-	-	-	-	-
TH13-04	(17.1	(18.6	(20.1											
	to	to	to											
	18.6)	20.1)	21.6)											

Test Hole					Rock Qu	ality Des	ignatior	ı (%) pe	r Core R	un (met	ers)			
	R1/C1	R2/C2	R3/C3	R4/C4	R5/C5	R6/C6	R7/C7	R8/C8	R9/C9	R10 /C10	R11 /C11	R12 /C12	R13 /C13	R14 /C14
TREK-	0	38	73	95	83	98	92	75	69	92	100	100	99	85
TH13-05	(16.3	(16.8	(18.3	(19.8 to	(21.3 to	(22.9 to	(24.3	(25.8	(27.3	(28.7	(30.2 to	(31.2 to	(32.3 to	(33.5 to
	to 16.8)	to 18.3)	to 19.8)	21.3)	22.9)	24.3)	to 25.8)	to 27.3)	to 28.7)	to 30.2)	31.2)	32.3)	33.5)	35.1)
Dyregrov &	-	80	75	95	-	-	-	-	-	-	-	-	-	-
Burgess- Boring 14	(13.8	(14.6	(16.1	(17.6 to										
209	to 14.6)	to 16.1)	to 17.6)	19.1)										
Dyregrov &		,	79	70	47	45								
Burgess-	60	60			17		-	-	-	-	-	-	-	-
Boring 15	(13.1 to	(14.9 to	(15.8 to	(17.1 to 18.7)	(18.7 to 20.2)	(20.2 to 21.7)								
	14.9)	15.8)	17.1)	ŕ	ŕ	ŕ								
Dyregrov &	-	68	-	-	-	-	-	1	ı	-	-	-	-	-
Burgess- Boring 16	(13.0	(14.6	(16.2	(17.1 to	(18.9 to									
Borning 10	to 14.6)	to 16.2)	to 17.1)	18.9)	20.1)									
	14.0)	16.2)	17.1)											
Dyregrov &	67	0	0	0	-	-	-	-	-	-	-	-	-	-
Burgess- Boring 16A	(13.9	(14.5	(19.7	(22.1 to										
	to 14.5)	to 19.7)	to 22.1)	23.6)										
Dyregrov &	56	83	90	73										
Burgess-			(16.3		(10 E to	_	_			-	_	_		_
Boring 16B	(13.9 to	(14.8 to	to	(17.9 to 19.5)	20.0)									
	14.8)	16.3)	17.9)											
Dyregrov &	85	91	96	100	0	0	0	1	-	-	-	-	-	-
Burgess- Boring 16C	(13.7	(14.6	(16.2	(17.7 to	*	(19.8 to	(20.7							
	to 14.6)	to 16.2)	to 17.7)	18.6)	19.8)	20.7)	to 22.3)							
Dyregrov &	67	0	0	02	0	10								
Burgess-				93		10	63	-	-	-	-	-	-	-
Boring 16D	(13.4 to	(14.9 to	(15.8 to	(16.4 to 17.9)	(17.9 to 19.4)	(19.4 to 21.0)	(21.0 to							
	14.9)	15.8)	16.4)	,	ĺ	ĺ	22.5)							

Test Hole					Rock Qu	ality Des	ignatior	ı (%) pe	r Core R	un (mete	ers)			
	R1/C1	R2/C2	R3/C3	R4/C4	R5/C5	R6/C6	R7/C7	R8/C8	R9/C9	R10 /C10	R11 /C11	R12 /C12	R13 /C13	R14 /C14
Dyregrov &	0	99	75	79	0	0	70	30	-	-	-		-	-
Burgess- Boring 17	(14.0 to 15.5)	(15.5 to 16.5)	(16.5 to 18.1)	(18.1 to 19.6)	(19.6 to 19.9)	(19.9 to 20.2)	(20.2 to 21.1)	(21.1 to 22.6)						
Dyregrov &	0	82	87	65	87	0	0	-	-	-	-			
Burgess- Boring 18	(13.1 to 13.9)	(13.9 to 14.6)	(14.6 to 16.2)	(16.2 to 17.7)	(17.7 to 19.2)	(19.2 to 20.7)	(20.7 to 22.3)							
Dyregrov &	0	0	94	74	0	-	-	-	-	-	-	-	-	-
Burgess- Boring 19	(13.8 to 14.6)	(14.6 to 16.2)	(16.2 to 17.7)	(17.7 to 19.2)	(19.2 to 20.7)									
Dyregrov &	53	81	93	69	73	79	-	-	-	-	-	-	-	-
Burgess- Boring 20	(13.5 to 14.9)	(14.9 to 16.5)	(16.5 to 18.0)	(18.0 to 19.5)	(19.5 to 21.0)	(21.0 to 22.6)								
Dyregrov &	0	44	81	45	67	36	-	-	-	-	-	-	-	-
Burgess- Boring 21	13.4 to	(14.8	(16.3	(17.8 to	(19.4 to	(20.9 to								
Borning 21	14.8)	to 16.3)	to 17.8)	19.4)	20.9)	22.4)								
Dyregrov	0	45	83	73	66	-	-	-	-	-	-	-	-	-
& Burgess- Boring 22	(13.0 to 13.8)	(13.8 to 14.4)	(14.4 to 16.0)	(16.0 to 17.6)	(17.6 to 19.0)									
Dyregrov &	83	70	88	47	61	-	-	-	-	-	-	-	-	-
Burgess- Boring 23	(13.0 to 14.8)	(14.8 to 16.3)	(16.3 to 17.8)	(17.8 to 19.4)	(19.4 to 20.9)									

A summary of the RQD values is provided below:

- Minimum: 0%; Maximum: 100%; Average: 62.4%.
- Median: 73.5%; Quartile 1 (i.e., 25% of RQD data lies below): 38.5%, Quartile 3 (i.e., 75% of RQD data lies below): 89.5%

Based on the RQD values, the bedrock quality along the NEIS ranges from very poor to excellent.

3.2.5.3 Uniaxial Compressive Strength (UCS)

Uniaxial Compressive Strength (UCS) was estimated from laboratory tests performed on non-weathered and intact bedrock cores. A summary of the UCS results are presented in Table 3-20.

Table 3-19: Summary of Unconfined Compression Test Results

Test Hole No.	Bedrock Type	Location	Sample Elevation (m)	Core Run	Sample No.	UC Strength (MPa)	Strength Rating
AECOM- TH16-01	Limestone	West River Bank	203.83	C5	C5	93.5	R4 – Strong Rock
AECOM_ TH16-02	Limestone	West River Bank	205.03	C4	C4	149.6	R5 – Very Strong Rock
AECOM- TH16-03	Limestone	East Riverbank	203.60	C5	C5	58.9	R4 – Strong Rock
AECOM- TH16-03	Limestone	East Riverbank	199.90	C7	C7	39.7	R3 – Medium Strong Rock
AECOM- TH16-04	Dolomitic Limestone	East Riverbank	204.75	C5	C5	77.8	R4 – Strong Rock
AECOM- TH16-04	Limestone	East Riverbank	202.15	C6	C6	96.6	R4 – Strong Rock
TREK- TH13-01	Dolomite	East Riverbank	207.46	C2	CB57	49.1	R3 – Medium Strong Rock
TREK- TH13-01	Dolomitic Limestone	East Riverbank	196.96	C9	CB64	31.2	R3 – Medium Strong Rock
TREK- TH13-01	Dolomitic Limestone	East Riverbank	196.46	C10	CB65	21.8	R2- Weak
TREK- TH13-01	Dolomitic Limestone	East Riverbank	192.62	C12	CB67	33.1	R3 – Medium Strong Rock
TREK- TH13-05	Dolomite	West Riverbank	207.06	C3	CB72	39.5	R3 – Medium Strong Rock
TREK- TH13-05	Dolomite	West Riverbank	204.46	C5	CB74	39.5	R3 – Medium Strong Rock
TREK- TH13-05	Dolomitic Mudstone	West Riverbank	196.50	C10	CB79	11.9	R2- Weak

The measured UCS values are generally consistent with the strength testing data from the Manitoba Department of Energy and Mines for the Selkirk Member and Lower Fort Garry Member (Bannatyne, 1988).

3.3 Groundwater Conditions

Groundwater depths were measured within the monitoring wells installed as part of the AECOM 2016 geotechnical investigation and are summarized in the following section. Groundwater monitoring records from previous geotechnical investigations are also included in Section 3.3.1.

3.3.1 AECOM 2016 Geotechnical Investigation

To assess groundwater levels at the site, a vibrating wire piezometer (VWP) was installed in TH16-01 within the Glacio-lacustrine clay layer at a depth of 15.4 m and two standpipe piezometers (SPP) were installed in test holes TH16-02 and TH16-04 within the underlying carbonate aquifer (i.e., carbonate bedrock and glacial till) at depths of 25.8 m and 18.3 m, respectively.

Short monitoring results of the groundwater level (GWL) from the instruments at the site are provided in Table 3-21 along with previously reported readings completed by KGS and TREK. Monitoring results for the vibrating wire piezometers over the reported period indicated the presence of negative piezometric head (i.e., piezometric elevation is below tip elevation). The negative piezometric head is considered not credible and likely related to instruments malfunction or the pore water pressure at the piezometer tip has becoming stabilized. The monitoring will be continued to record additional readings.

Hydraulic pressure head due to varying groundwater elevation at the inlet and outlet of the proposed alignment will vary, pending the final invert elevation. The pressure head can vary from approximately 25.5 m (elevation 205.5 m, approximately) at the inlet (east bank of Red River) to 23.5 m (elevation 202.5 m, approximately) at the outlet (west bank of Red River). It should be noted that groundwater levels and subsequently sloughing may change seasonally, annually or as a result of construction activities.

Ground Tip **GWL Test** Instrument Installed Monitoring **Soil Unit** Hole Elevatio **Elevation Elevation** Type by Date ID n (m) (m) (m) Nov-07-2013 222.99 TH13-01 Standpipe **TREK** 227.36 215.17 Nov-28-2013 222.41 Alluvial Mar-20-2014 222.16 TH12-May-15-2013 223.26 Standpipe 228.46 **KGS** 216.86 02B TH12-May-15-2013 226.04 Pneumatic KGS 230.86 219.00 03B Lacustrine Vibrating TH16-01 **AECOM** 227.03 211 64 wire TH12-Standpipe KGS 228.46 210.76 May-15-2013 225.20 02B TH12-Standpipe **KGS** 230.86 209.86 May-15-2013 225.20 03B Till Aug-23-2016 223.76 Sep-23-2016 223.48 TH16-04 Standpipe **AECOM** 228.05 209.76 Nov-18-2016 223.60 March-09-2017 224.66

Table 3-20: Summary of GWL Monitoring Results

Soil Unit	Test Hole ID	Instrument Type	Installed by	Ground Elevatio n (m)	Tip Elevation (m)	Monitoring Date	GWL Elevation (m)
	TH12-02	Standpipe	KGS	228.37	202.31	May-15-2013	225.05
	TH12-03	Standpipe	KGS	230.84	200.82	May-15-2013	225.11
	TH13-01	Standpipe	TREK	227.36	207.24	Nov-07-2013	223.18
						Nov-28-2013	223.18
						Mar-20-2014	223.43
	TH13-04	Standpipe	TREK	227.16	205.55	Nov-14-2013	223.16
						Nov-28-2013	223.24
Bedrock						Mar-20-2014	223.50
	TH13-05	Standpipe	TREK	226.26	191.21	Nov-14-2013	223.30
						Nov-28-2013	223.30
						Mar-20-2014	223.56
	TH16-02	Standpipe	AECOM	226.33	200.52	Aug-24-2016	223.85
						Sep-23-2016	223.49
						Nov-18-2016	223.77
						Mar-09-2017	224.70

The groundwater monitoring results from the Dyregrov and Burgess (1987) geotechnical investigation have also been summarized in Table 3-22.

Table 3-21: Summary of GWL Monitoring Results- Dyregrov and Burgess (1987)

	Test Hole ID	Instrument Type	Ground Elevation (m)	Tip Elevation (m)	Monitoring Date			
Soil Unit					Sept. 28 1987	Oct. 6 1987	Nov. 24 1987	
Alluvial Sand	Boring 6	Standpipe	227.50	221.37	NR	223.13	222.80	
Allowial Class	Boring 12	Pneumatic	226.74	218.94	226.41	NR	226.56	
Alluvial Clay	Boring 6	Standpipe	227.47	215.27	NR	223.14	222.80	
Lacustrine	Boring 13	Pneumatic	227.60	218.55	226.02	NR	224.95	
	Boring 13	Pneumatic	227.60	212.69	225.80	NR	226.41	

Notes: NR- Not Recorded

3.3.2 Flood Elevations

River flood levels at the site for different flood events have been provided in Table 3-23.

Table 3-22: Summary of River Flood Event Elevations

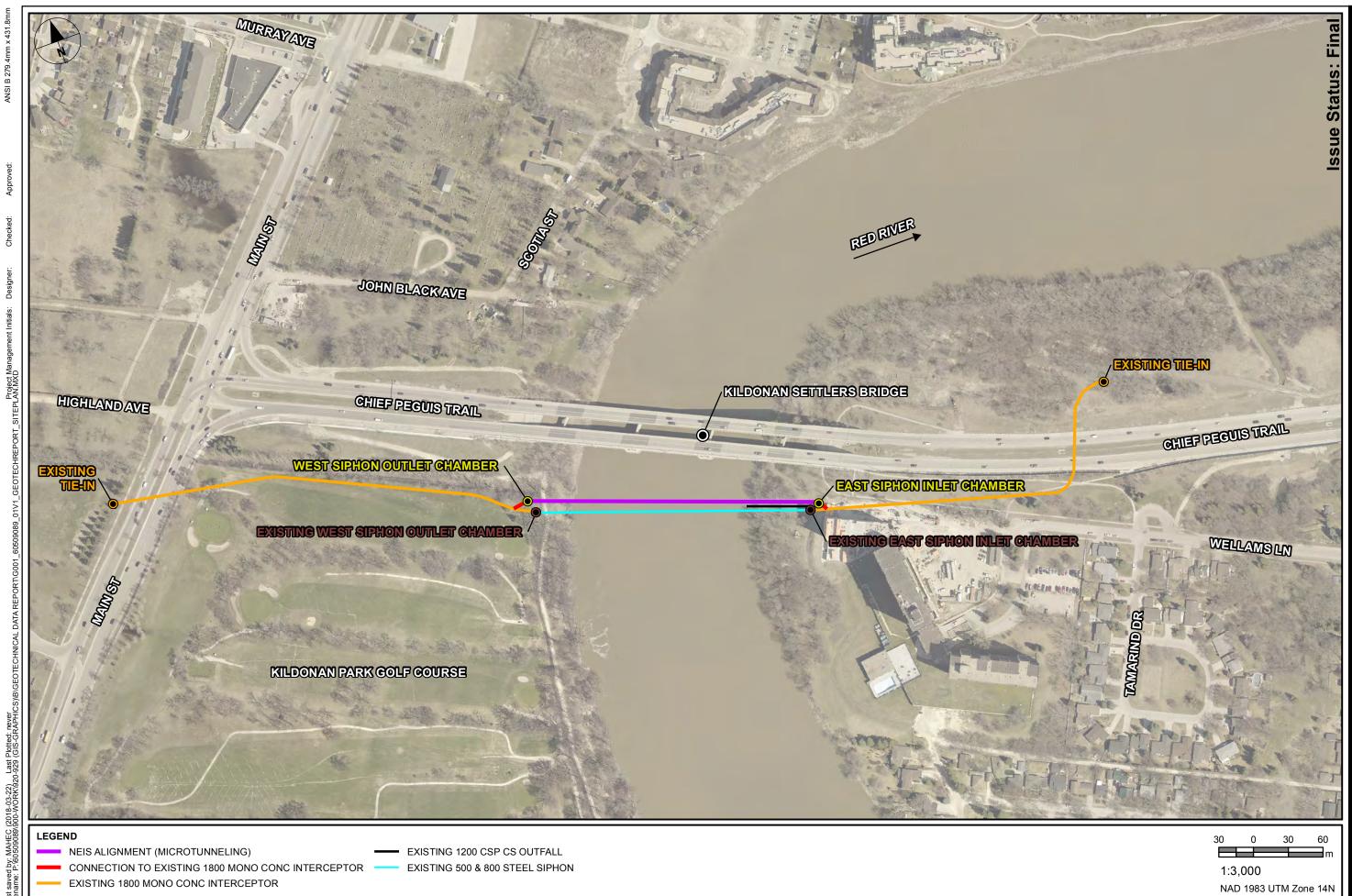
Return Period	River Flood Elevation (m)
1:2 Year	224.55
1:5 Year	226.35
1:10 Year	226.64
1:50 Year	227.27
1:100 Year	227.49

4. References

- 1- AECOM Canada Ltd (2017). City of Winnipeg Northeast Interceptor Sewer Red River Crossing Geotechnical Report.
- 2- ASCE/CI 36-15 (2015). Standard Design and Construction Guidelines for Microtunneling. Published by American Society of Civil Engineers.
- 3- Associated Engineering Ltd (February 2016). Northeast Interceptor Crossing Options Assessment Study.
- 4- Associated Engineering (July 2013). Preliminary Engineering for the Rehabilitation or Replacement of the North Kildonan Feedermain.
- 5- ASTM D4546-14. Standard Test Methods for One-Dimensional Swell or Collapse of Soils.
- 6- ASTM D4644-04. Standard Test Method for Slake Durability of Shales and Similar Weak Rocks.
- 7- ASTM D5607-08. Standard Test Method for Performing Laboratory Direct Shear Strength Tests of Rock Specimens Under Constant Normal Force.
- 8- ASTM D7012-14 Method D. Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens Under Varying Stress and Temperatures.
- 9- Baracos, A.G. Shields, D.H., and Kjartenson, B. (1983). Geological Engineering Report for Urban Development of Winnipeg, University of Manitoba- Department of Geological Engineering.
- 10- Bannatyne, B.B, 1988. Dolomite Resources of Southern Manitoba. Manitoba Energy and Mines Geological Services, Economic Geology Report ER85-1.
- 11- Deere, D. (1964). Technical Description of Rock Cores for Engineering Purposes. Rock Mechanics and Engineering Geology, V.1, No.1.
- 12- Dyregrov and Burgess Consulting Geotechnical Engineers (February 1988). Kildonan Corridor Geotechnical Report.
- 13- Essex, R.J. (2007). Geotechnical Baseline Reports for Construction, Suggested Guidelines. American Society of Civil Engineers.
- 14- Friesen Drillers Ltd (February 2018). Hydrogeological Assessment/Aquifer Characterization, Northeast Interceptor Sewer River Crossing Project- River Lot 25 Parish of Kildonan, Kildonan Settlers Bridge- Chief Peguis Trail, Winnipeg, Manitoba.
- 15- Gamble, J.C. (1971). Durability-Plasticity Classification of Shales and Other Argillaceous Rocks. PhD Thesis, University of Illinois, Urbana.
- 16- Graham, J., and Shields, D.H (1985). Influence of geology and geological processes on the geotechnical properties of a plastic clay. Engineering Geology.
- 17- KGS Group (2012). Forcemain Sub-Surface Investigation.
- 18- KGS Group, Acres Engineering, UMA Engineering (2004). Appendix B, Floodway Channel Pre-Design, Floodway Expansion Project, Project Definition and Environmental Assessment, Preliminary Engineering Report.

Northeast Interceptor Sewer Crossing- Geotechnical Data Report

- 19- TREK Geotechnical (December 2015). Northeast Interceptor Crossing Options Study Geotechnical Assessment;
- 20- TREK Geotechnical (January 2014). North Kildonan Feedermain Detailed Design Geotechnical Report.


AECOM

Appendix

A

Figures

- Figure 1: Site Location Plan and NEIS Alignment
- · Figure 2: Surficial Geology Plan
- · Figure 3: Test Hole Location Plan
- · Figure 4: Stratigraphic Section

A≣CO*W*

SITE LOCATION PLAN AND NEIS ALIGNMENT

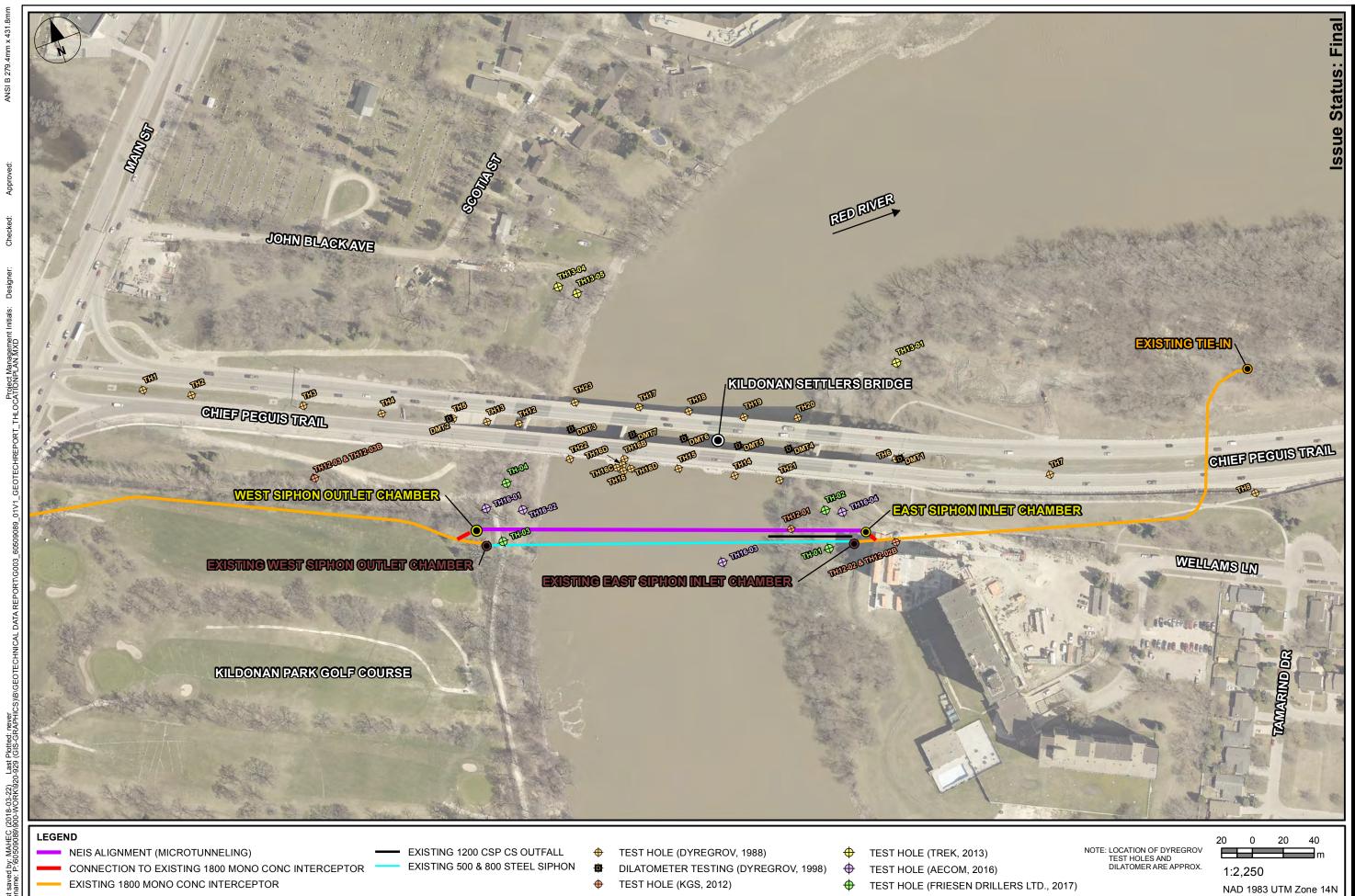
Project Management II

ast saved by: MAHEC (2018-03-22) Last Plotted: never ilename: P:'60509089\900-WORK\920-929 (GIS-GRAPHICS)

SURFICIAL GEOLOGY LEGEND

CHANNEL DEPOSITS

CLAY TO SILTY CLAY


LITHOLOGY (MATERIAL) LITHOGENSIS (ORIGINS OF MATERIAL)

SCALE: NTS

APPROX LIMITS
OF WORKAREA REDRIVER

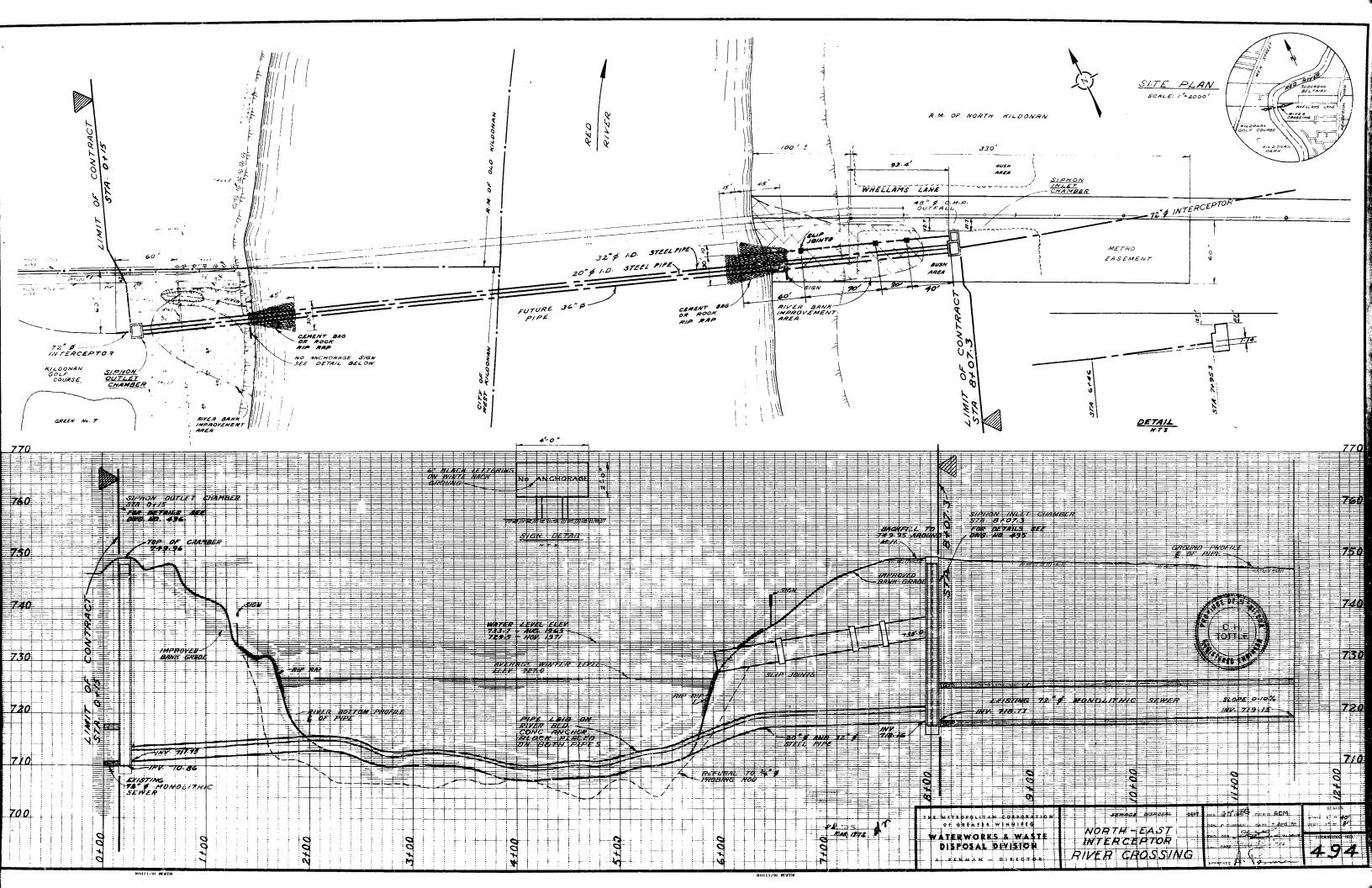
OFFSHORE GLACIOLACUSTRINE SEDIMENTS: CLAY, SILT, MINOR SAND; 1-20 m THICK; VERY LOW RELIEF MASSIVE AND LAMINATED DEPOSITS; DEPOSITED FROM SUSPENSION IN OFFSHORE, DEEP WATER OF GLACIAL LAKE AGASSIZ, COMMONLY SCOURED AND HOMOGENIZED BY ICEBERGS.

ALLUVIAL SEDIMENTS: SAND AND GRAVEL, SAND, SILT, CLAY, ORGANIC DETRITUS; 1-20 m THICK; CHANNEL AND OVERBANK SEDIMENTS; DEPOSITED BY POSTGLACIAL RIVERS.

AECOM

EOTECHNICAL DATA REPORT ITY OF WINNIPEG, WATER AND WASTE DEPARTMENT

TEST HOLE LOCATION PLAN



Appendix

Record Drawings

Drawing 494: Northeast Interceptor River Crossing As-Built Record Drawing

Appendix C

Previous Geotechnical Investigations Test Hole Logs

- · C-1: TREK Geotechnical (2013) Test Hole Logs
- · C-1A: TREK Geotechnical (2014) Ground Profile
- · C-2: KGS (2012) Test Hole Logs
- · C-3: Dyregrov & Burgess (1987) Test Hole Logs

1 of 3

GEOTECHNICAL

Sub-Surface Log

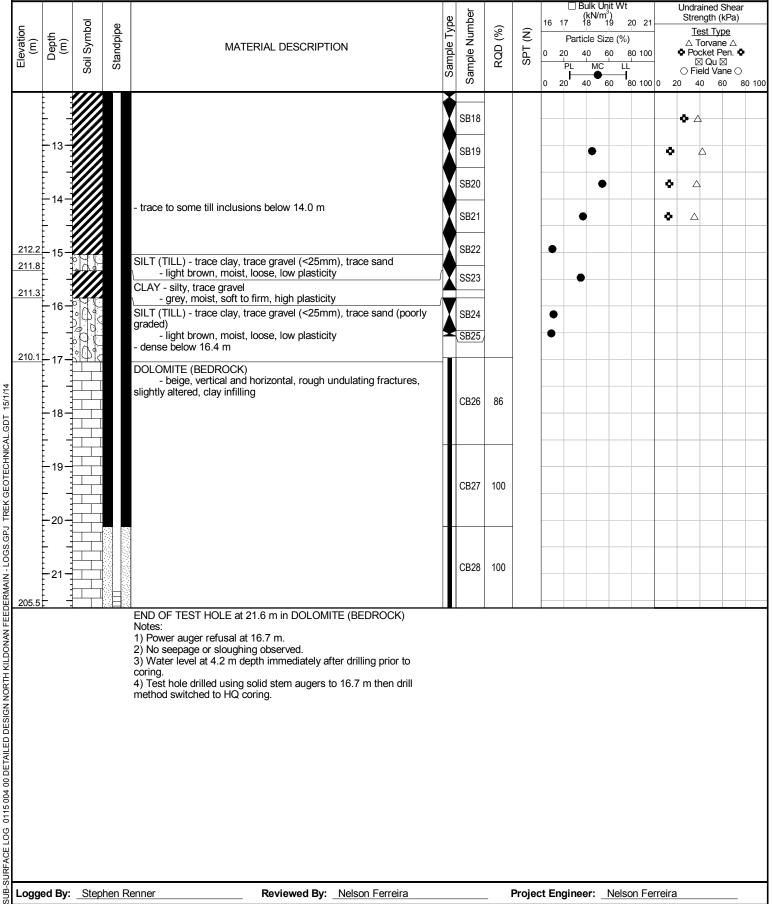
Clie	nt:	Associate	ed Eng	gineer	ing				Project I	Number:	011	5 004 0	00									
Proje	ect Name:	Detailed	Desigr	n Nort	th Kildonan I	eedermain			Location	ո։	UTN	Л N-55	3486	66.43,	E-63	6644.4	43					_
Conf	ractor:	Paddock	Drillin	g Ltd.					Ground	Elevatio	n: <u>22</u> 7	.36 m										_
Meth	nod:	Acker SS3	Track I	Mount	(see notes for	drilling method)			Date Dri	lled:	7 N	ovembe	er 20°	13								_
	Sample T	ype:			Grab (G)		Shelby ¹	Tube (T)	Spli	t Spoon (SS)	S	plit B	arrel ((SB)		Co	re (C	:)			
	Particle S	ize Legen	d:		Fines	Clay		Silt	****	Sand		Gra	avel	5°	<u>~</u> c	Cobble	s	H	Во	ulders	3	
	Backfill L	egend:			Bentonite	₩ c	ement		Drill Cuttin	gs	Filter Sand				Grout			\$	Slou	gh		
Elevation (m)	Depth (m)	Soil Symbol Standpipe	Standpipe			MATERIAL [Sample Type	RQD (%)	SPT (N)		PL	kulk Uni (kN/m³ 18 1! cle Size 40 6 MC 40 6) 9 20 e (%)	100		Strer Te To To Poo Fie	ined Singth (kl st Type orvane ket Pe Qu ⊠ ld Van	Pa) e e ∆ en. • l ne ○	
225.8	2			CLA\trace	e silt inclusio - brown - moist, fro - high plast Y (ALLUVIA e organics (r - brown - moist, stil - intermedi (ALLUVIAL ium grained - brown - moist, vei	L) - silty, som cots) if ate plasticity) - trace clay sand, trace o	ne fine to to clayey, rganics (r	medium ç	grained sand	G3 G3 G3 T3	0 1 2 2 3				-1 -				Χ Δ	•	.0	
	4 - 1 - 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			- 5011	ndy and wet	below 5.0 m				✓ G3 ✓ SB3 ✓ SB3 ✓ SB3 ✓ SB3	6A 6B 6C 7A 7B			•								
219.0	1 1				- brown - wet, loose - no plastic - poorly gra		medium	·		★ SB3★ SB3★ SB3	88B 89			•		00000	0 0 0					
Logo	ged By: _	Stephen R	enner			Review	ed Bv:	Nelson F	erreira			Proje	ct Er	ngine	er: N	Velsor	ı Fer	reira				

m) (m)	Depth (m)	Soil Symbol	Standpipe		Standpipe		Sample Type	Sample Number	RQD (%)	SPT (N)	16	17 Part	(kN/m 18 icle Si	ze (%)	0 21	•	Stren Tes △ To Pocl	ined Shagth (kF st Type orvane ket Per Qu ⊠ Id Vane	Pa) <u>2</u> △ n. Φ
215.2			<u>5</u> q	BC	X		S	Sa			0	20	40	60 8	0 100 0	0 20	40	60	80
			NA NA			CLAY (ALLUVIAL) - silty, some fine to medium grained sand, trace organics (roots)		T41				•					۰		
214.6	- -13-					- brown - moist, stiff	V	SB42A											
						- intermediate plasticity													
						SAND (TILL) - trace silt, trace clay - brown	X	SB42B				•							
	14-					- wet, loose - no to low plasticity												_	_
						- poorly graded, fine and medium grained sand													
						- dense below 14.6 m													
	15-						X	SB43				. • .	•••••					-	
							I	SS44		29		•							
			THORIGH SHORING HORINGHO			- trace till inclusions (<20mm) below 15.7 m	T				1								
	- 16 -						X	SS45B			•								
							A	SS45A		50									
	_ _17_		TH STREAM STREAM STREAM			- boulder at 16.7 m	T												
	. '																		
								CB56											
209.2	- -18-				900			CB30											
			TIR			DOLOMITE (BEDROCK)													
			1	9		- beige, vertical and horizontal, rough undulating fractures, slightly altered, clay infilling	H												
	19-			g															
				0				CB57	75										
																			491
	-20 <i>-</i>						\blacksquare			-									431
	-21-	H	22			- 0.1 m clay (rock flour) seams between 20.7 m and 20.8 m		CB58	30										
	'																		
						- 0.2 m clay (rock flour) seams between 21.6 and 21.8 m	\blacksquare												
						- yellowish fractured limestone between 21.8 to 24.3 m													
								CB59	0										
		H																	
204.2	-23-	\dashv																_	
	_ :					MUDSTONE (BEDROCK) - beige to brown, layered to varved, highly fractured with												_	
						clay infill.		CB60	17										
203.0	-24-	Ħ						ОВОО	11										
_55.0		H				DOLOMITIC MUDSTONE (BEDROCK)										-		+	-
	-25 <i>-</i>					 mottled light brown to grey, minor rough undulating sub vertical fractures. 													
								0001	0.1										
								CB61	91										
	26_															_		_	
	t :		IKX		** 80					1									

Sub-Surface Log

CB65 35 CB66 31 CB66 31 CB67 74	Elevation (m)	Depth (m)	Soil Symbol	Standpipe	Standpipe	MATERIAL DESCRIPTION	Sample Type	Sample Number	RQD (%)	SPT (N)	Partic	kN/m ³ kN/m ³ 8 19 ele Size 0 60 MC	9 20 ∋ (%) D 80	21 100 100 0	Stre	ained Shingth (kPest Type Torvane 2 cket Pen Qu eld Vane 0 60	a) ∴ Φ	100
DOLOMITIC LIMESTONE (BEDROCK) - beige to grey mottled, some chert nodules (grey) in a dolomitic limestone matrix (beige), vuggy. CB64 73 CB65 35	198.1	-28-				- chalk nodules at 26.8 m				_								
CB65 35						 beige to grey mottled, some chert nodules (grey) in a 		CB64	73								3120	
- 0.3 m thick highly fractured layer at 33.5 m - 0.3 m thick highly fractured layer at 33.5 m - 10.5 m thick highly fractured layer a	1/14							CB65	35	-								
Fractures decreasing below 34.7 m CB67 74 CB68 94	TECHNICAL.GDT 15/					- 0.3 m thick highly fractured layer at 33.5 m		CB66	31	-								
END OF TEST HOLE At 36.9 m in DOLOMITIC LIMESTONE (BEDROCK) Notes: 1) Power auger refusal at 16.9 m depth. 2) Seepage observed below 5.3 m 3) Water level at 1.5 m depth immediately after dilling prior to coring. 4) Test hole drilled using solid stem auger up to 4.6 m then switched to hollow stem auger. At power auger refusal, switched to HQ coring.	OGS.GPJ TREK GEO					- fractures decreasing below 34.7 m		CB67	74								3310)0 🛭
(BEDROCK) Notes: 1) Power auger refusal at 16.9 m depth. 2) Seepage observed below 5.3 m 3) Water level at 1.5 m depth immediately after dilling prior to coring. 4) Test hole drilled using solid stem auger up to 4.6 m then switched to hollow stem auger. At power auger refusal, switched to HQ coring.	IAN FEEDERMAIN - LO					END OF TEST HOLE At 36.0 m in DOLOMITIC LIMESTONE		CB68	94									
IURFA GE	URFACE LOG 0115 004 00 DETAILED DESIGN NORTH KILDON					(BEDROCK) Notes: 1) Power auger refusal at 16.9 m depth. 2) Seepage observed below 5.3 m 3) Water level at 1.5 m depth immediately after dilling prior to coring. 4) Test hole drilled using solid stem auger up to 4.6 m then switched to hollow stem auger. At power auger refusal,												

- 1) Power auger refusal at 16.9 m depth.
 2) Seepage observed below 5.3 m
 3) Water level at 1.5 m depth immediately after dilling prior to
- 4) Test hole drilled using solid stem auger up to 4.6 m then switched to hollow stem auger. At power auger refusal, switched to HQ coring.


I oaged By:	Stephen Renner	Reviewed By:	Nelson Ferreira	Project Engineer:	Nelson Ferreira

Sub-Surface Log

Clier	nt:	Ass	sociate	ed Enginee	_				Project I		ber:	0115								
1 -						Feedermain			Location					34987.	21, E-6	36455.8	32			
	ractor:			Drilling Ltd		. 1.202	.1\		Ground					0040						
Meth			er 553	Track Mount	· · · · · · · · · · · · · · · · · · ·	drilling metho	_		Date Dri				/ember							
<u> </u>	Sample			[2]	Grab (G)	[7777]		by Tube (T)			on (S	S)			rel (SB)		Core (
	Particle	Size L	.egenc	l: <u> </u>	Fines	Cla	у	Silt	*****	Sar			Grav	/el		Cobbles		В	oulder	S
	Backfill	Legen	d:		Bentonite		Cement		Drill Cuttin	gs		Filter P Sand	ack		Grou			Slo		
Elevation (m)	Depth (m)	Soil Symbol	Standpipe			ATERIAL DI				Sample Type	Sample Number	RQD (%)	S	16 17	Particle Si 40 L MC	n³) 19 20 ize (%) 60 80	100	Stre	rained Sength (k rest Typ Torvand ocket Po ⊠ Qu ∑ ield Var 40 60	kPa) pe le ∆ Pen. Φ ⊠
						Ity, some grand rootlets)	avel, trad	ce fine san	d, trace to											
				- dark	k brown st, very stiff	,					G46			•						
	1-1				plasticity															
225.7	7 - 3			01.43771.4		"			· ·	4	G47				•					>:
				trace organ	nics (roots a	nd rootlets),	trace ox	kidation	ice fine sand,		G48	-				•		• /		
				- dark	k brown, mo	st, soft to fir	m, high	plasticity		X	SB01				•	•	٠ ٠	•		
4				- grey belo						X	SB02				-	•	0	· 🏚 🗸		
15/1/1	3 -			- trace silt	inclusions (<15mm) and	l soft bel	low 2.7 m		7	G49							-	-	
SDT	£ 3									Ш	T03							۰	Δ	
HNICAL	4 -			- firm to st	iff, trace to	some oxidation	on below	v 3.7 m		X	SB04	-			•			•	4	
GEOTEC										X	SB05	-			•			• 4	2	
J TREK	5 -									X	SB06							• △	7	
-06S.GP	6			- trace coa	arse sand be	low 5.8 m				X	SB07				•			÷	Δ	
RMAIN - I											T08							۰	4⊠	
N FEEDE	7 -									X	SB09				•					
KILDONA				Ū	•) below 7.3 i		January 200		X	SB10				•		•	Δ		
NORTH				- trace to s	some silt inc	usions (<15	mm) bel	iow 7.9 m		X	SB11	-			•			• △	7	
DESIGN	9 -									X	SB12	-					•	Δ		
ETAILED											T13							•	X	
004 00 D	-10-			- trace till i	inclusions (<	75mm) belo	w 10 4 r	m		Å	SB14	_		,	•		۰	Δ		
OG 0115	-11-									A	SB15	_			•			•	Δ	
SUB-SURFACE LOG 0115 004 00 DETAILED DESIGN NORTH KILDONAN FEEDERMAIN - LOGS.GPJ TREK GEOTECHNICAL.GDT 15/1/14 CO CO CO CO CO CO CO CO CO C										♦	SB16	_			•			• 2	4	
10S-8	<u> </u>					D'		n Nelss			SB17	<u> </u>	D' -	4 === -		Nal	-	<u> </u>	<u>4</u>	
ე Log g	ged By:	_Steph	ien Ke	enner		_ Kevie	wea By	: Nelson	-erreira			_ '	rojec	ι ⊏ ngi	neer:	Nelson	rerreir	a		

Sub-Surface Log

END OF TEST HOLE at 21.6 m in DOLOMITE (BEDROCK) Notes:

1) Power auger refusal at 16.7 m.

GEOTECHNICAL

- 2) No seepage or sloughing observed.
- 3) Water level at 4.2 m depth immediately after drilling prior to coring.
- 4) Test hole drilled using solid stem augers to 16.7 m then drill method switched to HQ coring.

Logged By: Stephen Renner Reviewed By: Nelson Ferreira Project Engineer: Nelson Ferreira

1 of 3

GEOTECHNICAL

Sub-Surface Log

Ī	Clien	ıt:	Asso	ciate	d Engine	eerin	a							Proi	ect N	uml	er:	0115	004 0	00									
			e: Detai		_		-	n Fe	eeder	main				-	ation:			UTM			9.78	8. E-63	36465	5.14					
	-	ractor:			Orilling L									Gro	und E	leva	ation:	226.2	26 m										
	Meth				rack Mour		e notes fo	or dril	lling m	nethod)					Drill				ovemb	er 20	013								_
ľ		Sample	Type:				Grab (G)		П	Shel	bv Tu	be (T)		Split	Spo	on (S	S) >	Sr	olit B	arrel	(SB)		٦с	ore (0	C)			
ŀ			Size Leg	nend:		40	Fines	_		Clay	_		Silt			San		F					Cobb				oulder	~c	
ł						77		Ľ	<u>/////</u>	-			V//	Drill C		_		Filter F			~			103				3	
ŀ		Васктііі	Legend:				Bentonit	:e		<u> </u>	Cement			Drill C	utting	s [Sand	1	<u> </u>	_	Grou Bulk Ur				Slo	ugn ained	Shear	,
	_		<u> </u>	ω l												be	nber			16	17	(kN/m 18	۱3۱	20 21		Stre	ength (kPa)	
	atior n)	Depth (m)	ymb	ddp				ΝΔΤ	TERI <i>I</i>	ΔI DE	SCRIP	TION				e Ty	Nun	RQD (%)	<u>S</u>		Parl	ticle Si	ze (%))	1	\triangle	est Ty Torvan	e △	
	Elevation (m)	De	Soil Symbol	Standpipe			,	1417 (1	LI (1)	IL DL	.001111	11014				Sample Type	Sample Number	RQI	SPT	0	20 PL	40 MC	60 EL	BO 100	4		cket P ⊠ Qu I	×	
			0)													Š	Sar			0	-	-		80 100	0 2		ield Va 40 6		30 100
ļ		1			overbu	rden	soils no	ot log	gged		af ! .	be:	- منااليما	mother -															
		+ +			drilling	adva I to F	ancea to IQ corin	pov g	ver au	uger r	erusai t	nen c	irilling r	netnoa															
		1																											
		[]																											
		F =																											
		2 -																											
		E 3																											
/14		1																											
15/1		3 =																											
GDT																													
VICAL		4																											
ECHI																													
3EOT																													
REK (5 -																											
PJ ⊤																													
GS.G																													
N-LO		6	[•																										
RMAIL		+ =																											
EDEF		7 -																											
AN FE																													
DON/																													
표 지		8 =																											
JORT		1																											
IGN				[••																									
) DES		9 -																											
AILEC		F 🗦																											
0115 004 00 DETAILED DESIGN NORTH KILDONAN FEEDERMAIN - LOGS.GPJ TREK GEOTECHNICAL.GDT 15/1/14		10-																											
04 00		[]																											
1150		F 3																											
0 90		11-																											
CE LC		E 3																											
SURFACE LOG		[]																											
SUB-SI	Logg	ed By:	Martial	Lem	oine				R	Revie	wed By	: Ne	elson F	erreira				_	Projec	ct En	ngine	er:	Nels	on Fe	erreira	<u>.</u>			

Test Hole TH13-05 Sub-Surface Log GEOTECHNICAL □ Bulk Unit Wt **Undrained Shear** Sample Number Strength (kPa) Sample Type 16 20 21 Soil Symbol Standpipe % Test Type \widehat{z} Depth (m) Particle Size (%) △ Torvane △ Pocket Pen. • RQD (SPT (MATERIAL DESCRIPTION 20 40 60 80 100 ○ Field Vane ○ 20 40 60 80 100 0 20 40 60 80 100 210.1 210.0 SILT (TILL) - trace clay, trace sand, trace gravel SS69 - light grey, moist, loose, no to low plasticity 0 CB70 DOLOMITE (BEDROCK) - beige, vertical and horizontal, rough undulating fractures, slightly altered, clay infilling 208.7 **CB71** 38 SUB-SURFACE LOG 0115 004 00 DETAILED DESIGN NORTH KILDONAN FEEDERMAIN - LOGS.GPJ TREK GEOTECHNICAL.GDT 15/1/14 DOLOMITE (BEDROCK) beige to light grey layering, massive, minor vugs, minor vertical and horizontal tight fractures CB72 73 39500 20 **CB73** 95 39500 CB74 83 visible hairline fractures between 22.9 m to 24.4 m **CB75** 98 201.9 DOLOMITE (BEDROCK) - beige layers with light brown mottled and cream coloured

CB76

CB77

92

75

Project Engineer: Nelson Ferreira

layers, massive, minor vertical and horizontal tight fractures

Reviewed By: Nelson Ferreira

25

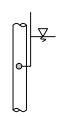
Logged By: Martial Lemoine

3 of 3

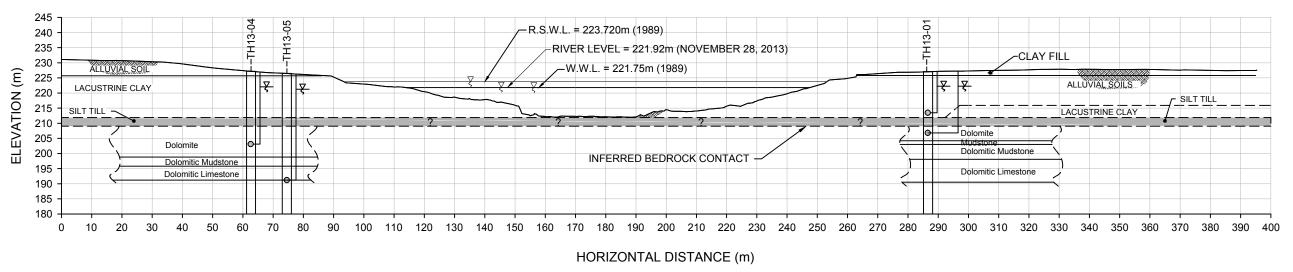
Sub-Surface Log

		_		114114														
Elevation (m)	Depth (m)	Soil Symbol	Standpipe	MATERIAL DESCRIPTION	Sample Type	Sample Number	RQD (%)	SPT (N)	0 0	17	Bulk (kN/ 18 article (kn/ 40 40	(m³) 19 Size (9 60 C	20 21	0	Stre	ained S ength (k est Typ Forvane cket Pe ⊠ Qu ∑ eld Vai	kPa) be e ∆ en. Ф ine ○	100
198.8	-27-																	
	-28			DOLOMITIC MUDSTONE (BEDROCK) - mottled light brown to grey, light brown mottles are soft calcareous mudstone, grey mottles are hard dolomite, trace chert nodules, vuggy, rough undulating sub vertical fractures 0.1 m thick clay (rock flour) seam at 28.7 m		CB78	69											
	-29- 					CB79	92										1190	00 🗵
195.8	-31-			DOLOMITIC LIMESTONE (BEDROCK) - beige to grey mottled, some chert nodules (grey) in a dolomitic limestone matrix (beige), vuggy, minor, very rough,		CB80	100											
	-32			angular, subhorizonal fracturing.		CB81	100											
	-33					CB82	99											
191.2	34			END OF TEST HOLE At 35.1 m in DOLOMITIC LIMESTONE		CB83	85											

END OF TEST HOLE At 35.1 m in DOLOMITIC LIMESTONE (BEDROCK)


Notes:

SUB-SURFACE LOG 0115004 00 DETAILED DESIGN NORTH KILDONAN FEEDERMAIN - LOGS.GPJ TREK GEOTECHNICAL.GDT 15/1/14


- 1) Power auger refusal at 16.2 m.
 2) No seepage or sloughing observed.
 3) Water level at 3.7 m depth immediately after dilling prior to coring.
- 4) Test hole drilled using solid stem augers to 16.2 m then drilling method switched to HQ coring.

Logged By: Martial Lemoine Reviewed By: Nelson Ferreira Project Engineer: Nelson Ferreira

NOTE:

GROUND WATER LEVEL IN STANDPIPE PIEZOMETER NOVEMBER 28, 2013

W.W.L. = WINTER WATER LEVEL

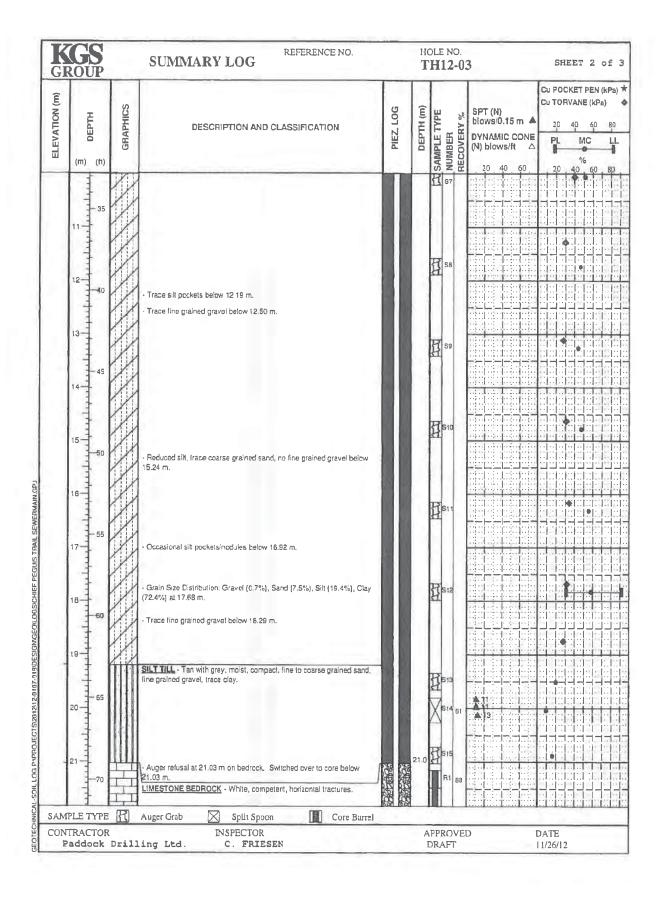
R.S.W.L. = REGULATED SUMMER WATER LEVEL

GR	OUP		SUMMARY LOG REFERENCE NO.	TH1		1	SHEET 1 of
SITE	JECT	Chief F East of	F WINNIPEG - WATER AND WASTE DEPARTMENT Peguls Bridge Sewer Replacement Red River and South of Chief Peguls Trail If Existing Sewermain on the Lower Bank			JOB NO. GROUND ELEV. TOP OF PVC ELE WATER ELEV. DATE DRILLED	12-0107-018 226. 37
DRIL			rack Drill Rig, 125 mm ø Solid Stem and HQ Core Barrel			UTM (m)	N 5,534,788 E 636,543
ELEVATION (m)	E DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	SAMPLE TYPE	NUMBER RECOVERY %	SPT (N) tlows/0.15 m DYNAMIC CONE (N) blows/ft	Cu POCKET PEN (kP Cu TORVANE (kPa) 20 40 60 8 PL MC L
	1 - 5		SILTY CLAY - Brown, damp, firm, intermed ate plasticity, trace roollets, trace fine grained gravel.	S		20 40 60	20 40 60 8
	3 3 10		SAND & GRAVEL - Light grey, moist, donse, medium to coarse grained sand, fine to coarse grained gravel, some clay. - Hole squeezing at 1.83 m.	F	\$2		
	4 15 15		SAND - Brown, moist to wet, loose, line to medium grained, trace oxidation. - Water noticed on sample below 4,57 m.	<u> </u>	S3		
	6 20		- Grey, no exidation below \$.33 m.	呂	S4		
-	7	My	SILTY CLAY - Grey, moist, firm, high plasticity. SAND - Grey, moist, loose, medium grained, trace coarse grained sand.	<i>[</i>]	\$5		
	8 9	///	- Some to with silt, reduced sand below 7.92 m SILTY CLAY - Grey, moist, firm, high plasticity, trace silt nodules, trace medium grained sand, trace line grained gravel.	<u> </u>	56		
SAMI	PLE TYP		Auger Grab Core Barre!				
CONT	TRACTO	R	INSPECTOR ing Ltd. C. FRIESEN	APPI DRA	ROVE		DATE 11/26/12

ELEVATION (m)	ОЕРТН	GRAPHICS	DESCRIPTION AND CLASSIFICATION	YPE	70 A		PT (N)	.15 m	A	Cu T	ORVA	ET PE ANE (J	(Pa)	
ELEVA"	(m) (ft)	GRAF	DESCRIPTION AND SEASON BATTON	SAMPLE TYPE	NUMBER	(N)	blow		Δ	P		MC %		
	1	//	- Stiff bolow 10.06 m.	S TT	S7		20	0 6	0	2	0 4	0 6	0	
	35		- Reduced line grained gravel below 10.67 m.			-								
	11-1													
	1		- Grein Size Distribution: Grave! (1.2%), Sand (11.7%), Sit (30.5%), Clay (56.6%) at	H	SB	-		- (- - (- - (-						
	12-10		11.58 m.				1							
	1		- Reduced silt nodules below 12.50 m.											
	13-		- Firm below 12.95 m. - Grain Size Distribution: Gravel (0.8%), Sand (10.2%), Silt (23.7%), Clay (65.3%) at	H	59				. į . į					
	-45		13.11 m.	ET.						7.		-		
	14		SILTY TILL - Tan, moist, compact, with medium to coarse grained sand, some fine grained gravel, trace coarse grained gravel.	+										
			Locse, reduced coarse grained sand, reduced fine to coarse grained gravel below 14.6 m.	3 स	S10	-								
	15 50	-	m.	KI.										
	1													
	16			R	811					+				
8	-55			H		-	<u> </u>							
	17-	井	Auger refusal at 18.76 m on bedrock. Switched over to core below 16.76 m. LIMESTONE BEDROCK - White, fractured with vertical and horizontal fractures.	1	R1 85		1	[].].						
	14													
	18	丑			R2 98		1.2.							ĺ
	- 60	苗		L L			100			ا ا				
	19-								.4.:					
	1	丑	Circus 2140.20 v		R3 100	-								
	20 - 65		- Clay seam at 19.69 m Clay between 20.12 and 20.19 m.						::::					
	1	出											1	
	21	詽			R4 101				1					
	70	1	Yellow fractured iimesicne between 21.41 and 22.25 m.			-								
SAM	PLE TYPE	R	Auger Grab Core Barrel	LIII.			4	Lunk	السند	اعلت	لتبلين	أنبابنا		

ELEVATION (m)	OUP	Sol		3 %	SF	T (N)		100			ANE (
ATIC	рертн	GRAPHICS	DESCRIPTION AND CLASSIFICATION	T X	ble		1.15 m IC COI		-	-	1	60	80
LEV	0	GR		MBE	(N)	blow	/s/ft	A	P	L	MC	_	4
	(m) (ft)			SAMPLE TYPE NUMBER RECOVERY %		20 4	40 60		, 2	0 4	40	60	80
	22	11			33-	1000		1-1	-200	-	Ħ		+
1	1		- Reduced fractures below 22.25 m.	R5 100	- 12							ij	i
	75	1		- MI 13		1							i
	23	4		M		1	- 00	10					1
1	3								4-		11.	14	1
- 1	3	111		R6 100	101								
	24-			100	:3:	tai:	i de la				lah		al:
	-80	TT					13110		-	1	1	1	4.
1	25	1,1	Increased fractures below 24.69 m.										1
1	1			R7 100	N:			111					Ī
1	1	H				-			-	17	17:	17	Ť
1	26-25	1.	END OF TEST HOLE AT 25.91 m	-41	:(1:	r.	rid.		d			i	1
1	1		Notes:			į.							İ
1	1		Water level measured at 15.70 m below grade after drilling. Backfilled test hole with a thick bentonite grout mixture and bentonite chips.		- 1				17	17	i i	ij	1
1	27-	10			1111	1-4	-3-14-	i			joja Joda	1.1	1
١	90								ij.				1
1	1			10000	1111				F				1
1	28			11/13	4					100			1
1	4				133	1			4-		11.	1:1	1
١	1			1113									1
1	29 - 95			1111		1			30		11	1.1	1
1	4			1000		1050	logar la		-			-	+
1	30 =	- 17		- 1111	3	1							#
1	1			1144									1
1	100			1111									
1	31-1	10		1111		1			1		H		4
1	1												T.
	1				1					1	17		1
	32 - 105				- 7					1	1	1	+
	1												T.
1	1							1					1
1	33				1			1				1-1	+
	-110					-					ij	L.	1
	PLE TYPE	R	Auger Grab Core Barrel							100			1.

K	CS		SUMMARY LOG			OLE NO. 'H12-0	2			S	HEE	T 1	
LOC	EATION S	Chief F East of South o	F WINNIPEG - WATER AND WASTE DEPARTMEN Peguis Bridge Sewer Replacement Red River and South of Chief Peguis Trail of Existing Sewermain on the Upper Bank Track Drill Rig, 125 mm p Solid Stem and HQ Core Barre				TOP WAT	OF PV ER EL E DRIL	C ELE	25 EV. 1	1/8/	2012 534,7	75
	нов				(iii	lu .	SPT	(N)		Cu PC	OCKE		N (
EVATION (m)	DEPTH	SRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	ОЕРТН (т)	SAMPLE TYPE NUMBER RECOVERY %	4.1	s/0.15 AMIC Clows/ft	ONE	20 PL	-	MC)
	(m) (ft)		AN THOUSANT I B			SAME	20		60	20) 4(% 60	j.
			SILTY CLAY FILL - Brown, moist, stilf, intermediate to high plasticity some medium to coarse grained sand, some fine grained gravel trace coarse grained gravel, trace rootlets.			F 31							1 1 1 1 1
	1-		SILTY CLAY - Brown, molst, stiff, high plasticity, trace fine to medium grained sand.										12212
	2		Increased sand content below 1.83 m. SAND - Brown, moist; compact, fine to medium grained, trace coarse			D.							
	- Arch		grained eand, trace sit, trace clay.			<u>F</u> 52							20 01
	3 10		SILTY SAND - Brown, moist, loose, line to medium grained, with sit, trace day.			F 53							1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	4		SAND - Brown, molst, compact, fine to medium grained, trace sh.										75
	5		- Water noticed on sample at ~ 5.49 m.			F 54					9		KLID THE
4	6 20		SAND SLT Brown, moist, firm, Intermediate to high plasticity, trace oxidation SILTY SAND - Brown, moist, soft, fine to medium grained, trace					2.12					
1	7-3	1 1 1 1	oxidation. Grey, no oxidation below 8.71 m. SAND - Grey, most, compact, medium grained, some line and coarse			\$ \$5							177 177 177
	25		grained sand. SILTY CLAY - Grey, most, firm, high plasticity Medium grained sand layer between 7.39 and 7.47 m.										
18	8		SILTY SAND - Grey, moist, solt, fine to medium grained sand, with sit			H 55						11	1000
	1		- Organic layer between 8.53 and 8.64 m.			RI.						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	9 3-30		SILTY CLAY - Grey, most, firm, high plasticity, trace line grained sand				10-1			2 50 2 7 2 7 2 7			1 2 2 3
	1	//	- Increased sand between 9.75 and 9.96 m.		L	图 57					•		1


ELEVATION (m)	(E) DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ LOG	DEPTH (m)	SAMPLE TYPE NUMBER HECOVERY %	SPT (N) blows/0.15 m A DYNAMIC CONE (N) blows/ft △	Cu POCKET PEN (Cu TORVANE (kPa 20 40 60 PL MC %
	1	W				SEE	20 40 60	20 40 60
	35	1/2	- Increased sand between 10.36 and 10.52 m.		Н			
	17-3		SILTY SAND - Grey, most, compact, medium grained, trace fine grained sand, trace clay. - Test hole squeezing at 10.67 m.	ш	Ш			
	1			ш	Н	F 58		
	12-			ш	П			
	140					Ne		
	1		- 25 mm thick organic layor at 12.50 m.	81	Ш			
	13-		- Decreased sand between 12.95 and 13.26 m.	81				
	-45			ш		E 89		
1	14-	W	SILTY CLAY - Grey, most, firm, high plasticity, trace coarse grained sand, trace fine grained gravel, trace silt nodules.	ш	Н		-0-1-2-1-2-1-1- -1-1-2-1-2-1-1- -1-1-5-1-1-1-1-	
	4	//	- Grain Size Distribution: Gravel (1.0%), Sand (8.8%), Silt (21.9%), Clay		U	Pism		
	15		(57.0%) at 14.63 m.		N	#S10		
ч	50			88				
	16	1/						
10	1		SILT TILL - Tan, moist, compact, with medium to coarse grained sand, some fine grained gravel, trace coarse grained gravel.] S11		
	-55		- Loose, decreased gravel below 16.46 m.	Ш	П	S12100	2	
7	17-	Ш		и	2		A4	
	1							
	18 - 60		A second			H 813		
	1		- Auger refusal at 18.34 m on bedrock. Switched over to core below 18.34 m.		h			
	19-1	4	LIMESTONE BEOROCK - White, competent, vertical and horizontal fractures.		Н	R1 98		
	1			Ш	Н		444	4444
ЦÌ	20-	H						
	1	苴						
	21	莊				R2 98		
	70	计						
	7							
CON	PLE TYPE TRACTOR		Auger Grab Split Spaan Core Barrel INSPECTOR		A	PPROVE	0	DATE
P	addock	Dril	ling Ltd. C. FRIESEN		1	DRAFT		11/26/12

ELEVATION (m)	ОЕРТН	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG		DEPTH (m)	SAMPLE TYPE	AA o/	9 5		/0.15	im 4	•	Du PO Du TO		NE (k	Pa)	Ps;
LEVA	ä	GRA		PIE		DEP	MPLE	MBEH		YNA I) bio	MIC :	CONI		PL.		MC		
ш	(m) (ft)			-	1		SAI	N		20	40	60	1	20	40	% 60	8	30
	22-				2	2.2	F	33 98	F			1			11	11	1	1
	1	11		111	1			1	-		- -		-					
	75	1						1				4		1:1:	1:1:		1::	1
d	23	11	- Increased fractures below 22.94 m Vertical fracture between 23.01 and 23.67 m.		1		I								III		1:	T
	+	11						1	-		- -		-		44.			1:
	24-						F	10							11		1	1
	80	T									- 10			1: 1:			: ::	-
d	1 1					i	1		1	: [- -				11:		1.	1
	25	11						1	-						11	++	1	+
	1	H					F	15 10	0 ::								āļ:	1
	7	T			2	5.8												1
14	26 - 85		END OF TEST HOLE AT 26.06 m	1	. 2	26.1			-				+	1.1.	11	11		T
	1		Notes:						-				_				4	1
	1		1. Installed casagrande standpipe at a depth of 26.06 m with a stick-up o 0.64 m $$		1						1.:							
	27-		 Backlifed test hole with sike a sand between 26.06 and 22.17 m and bentonite chips from 22.17 m to grade. 		1			-					T	T:	Ħ		T	Ī
	90				1			1	-		+		+					ن ا
	28				1						1		1	11	11		1	1
1	1	1			1							: J.:					T	1
	7	1		1					1					11			1	1
	29 - 95	- 1			П				1.9	ı.	1		+					t
	1				1													
					1				-									-
	30				1					T		-		1-1			1	+
	100	14 ()			1				-		_ _			١				
	1				1		Н	L	1									-
	31-	1						1	13.60	::1::		::[:::	7, 1					1
	1			1	1		N		-		_	4-	-	-1-1-	-	-1-1	-	7
	32 105																1	
	1 100			1	1				1					11				1
	7				1				1				-					1
	33				1												-	1
	1								1									111
	110	图						1	1	- 10	-1	7.	1	11	1-1	-1-1		1

K	(C	S		SUMMARY LOG REFERENCE NO.			OLE NO. H12-(2B				SHE	ET	1 c	ıf
CLII PRO SITI	ENT DJEC	() T () E)N -	Chief East o	OF WINNIPEG - WATER AND WASTE DEPARTM Peguis Bridge Sewer Replacement If Red River and South of Chief Peguis Trail West of TH12-02 Track Drill Rig, 125 mm ø Solid Stem	ENT			TOP WAT	OF PV OF ER ER EL E DRIL	C EL EV.			9/20:		3
ELEVATION (m)	(m)		GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	ОЕРТН (т)	SAMPLE TYPE NUMBER RECOVERY %	SPT blow DYN. (N) b	/s/0.15 AMIC C lows/ft	ONE	Cu	PL.	ANE	(kPa)	
	1			SILTY CLAY FILL - Brown, moist, stiff, intermediate to high plasticity, some medium to coarse grained sand, some fine grained gravel, trace						##			1:1:	1:1	
-	- 2		***	coarse grained gravel, trace rootlets. <u>SILTY CLAY</u> · Brown, moist, stiff, high plasticity, trace line to medium										:::! -::	
	1-		//	grained sand.							+			-	-
	1	-5	//								-	1.1	-	-1-1	
	2		//	- Increased sand content below 1.83 m.										1:1	
-			1.11	SAND - Brown, moist, compact, fine to medium grained, trace coarse grained sand, trace sit, trace clay.											
	Line	4		gramma cama, is pose and, it due vidy.										וֹהַ הַ	-
	3-	-10	: :::111	SILTY SAND - Brown, moist, loose, fine to medium grained, with siit,	-					1	1	11	11	+	1
	3			trace clay.											_
	4-3			SAND - Brown, moist, compact, fine to medium grained, trace sitt.		1									ij
	1.1	- 15			00 0				- -		-				-
	5-				88	М				1					+
	3	Ž.								Hi.		1:1:			
0.9			200	- Water noticed on sample at ~ 5.49 m. SANDY SILT - Brown, moist, firm, intermediate to high plasticity, trace											
	6-	-20		oxidation		1					1	++	H	++	+
	=			SILTY SAND - Brown, moist, soft, fine to medium grained, trace oxidation.								از ر	ازا.		
	7.3			Grey, no oxidation below 6.71 m. SAND - Grey, moist, compact, medium grained, some fine and coarse	_										
1	1		/	grained sand. SILTY CLAY - Grey, moist, firm, high plasticity.		6				ļij.		[:]:			
	1	- 25	//	Medium grained sand layer between 7.39 and 7.47 m.									1-1	-1-1	
	В	1	1/11	SILTY SAND - Grey, moist, soft, fine to medium grained sand, with sit								11	11		+
	and an			- Organic layer between 8.53 and 8.64 m.								11			
4	9-		17	SILTY CLAY - Grey, moist, firm, high plasticity, trace line grained san											
1	3	-3 0	//	January Parkers of the Control of th						j.		j: i	: i i.		j
	3			- Increased sand between 9.75 and 9.96 m.	10									11	
		YPE	1					1	1	1	11	1.1.	1.1	11	1

ELEVATION (m)	E) DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER	RECOVERY %	SPT (I blows DYNA (N) blo	/0.15 MIC C	ONE	Cu	PL	
Secretary and the production of the production o	13 13 14 15 15 17 18 18 16 20 15 17 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	5	Increased sand between 10.36 and 10.52 m. SILTY SAND - Grey, moist, compact, medium grained, trace line grained sand, trace clay. Tost holo squeezing at 10.67 m. - 25 mm thick organic layer at 12.50 m. - Decreased sand between 12.95 and 13.26 m. SILTY CLAY - Grey, moist, firm, high plasticity, trace occarso grained sand, trace fine grained gravel, trace silt nedules. SILTY CLAY - Tan, moist, compact, with medium to coarse grained sand, some line grained gravel, trace coarse grained gravel. - Loose, decreased gravel below 16.46 m. AUGER REFUSAL AT 18.34 m Notes: 1. Strailgraphy assumed from TH 12-02 drilled -3 m away. 2. Installed casagrande standpipe at a depth of 17.68 m with a slick-up of 0.91 m. 3. Installed PN 034983 at a depth of 11.58 m, below grade. 4. Backfilled test hole with slica sand between 17.68 and 16.76 m and bentonite chips from 16.76 m to grade.		11.4 11.6 17.4 17.7								
SAL	VIPLE TYPE NTRACTO Paddocl	R	INSPECTOR Ling Ltd. C. FRIESEN			PPRO'		ninjuk			DAT:		

KGS GROUP		SUMMARY LOG REFERENCE NO.			DLE NO. H12-0	3	SHEET 1 of 3
SITE	Chief F West of North o	F WINNIPEG - WATER AND WASTE DEPARTMEN Peguis Bridge Sewer Replacement Red River and South of Chief Peguis Trail If Existing Sewermain on the Upper Bank ack Drill Rig, 125 mm ø Solld Stem and HQ Core Barrel	π			JOB NO. GROUND ELEV. TOP OF PVC ELE WATER ELEV. DATE DRILLED UTM (m)	V. 11/13/2012 N 5,534,926 E 636,265
ELEVATION (m)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m DYNAMIC CONE (N) blows/ft 20 40 60	Cu TORVANE (kPa) 3 20 40 60 80 PL MC LL % 20 40 60 80
1-1-5		SILTY CLAY FILL - Black, moist, stiff, high plasticity, trace rootlets. - Trace medium to coarse grained sand, trace fine to coarse grained gravel below 0.23 m. SILTY CLAY - Brown, moist, sliff, high plasticity, trace coarse grained sand. - No sand below 1.22 m.			S1		
3		SILTY SAND TO SANDY SILT - Light brown, moist, soft/loose, line grained sand. SILTY CLAY - Brown, moist, stiff, high plasticity, trace silt nodules (~1-3 mm diameter).			S2		
4		- 10 mm diameter gravel piece at 3.73 m.			SS SS		
6		- Grey below 5.49 m. - Firm bolow 6.10 m.			64		
8 - 1 - 25					55		
SAMPLE TYP	PE (R)	Sightly increased silt rodules (up to 5 mm diameter) below 9/14 m. Auger Grab Split Spoon Core Barrel			\$5.		
CONTRACTO	R	INSPECTOR Ling Ltd. C. FRIESEN			PPROVE DRAFT		DATE 1/26/12

ELEVATION (m)	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEРТН (m)	ETYPE	NUMBER	ERY %	SPT (N blows/	0.15		Cu	POC TOR	tVANI 40		Pa)	Pa)
ELE	(m) (fi	_		=	DE	MAN	LUMBE	ECOV	(N) blo	ws/ft	60		20	9/	6		1
	25		- Flubble zone between 28.46 and 26.52 m. - Flubble zone between 28.46 and 26.52 m. - Vertical fracture between 28.52 and 28.70 m. - Vertical fracture between 28.52 and 28.70 m. END OF TEST HOLE AT 30.02 m Notes: 1. Installed casegrande standpipe at a depth of 30.02 m with a stick-up of 0.91 m. 2. Backfilled test hole with silica sand between 30.02 and 27.58 m, bentonite chips from 27.58 to 23.93 m, slough from 23.93 to 21.03 m and bentonite chips from 21.03 m to grade.		27.6		R2 1	97									
	33-	10															

PROJECT (IT WASTE DEDARTIME	NET.				JOB	NO			17.0	107-	010	
	Vest of Red Ri 2 m West of T	Bridge Sewer Repla ver and South of Chief	f Peguis Trall	141				GRO TOP WAT	UND E OF PV ER EL E DRIL	C ELE	.V.		4/20:		
ELEVATION (m)	GRAPHICS	DESCRIPTION AND		PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER	RECOVERY %	DYN	s/0.15 AMIC C lows/ft	ONE	Cu T	ORV	PET PE	Pa)	80 80
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Trace in gravel be SILTY C sand.	d below 1.22 m.	, trace fine to coarse grained	1											
3 10 10 4 15 15	grained s SILTY CI mm diam	AY - Brown, moist, still, h.gh	plasticity, trace silt nedules (~1-3												
5 20		low 5.49 m. ow 6.10 m.													
8—————————————————————————————————————	- Slightly i	ncreased sill nodules (up to 5 d	mm diameter) below \$ 14 m			Conject									
AMPLE TYPE					1		1				11				-

ELEVATION (m)	ОЕРТН	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	TYPE N %				m 🛦	Cu 1		VAN		Pa)
ELEVA	(m) (tt)	GRA		PIEZ	DEP.	SAMPLE TYPE NUMBER RECOVERY %	(N)	blow	/s/ft	ONE		PL	9		1
	1	//										20	40	60	+
	3-35								7.4.						-
	11 1	//							1:2:						1
	411			PH.	11.6 11.8										
Ш	12-40	//	· Trace slit pockets below 12 19 m.					17					** 8		
П	1		- Trace fine grained gravel below 12.50 m.							1	-				-
ł	13-	//									+				
19	45	//													-
	14-3	//						1		1	111				
	1	//						-			-				-
	15				l.		:::::	1.3	+		+				
	50	//	- Reduced slh, trace coarse grained sand, no fine grained gravel below 15.24 m.												
	16														
	4	//										44			
ď	17—	//	- Ocassional sitt pockots/nodules below 16 92 m.					120							
	3								100						
	18-	//	D-1 -						1:57			1			
	60		· Trace fine grained gravel below 18.29 m.												
	19	//													
1	1	íilí	<u>SILT TILL</u> - Tan with grey, mo'st, compact, fine to coarse grained sand line grained grave, trace clay.												
	65		The grantes grave, wase day.					100							2 4 4 10
	20				20.1			100	8				1		F 4 1 1 1
	1				20.7				i	j		1	1-		
	21	1111	AUGER REFUSAL AT 20.98 m	1	21.0						+				
М			Notes: 1. Stratigraphy assumed from TH12-03 drilled ~2 m away.												W 18 -
	PLE TYPE TRACTOR		INSPECTOR		A	PPROVE	D				DAT	TE.			_
			ling Ltd. C. FRIESEN			DRAFT					11/2		2		

ELEVATION (m)	(#) (#)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ LOG	DEPTH (m)	SAMPLE TYPE NUMBER RECOVERY %	SP blo DY (N)	NAN) 0.15 m IIC COI vs/ft	NE A	Cu 1	PORN	MC MC	kl
	22 - 75 23 - 75 24 - 85 26 - 85 27 - 90 28 - 95 30 - 100 31 - 100		2. Installed casagrande stando'pe at a depth of 20.98 m with a stick-up of 0.66 m. 3. Installed PN 034985 at a depth of 11.64 m. below grade. 4. Backtilled test hole with sitics sand between 20.98 and 20.12 m and bentonite chips from 20.12 m to grade. 5. Test hele squeezing at 8.53 m shortly after drilling.											
CON	IPLE TYPE		INSPECTOR ling Ltd. C. FRIESEN			PPROVE DRAFT	D				DATI			

LOGGED/DWN. SDG CKD.	NCB	DATE OF INVEST. 6/08/87 JOB NO.	87422	HOLE NO. 1
WATER CONTENT Wp-□ W-O WL-△.	DEPTH SAMBOL	SOIL DESCRIPTION DATUM Geodetic	SOIL SAMPI	155 4 555
PERCENT % 10 20 30 40 50 60	(M)	SURFACE ELEVATION 230.63 m	CONDITION TYPE FERETRATION	OTHER TESTS
	-1 -2 -3 -4 -5 -6 -7 -8	Clay -black Clay -silty -brown -stiff -alluvial Silt -tan -wet to saturated -firm Clay -mottled brown -highly plastic -stiff -lacustrine End hole at 7.6 m. Seepage and caving from 2.4 to 2.7 m.	Z u	qu=109.7kpa % _w =16.48kn/ pp=146.0kpa Tv=84.7kpa

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor SDG NCB LOGGED/DWN. CKD. DATE OF INVEST. 6/08/87 JOB NO. 87422 HOLE NO. DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION RESISTANCE 450 &500 mm Wp -W-O WL-A. DEPTH DATUM Geodetic Augers PERCENT % (M) SURFACE ELEVATION 230.91 m OTHER TESTS 20 50 0 Fill -clay, silt, some gravel Clay -black -1 Clay -silty -brown -stiff -2 Silt -tan -3 -saturated -4 Clay -mottled brown -highly plastic -firm to stiff qu=47.2kpa -lacustine $Y_{W} = 16.51 \, \text{kn/m}^{3}$ - 5 pp=93.4kpa Tv=81.2kpa 6 7 qu=150.1kpa U $Y_{w} = 16.85 \text{kn/m}^{2}$ -8 grey pp=125.4kpa Tv=77.8kpa 9 -10 qu=131.8kpa End hole at 10.7 m. -11 U $V_{w} = 17.60 \text{kn/m}$ Seepage and caving from silt layer pp=117.8kpa Tv=60.3kpa Plate A-3

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor DATE OF INVEST. 6/08/87 CKD. LOGGED/DWN. JOB NO. 87422 HOLE NO. SDG NCB DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION DATUM Geodetic Wp - 0 w-0 WL - A. DEPTH 500 mm Auger PERCENT % (M) SURFACE ELEVATION 230.58 m OTHER TESTS 30 40 50 10 20 Jopsoil Clay -silty -brown -1 -stiff 2 Silt -tan -wet to saturated -3 qu=57.4kpaClay -mottled brown $Y_{w} = 16.40 \text{kn/m}$ U -highly plastic -stiff to firm 4 pp=132.9kpa -lacustrine Tv=71.3kpa 5 --grey- 6 qu=117.3kpa U $\chi_{w} = 16.27 \text{kn/m}$ pp=119.7kpa Tv=74.7kpa7 8 1 qu=148.5kpa - 9 $y_{W} = 16.81 \text{kn/m}$ U pp=95.8kpa - 10 Tv=60.6kpa - 11 qu=147.3kpa - 12 $V_{W} = 16.58 \text{kn/m}^3$ pp=68.9kpa Tv=54.6kpa 13 End of hole at 13.7 m in clay. Plate A-4

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor DATE OF INVEST. HOLE NO. 4 LOGGED/DWN. CKD. JOB NO. SDG NCB 6/08/87 87422 DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE SYMBOL 450 & 500 mm DEPTH DATUM Wp - [W-0 WL - A. Geodetic Augers PERCENT % SURFACE ELEVATION 230.64 m (M) OTHER TESTS 50 0 Fill -clay -concrete rubble - 1 Clay -silty -brown - 2 Silt -tan -wet to saturated - 3 Clay -mottled brown -highly plastic
-stiff to firm -lacustrine 4 $\gamma_{W}=16.30 \text{kn/m}$ pp=108.9kpa 5 Tv=57.4kpa -grey qu=135.1kpa U $y_{w} = 17.00 \text{kn/m}^{3}$ 8 pp=147.5kpa Tv=72.8kpa 9 10 qu=106.7kpa -11 $V_{W} = 16.72 \text{kn/m}$ pp=93.8kpa Tv=56.0kpa -12 13 Plate A-5

BOREHOLE LOG PROJECT Kildonan Corridor

DYREGROV & BURGESS

LC	GGE	D/DI	NN.		SDG		C	KD.	NCB			DATE OF INVEST.	6/08/87	JOB NO.	874	22		HOLE NO. 4
		W	ATE	R	CON	TEN	T			7	70	SOIL	DESCRIPTIO	N			AMPLE	DRILL TYPE
		p - C	F		-O ENT	*	L - Z	60	DEPT	- 1	SOIL SYMBOL	DATUM Geodet SURFACE ELEVATION			CONDITION	TYPE	PENETRATION	450 & 500 mm Augers
	10			30					— 14 — 15	1		Clay -grey -highly -lacustr	plastic		Z	U		qu=68.2kpa &w=16.04kn/m pp=94.2kpa Tv=47.4kpa qu=128.4kpa &w=16.51kn/m
	6								— 17 — 18 — 19 — 20	33	100000	Silt (Glacial -sandy, ewet -loose to -medium	gravelly	19.5 m	_			a _w -16.51kH/H pp=81.4kpa Tv=43.6kpa
									— 21		1, 12	End of hole a -Smooth auger -Possible bed -Water inflow -Water level s in about 15 m	refusal rock at 20.4 from 20.4 r stabilized a	n				
																		Plate A-6

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor JOB NO. 87422 HOLE NO. 5 DATE OF INVEST. LOGGED/DWN. CKD. SDG NCB 6/08/87 DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE 450 & 500 mm Geodetic PENETRATION PESISTANCE DEPTH DATUM Wp - -W-O WL - A. Augers PERCENT % SURFACE ELEVATION 228.72 m (M) OTHER TESTS 20 10 Fill -silty 0 -clay Clay -black See Dilatomete Clay -silty Test Results -brown (DMT 2) -alluvial 2 Clay -mottled brown -highly plastic -3 -stiff to firm -lacustrine 4 qu=53.7kpa#_w=16.18kn/m - 5 pp=112.5kpa Tv=59.4kpa 6 -grey 7 qu=114.2kpa - 8 $\gamma_{W}=17.38$ kn/m pp=122.6kpa Tv=62.7kpa - 9 10 qu=95.3kpa $\gamma_{W}=17.78$ kn/m - 11 pp=66.1kpa Tv=39.7kpa 12 13 Plate A-7

			PROJECT	IOLE LOG	
DYREC	ROV &	BURG		n Corridor	
OGGED/DWN.	SDG CKD.	NCB	DATE OF INVEST. 6/08/87 JOB NO	o. 87422	HOLE NO. 5
WATER	CONTENT	_ 5	SOIL DESCRIPTION	SOIL SAMPLE	DRILL TYPE
Wp - □ V	ν-Ο WL-Δ.	DEPTH 3	DATUM Geodetic	CONDITION TYPE FENETRATION RESISTANCE	450 & 500 n Augers
	CENT %	=	. I	CONDITION TYPE TYPE ENETRATION	
10 20 30	40 50 60	(M) 8		0 8.5	OTHER TESTS
		14 V	<u>Clay</u> (cont'd)	/U	qu=118.4kpa
					Y _w =16.51kn/r
		+ V			pp=103.4kpa
		-15			Tv=49.3kpa
	P	7			
		7 r			
		1 10 4	1		
		16	Silt (Glacial Till)		
PRY		7 1	-Sallay		
1////		17	gravelly -clayey		
		T'' P	-loose		
6		- 17			
		18	1		
			F. J E. h. 1 L. 10. 7		
		19	End of hole at 18.7 m -Possible bedrock		
			-No seepage		
		1			
		-			
		1			
		-			
		7			
		1	B		
		4			
10 11					
		-			
		7			
		1			
		1			
		+			
		1			
		1			
		+			10
					PlateA-8

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor HOLE NO. 6 DATE OF INVEST. LOGGED/DWN. CKD. JOB NO. NCB SDG 10/08/87 87422 Hollowstem CONTENT WATER SYMBOL SYMBOL SOIL DESCRIPTION SOIL SAMPLE PENETRATION HESISTANCE 550 & 600 mm DATUM Wp -W-0 WL - A. Geodetic Augers PERCENT % SURFACE ELEVATION 227.47 m (M) OTHER TESTS 50 See dilatomete Clay -silty test results -some sand -alluvial to 15.2 m -stiff to 1.2 m depth (DMT 1) -soft from 1.2 to 3.3 m 2 $v_w = 17.90 \text{kg/m}$ 3 U pp=114.9kpa 4 Sand -little to some silt -trace to some clay MA -fine to medium grained - 5 very dense, 5.2 - 6.4 m -medium grained, grey, saturated -MA - 6 pp=35.9kpa 7 Silt -some sand -some to little clay $v_{w} = 18.00 \text{ kg/m}^{-1}$ 8 -firm to stiff pp=67.0kpaTv=31.6kpa w = 17.71 kg/m9 U pp=88.6kpa Tv=15.8kpa 10 $Y_{w} = 14.97 \text{kg}/$ pp=52.7kpa. 11 12 Clay -silty, very stiff, alluvial pp=148.4kpa U Tv=67.0kpa End of hole at 12.5 m Standpipe piezometers SP 1 and 13 SP 2 installed Plate A-9

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor CKD. DATE OF INVEST. LOGGED/DWN. JOB NO. SDG NCB HOLE NO. 10/08/87 87422 DRILL TYPE WATER CONTENT DESCRIPTION SOIL SOIL SAMPLE Hollows tem W-0 DEPTH DATUM Wp -WL-A. Geodetic 550 & 600 mm PERCENT % Augers 227.47 m SURFACE ELEVATION OTHER TESTS 30 40 50 60 10 20 SP 1 Tip at 12.2 m Sand to 11.6 m Bentonite to 10.4 m 230 mm Ø augers SP 2 Tip at 6.1 m Sand at 5.6 m Bentonite to 4.6 m 230 mm Ø augers Pipe ID - 19 mm

Plate A-10

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor LOGGED/DWN. CKD. DATE OF INVEST. JOB NO. SDG NCB 7/08/87 87422 HOLE NO. DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION PESISTANCE 450 & 600 mm DATUM Geodetic Wp - 0 W-O WL-A. DEPTH CONDITION Augers PERCENT % SURFACE ELEVATION 227.13 m (M) OTHER TESTS 20 30 40 50 Topsoil Silt -sandy -some clay 1 -brown -alluvial 2 Sand -some silt -trace clay - 3 MA -saturated 4 Silt -some sand and clay 5 -grey -wet -firm 6 7 -MA U 8 $\chi_{\rm W} = 17.95 \,{\rm kg/m}^3$ Sand -fine grained -grey, saturated pp=61.3kpa Tv=32.6kpa Silt -some sand and clay 9 Clay -grey -highly plastic 10 -firm 100 mm gravel layer, shells qu=67.7kpa $V_{\rm W} = 18.34 \,{\rm kg/m}^3$ U - 11 pp=151.2kpa Tv=69.9kpa 12 13 Plate A-11

YREGROV	& BURGE	PROJECT Kildonan	Corridor		
GED/DWN. SDG	CKD. NCB	DATE OF INVEST. 7/08/87 JOB NO.	87422		HOLE NO. 7
WATER CONTEN		SOIL DESCRIPTION	SOIL S	AMPLE	DRILL TYPE
WP- W-O WL	0	Geodetic Geodetic	CONDITION	PENETRATION RESISTANCE	550 &600 mm Augers
10 20 30 40 50	o 60 (M)	SURFACE ELEVATION 227.13 m	8	F. S.	OTHER TESTS
$H = \frac{1}{2} + $	14	Clay & Classal Till			
1191111	14 12	— — — Clay & Glacial Till			
	111 2				
	15 3				
6 1 1 1 1 1 1	111 8				
	idos	Silt (Glacial Till)			
	16	-wet, loose, clayey			
		End of hole at 16.2 m.			
		-Smooth auger refusal		VI 8	
	17	-Water seepage 20 minutes after			
		completion of drilling			
		-600 mm casing to 10 m depth			
		-Possible bedrock at 16.2 m			
	 				
	 				
	1111				
to the standard of the last	-1-1-1-1		2010 07 DV 177	N	

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor DATE OF INVEST. LOGGED/DWN. CKD. JOB NO. SDG NCB 7/08/87 HOLE NO. 87422 DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE 550 & 600 mm PENETRATION PESISTANCE DATUM Geodetic CONDITION W-0 DEPTH Wp - [WL - A. Augers PERCENT % SURFACE ELEVATION 227.17 m (M) OTHER TESTS 50 20 30 40 Fill -clay, concrete rubble Silt -clayey, brown, stiff -alluvial Sand -fine grained -some silt -brown %_w=18.01kg/m³ 3 saturated U pp=56.2kpa Tv=39.7kpa-5 -grey 6 8 Silt -some sand and clay qu=57.3kpa9 -wet $\chi_{W} = 16.97 \text{kg/m}$ -stiff to firm U pp=183.8kpa Tv=62.2kpa10 -11 -- 50 mm gravel layer 12 qu=49.1kpa $t_{\rm W}$ =15.97kg/m 3 U Clay -grey pp=101.5kpa -highly plastic 13 Tv=57.4kpa -stiff to firm Plate A-13

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor LOGGED/DWN. CKD. DATE OF INVEST. JOB NO. SDG NCB 7/08/87 87422 HOLE NO. WATER CONTENT SYMBOL HILABO DRILL TYPE SOIL DESCRIPTION SOIL SAMPLE Geodetic PENETRATION PESISTANCE 550 & 600 mm DATUM Wp -W-0 WL - A. Augers PERCENT % SURFACE ELEVATION 227.17 m (M) OTHER TESTS 20 Clay (cont'd) -14 -- gravelly -15 16 Silt (Glacial Till) -sandy, gravelly -some clay -tan -17 -seepage from 16.5 m End of hole at 17.7 m -18 -Rough auger refusal at 17.7 m -Water level at 7.2 m on completion of drilling -600 mm casing to 4.6 below grade Plate A-14

DVDE	ROV &	RUPGI	PROJECT	IOLE LOG	
7.110			KITGOR	an Corridor	
OGGED/DWN.	SDG CKD.	NCB	DATE OF INVEST. 27/08/87 JOB NO	0/422	HOLE NO. 12
WATER	CONTENT	No.	SOIL DESCRIPTION	SOIL SAMPLE	
	V-O WL-A.	HT430	DATUM Geodetic	CONDITION TYPE PENETRATION RESISTANCE	Hollow Ste
10 20 30	40 50 60	(M) 8		S N N	OTHER TESTS
		$H \circ \aleph$	Fill -clay		P1
		\square \bowtie	-some gravel		Pneumatic
		$H_1 \bowtie$	Clay -silty		piezometer
		- 1	-brown		tip @ 7.8m sand to 7.1
		\Box	-stiff -alluvial		bent. to6.1
++++		H 101	-medium to highly plastic		Dent. coo.
1111		2 /	- meatum to highly prastic		
		H N			
		1 3 L			qu=46.4kpa
		- 11		U	y _w =18.00kn/
				\vdash	W-10.00KII/
		H	81		pp=97.0kpa
		4 4			Tv=27.8kpa
		HY			
		5 V	— −-grey		
		H			
		1			V 17 071
		6			y _w =17.37kn/
		11		U	pp=59.8kpa
		H			
		7 [11			
		H ' lu			
	is a later	I I'			
		11			
		H 8 K			
		9 11			qu=67.4kpa
			Clay -mottled brown to grey	Zu	₹ _w =19.95kn/
			-highly plastic	H	
		$H \mid \lambda$	-lacustrine		pp=143.6kpa
		10	The state of the s		
		+			
		11			
		$H \cap A$			
		+ $1/$			
		12			qu=51.2kpa
				Zu	χ _w =17.60kn/
				H	
		13	End of hole at 12.8 m.		pp=87.8kpa Tv=58.4kpa
			Install pneumatic piezometer		
			and dari productor prezonicoer		Plate A-18

BOREHOLE LOG PROJECT DYREGROV & BURGESS Kildonan Corridor DATE OF INVEST. 27/08/87 LOGGED/DWN. CKD. JOB NO. HOLE NO. SDG NCB 87422 WATER CONTENT SOIL DRILL TYPE DESCRIPTION SOIL SAMPLE PENETRATION RESISTANCE DEPTH DATUM Geodetic CONDITION Wp -W-0 WL - A. Hollow Stem PERCENT % SURFACE ELEVATION 227.60 m OTHER TESTS 20 30 10 Fill -clay 0 Station --some gravel 3+90.9 Clay -silty -brown -alluvial 2 Clay -mottled brown -highly plastic -stiff to firm 3 -lacustrine 4 5 - 6 qu=56.5kpa $Y_{W} = 16.77 \text{kn/m}^3$ pp=93.8kpa 7 Tv=48.8kpa 8 9 10 11 12 13 Plate A-19

DYRE	GRO	VE	BUR	GE	PROJECT Vildenan C					
					Kirdonan c					
OGGED/DWN.	SDG	CKD.	NCB		DATE OF INVEST. 27/08/87 JOB NO. 8	1			HOLE NO.	13
WATE	R CONTE	ENT		30L	SOIL DESCRIPTION	so	IL SA	AMPLE		
Wp -	w-0	wL-A.	DEPTH	SYME	DATUM Geodetic	TION		PENETRATION RESISTANCE	Hollow	Ster
P	ERCENT %			SOIL 8		CONDITION	TYPE	SISTA	- A 1179-17	
10 20	30 40	50 60	(M)	Š	SURFACE ELEVATION 227.60 m	ō		图 第	OTHER	TEST
			14	/	Clay (cont'd)					
						11				
				/		П				
			15	11		П				
	+++		13	/						
				H						
			1	/						
			16							
	545 115			/						
			17							
			- 17	ili	Silt (Glacial Till)					
				1	-sandy and gravelly					
				T.p	-bouldery					
			18	1						
				100						
				4	End of hole at 18.6 in glacial til	1.		1		
			19		Backfill with sand to 14.9. Place					
	+++				pneumatic piezometer @ 14.9 (P2)					
					pneumatic piezometer @ 14.9 (P2) Sand to 14.2 m	W				
			20		Bentonite to 13.1 m		- 1			
							- 1			
					Set pneumatic piezometer (P3) with		- 1	. 1		
		+++			tip @ 9.1 m. Sand to 8.5 m.			1		
			7 1		Bentonite to 7.5 m.		- 1	- 1		
				Ϋ́						
					5					
								1		
		+++								
			7 1							
			7						Plate	

DYRE	GRO	v s	В	URI	GE	SS	PROJECT	Kildonan (
		Lava										-	
OGGED/DWN.	SDG	CKD.	-	NCB		DATE OF I	10/03/07		874			HOLE NO.	14
WATE	R CONT	ENI			BOL		SOIL DESCRIPTION	ON		IL S	AMPLE	DRILL B-	
Wp -		WL-A.		DEPTH	SYMBOL	DATUM	Geodetic		TION	TYPE	MATION	75 mm	
	ERCENT %	50 60		(M)	SOIL	SURFACE	ELEVATION 223.64		CONDITION	7	PENETRATION	OTHER	
ПП	111			0	-	Water	223.04		+		2 4	OTHER	12313
				791									
			+										
			\Box	- 1									
			\pm								100		
			+						1/1				
				- 2									
			\pm										
			+	2									
			H	- 3							X		
			\pm										
			\pm										
			+	- 4							- 1		
			\Box										
			\pm	- 5									
			\pm						\mathbf{I}				
			\Box										
				- 6									
									11				
		+++	+										
		+++	H	- 7									
			H										
			世		1	0	1 6-11		1	1			
			++	- 8		overbur	den Soils					For DMT see DMT	resu
			+									ace Dill	3
			H		4	Glacial	Till						
			\Box	- 9			-,43052						
			\pm	f	1								
			H	70									
				-10									
			\Box	-	1.1								
			+										
		111	H	-11	1								
				-12									
			H	12	1				11	1			
			H										
				-13	4								
			\pm	-	14	3.0×30.44			-		-		
						- Illieston	e Bedrock					Plate	A-21

					PROJECT	E	L	OG	
DYREC	SROV	/ & E	BURG	3 E	Kildonan C	Corr	ridor	,	
OGGED/DWN.	NCB	CKD.	NCB		DATE OF INVEST. 18/09/87 JOB NO. 8	3742	22		HOLE NO. 14
WATER		NT	The second second second	5		_	_	MPLE	DRILL TYPE
Wp -	W-O W	/L-Δ.	DEPTH	IL SYMB	DATUM Geodetic	CONDITION	TYPE	PENETRATION RESISTANCE	B-24 75 mm Bit
10 20 30	0 40 5	50 60	(M)	So	SURFACE ELEVATION 223.64 m	8		F F	OTHER TESTS
			14	Н	Sound Rock	-	-	-	Rec 100%
				+	South Nock				100%
			7 1	4		14			
			15	4	Sound Rock				Rec 91%
			15		25 mm clay seam at 15.2 m				RQD -80%
			7 1	T					
			d h	H					
			16	44	Sound Back	1-		-	DEC 049
			d 1.	1	Sound Rock 25 mm clay seam at 16.7 m				REC94% RQD -75%
			17		23 mm cray scam at 10.7 m	11			1140 -75%
			17	T					
			1 1	H					
			1 1	+	Sound Rock	17			Rec100%
			18	Ц	No clay seams				RQD - 95%
			1						2000
			7 [I					
		300	19 -	Ш		1			
			-		End hole at 19.1 m.				
					Rock surface estimated at Elev 210.38 m.				
			20		Top 150 mm unsound.				
			1		. op 100 mm allound				
			1	1					
			1					1	
			7 i				1		
			1						
			1						
			1						
			1						
			1						
			1						
			1						
			1						
			1						
			1						
	15 5 3								
			1	1					
			1						
	+		1						Plate A-22

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 24/09/87 LOGGED/DWN. CKD. JOB NO. HOLE NO. 87422 15 DRILL TYPE WATER CONTENT SOIL SAMPLE SOIL DESCRIPTION SYMBOL DEPTH DATUM W-0 WL . A. Wp -PERCENT % m 223.67 m SURFACE ELEVATION OTHER TESTS 50 WATER -1 -2 3 - 4 5 - 6 - 7 8 - 9 -10 ALLUVIAL SOILS GLACIAL TILL - 11 (depth to till extranolated from DMT 6) -12 -13 LIMESTONE BEDROCK PLATE A-23

og	GED/DI	VN.			C	KD.			DATE OF INVEST. 24/09/87 JOB NO. 8	7/122)		HOLE NO. 15
	W	ATER	co	NTE	NT			Iz	SOIL DESCRIPTION	$\overline{}$		AMPLE	10
	_	1	_	W	_	١.	DEPTH	S	DATUM	CONDITION	TYPE	PENETRATION	
1	0 2	0 30) 4	0	50	60	m	-	SURFACE ELEVATION	8		PENE SES	OTHER TESTS
							14	#	BROKEN ROCK		3		
							=	111	SOUND ROCK	19			RES - 28%
	Ro Mari							11	NO RECOVERY	+ 1			KUD - 60%
				\pm	\vdash	\pm	15	II		11			REC - 99%
					+			ht	SOUND ROCK				RQD - 60%
					H		16	11	NO RECOVERY		C.		
			+	-		H	10	十	SOUND ROCK				REC - 99%
						1	Ξ.	H					RQD - 79%
						+	17	#					
						+		H	SOUND ROCK	178		77	REC - 100%
						\pm		1		12		_	RQD - 70%
							18		NO RECOVERY				
		+							1,6 1,6 1,6				
			+				- 10	I	BROKEN ROCK				-
							19	4		1 1			DEC 040
			\Box			\Box	7	Н	SOUND ROCK	П			REC - 84%
						\Box	20	U		Н			RQD - 17%
						\perp		4		H	-	-	
								4	SOUND ROCK				REC - 100%
1							21	\prod					RQD - 45%
						\mathbf{H}		TT					
-		-	+				- 00	-11	NUMBER OF STREET	11			
-							22		End hole at 21.7 m. Rock surface estimated at elev.				
		1	1		1		7		210.53				
									Top 0.9 m unsound rock.				
1													
1													
+													
1	+	++			111								
-			\Box			H							
1				\blacksquare									
1			#										
1							1						
+		++					1						

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 25/09/87 CKD. JOB NO. HOLE NO. 16 LOGGED/DWN. 87422 DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION RESISTANCE DEPTH DATUM W-0 WL - A. Wp -PERCENT % SURFACE ELEVATION 223.61 m m 50 OTHER TESTS 20 10 WATER - 1 - 2 - 3 - 4 - 5 - 6 7 - 8 9 FOR TESTS IN ALLUVIAL SOILS ALLUVIUM SEE - 10 DMT 7 GLACIAL TILL 11 -SOFT/LOOSE -PUSHED DRILL RODS TO BEDROCK SURFACE 12 LIMESTONE BEDROCK PLATE A-25

) Y	REG	3 R	01		S. 1	BUR	GE	PROJECT PROJECT				.UG		
					_				KILDONAN CORRIDO						
00	GED/D					D.	1		DATE OF INVEST. 25/09/87 JOB NO.		_			HOLE NO.	
	Wp - (ATER	w-0	_	ν _L - Δ		DEPTH	SYMBOL	SOIL DESCRIPTION	\rightarrow			AMPLE NO 30	DRILL	TYPE
	10		CENT		50	60	m	=	SURFACE ELEVATION		CONDITION	TYPE	PENETRATION RESISTANCE	OTHER	TECT
T	TI			Ĭ	ĬI	Ĩ	1675	-	BROKEN ROCK TO 13.7 m	1	+	-	2 4		
ŧ							14	H	3 - 6mm clay seams at 14.0 m					REC -	75%
ŧ					H		1,5	T		1				REC -	95%
					H	+	15		SOUND ROCK		۱			RQD -	
								世		1	1		1	WAD -	00%
							16	#		1	1				
-							=	井	—— 225 mm seam or soft rock					REC -	00%
F	1					H	17	I						KEC -	90%
-		545				\mathbf{H}	3	世					LU.		
-						\coprod	18	1		+	1			_	
-						#		拱	SOUND ROCK					REC -	93%
L							1				-				
					H	H	19				1				
H						H	3		NO RECOVERY						
							20			+	+	+		· Inc	
t						H			Abandon hole at 20.1 m Drill rods jamming		1				
F						H			of the road Januarity		1				
1			+				7 1				1	1			
				1			3 1								
1		10 F					1								
-							1								
	Ī]								
	812]								
					A L		1								
							1								
]								
F							1								
														PLATE A	-26

WATER CONTENT	16A
PERCENT N 10 20 30 40 50 50 60 m S SURFACE ELEVATION WATER WATER A LIUVIAL SOILS GLACIAL TILL	TYPE
1 HATER - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - ALLUVIAL SOILS - 10 - GLACIAL TILL	
1	TEST
1	
2 3 4 5 6 7 8 9 ALLUVIAL SOILS GLACIAL TILL	
3 4 5 6 7 8 9 ALLUVIAL SOILS	
3 4 5 6 7 8 9 ALLUVIAL SOILS	
3 4 5 6 7 8 9 ALLUVIAL SOILS	
4 5 6 7 8 9 ALLUVIAL SOILS GLACIAL TILL	
4 5 6 7 8 9 ALLUVIAL SOILS GLACIAL TILL	
4 5 5 6 7 7 8 8 9 ALLUVIAL SOILS GLACIAL TILL	
5 6 7 8 9 ALLUVIAL SOILS GLACIAL TILL	
5 6 7 8 9 ALLUVIAL SOILS GLACIAL TILL	
5 6 7 8 9 ALLUVIAL SOILS GLACIAL TILL	
7 8 9 ALLUVIAL SOILS GLACIAL TILL	
7 8 9 ALLUVIAL SOILS GLACIAL TILL	
6 7 8 9 ALLUVIAL SOILS GLACIAL TILL	
7 8 9 ALLUVIAL SOILS GLACIAL TILL	
7 8 9 ALLUVIAL SOILS GLACIAL TILL	
7 8 9 ALLUVIAL SOILS GLACIAL TILL	
ALLUVIAL SOILS GLACIAL TILL	
ALLUVIAL SOILS GLACIAL TILL	
ALLUVIAL SOILS GLACIAL TILL	
ALLUVIAL SOILS GLACIAL TILL	
ALLUVIAL SOILS GLACIAL TILL	
ALLUVIAL SOILS GLACIAL TILL	
ALLUVIAL SOILS GLACIAL TILL	
ALLUVIAL SOILS GLACIAL TILL	
ALLUVIAL SOILS GLACIAL TILL	
GLACIAL TILL	
GLACIAL TILL	
GLACIAL TILL	
12	

DATE OF INVEST. 06/10/87 JOS NO. 87422 HOLE NO. 16	DYRI	EGR	2 VC	BUR	3 E	BOREHO PROJECT KILDONAN CORRIDO		- 1	.UG		
WATER CONTENT WILL OPPTH PERCENT NO OPPTH PERCENT NO OPPTH OPPTH			I ava								
Wo - W	200000000000000000000000000000000000000						_	_	1000		
PERCENT 10 20 30 40 50 60 m 5 SURFACE ELEVATION 8 F 2				DEPTH	SYMBOL		_			DAILE I	ire
AND GLACIAL TILL LIMESTONE BEDROCK REC - 10 UNSOUND ROCK NO CORE RECOVERY REC - 30% REC - 30%				m		SURFACE ELEVATION	CONDI	TYP	ENETRY	OTHER T	FCT
UNSOUND ROCK NO CORE RECOVERY 15 UNSOUND ROCK NO CORE RECOVERY 17 18 19 19 UNSOUND ROCK NO CORE RECOVERY UNSOUND ROCK NO CORE RECOVERY REC - 30%	10 20	30 40	50 60				+		E 4	OTHER T	EST
15 UNSOUND ROCK NO CORE RECOVERY 16 17 18 18 19 20 UNSOUND ROCK NO CORE RECOVERY 20 UNSOUND ROCK NO CORE RECOVERY 21 UNSOUND ROCK REC - 30% 22 UNSOUND ROCK REC - 30%				14	世	LIMESTONE BEDROCK					
16 NO CORE RECOVERY 17 - 18 - 19 - 20 UNSOUND ROCK NO CORE RECOVERY 21 UNSOUND ROCK RECOVERY 22 UNSOUND ROCK RECOVERY 23 End hole at 23.6 m.				15		UNSOUND ROCK			1		
16				# 10							
18 19 20 UNSOUND ROCK NO CORE RECOVERY 21 UNSOUND ROCK REC - 30% 24 End hole at 23.6 m.				16	ì	NO CORE RECOVERY					
18 19 20 UNSOUND ROCK NO CORE RECOVERY 21 UNSOUND ROCK REC - 30% 24 End hole at 23.6 m.											
UNSOUND ROCK NO CORE RECOVERY 21 UNSOUND ROCK REC - 30% 24 End hole at 23.6 m.				17							
UNSOUND ROCK NO CORE RECOVERY UNSOUND ROCK REC - 30% End hole at 23.6 m.											
20 UNSOUND ROCK NO CORE RECOVERY 21 UNSOUND ROCK REC - 30% 23 End hole at 23.6 m.				18							
UNSOUND ROCK NO CORE RECOVERY UNSOUND ROCK REC - 30% End hole at 23.6 m.											
UNSOUND ROCK NO CORE RECOVERY UNSOUND ROCK REC - 30% End hole at 23.6 m.				19							
UNSOUND ROCK NO CORE RECOVERY UNSOUND ROCK REC - 30% End hole at 23.6 m.				\exists			H		-		
21 UNSOUND ROCK REC - 30% 23 End hole at 23.6 m.				20		UNSOUND ROCK	П				
22 UNSOUND ROCK REC - 30% 23 End hole at 23.6 m.				1 21		NO CORE RECOVERY	П				
UNSOUND ROCK REC - 30% End hole at 23.6 m.				+ 21			П				
UNSOUND ROCK REC - 30% End hole at 23.6 m.				22			\perp				
23 End hole at 23.6 m.					4	UNSOUND ROCK				DEC 20	10/
				23	1					NEC - 30	1/0
				\Box	1		\sqcup				
				24		End hole at 23.6 m.					
PLATE A-28										440	

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR **DATE OF INVEST.** 07/10/87 JOB NO. 87422 CKD. HOLE NO. LOGGED/DWN. 16B DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION RESISTANCE DEPTH DATUM WP- W-O WL-A. PERCENT % SURFACE ELEVATION 223.69 m m OTHER TESTS 50 20 30 40 MATER -1 . 2 - 3 - 4 -5 - 6 - 7 - 8 - 9 ALLUVIUM -10 GLACIAL TILL - 11 (depth to till extrapolated from DMT 7) -12 - 13 PLATE A-29

OG	SED/D	WN	_		T	CKD.				DATE OF INVEST. 07/10/87 JOB NO.	074	00			HOLE NO.	
-			7 (CON	TENT				1	SOIL DESCRIPTION		_		MPLE	DRILL	100
		2	w-		WL-			DEPTH	SYMBO	DATUM	_	5	TYPE	PENETRATION RESISTANCE		
1	0		30	40	50	60		m	SOIL	SURFACE ELEVATION 223.69 m	3	3		PENE	OTHER	TESTS
			+		+		+	-14	711			-			-	
				+		H	+	14	1	LIMESTONE BEDROCK					REC -	100
				-			\blacksquare		41	SOUND ROCK		1			ROD -	
							\Box	— 15	立		+		Ħ	= 5		
							\exists		III	COUNT DOCK		1		10	REC -	98%
				+			H		4	SOUND ROCK		1			ROD -	83%
3							H	_16	4							
									4		+	+	-	_		_
							1		M	SOUND ROCK					REC -	96%
			H	-			H	_17	T_{ij}	SUUND ROCK						
							\Box		1			1			ROD -	90%
							\forall		+							
		111/3	+				H	_18	T			t	1		See	12.00
			\Box				\Box		1	COUNT DOCK		1			REC -	94%
							\Box		1	SOUND ROCK		1			ROD -	73%
-			1			+	\forall	-19	27				- 1			
	1	10					Ħ		11							
							Н			NO RECOVERY						
-		142					H	-20		110 110 110 110	\perp	1	4			
							П			End hole at 20.0 m				10.5		
			+							Drill rods jamming in broken			- 1			
-	+	1	1				H			rock and clay.			-	- 1		
			H	\Box			H					1	-			
							\Box									
+				+		+	H									
							H				B.					
1							\Box					1				
+																
-		1					H									
				\Box		1	\Box									
1																
1	10		11	H	+	+	H									
1																
1																
+	18			+			H	9								
1						1	H				1					
+							H									
1				+1		-	H									
+	-	-		1	-							1		1		

00	GED.	OWN				CK	D.			DATE OF INVEST. 14/10/87 JOB NO. 8	7/12	2		HOLE NO.	160
				CON	ITEN			T	١	SOIL DESCRIPTION		_	AMPLE		
		-0	w	-O	wL			DEPTH	S	DATUM	CONDITION	TYPE	PENETRATION RESISTANCE		
_	10	20	30	40	5	0	60	m	SOIL	SURFACE ELEVATION	9		PE S	OTHER	TESTS
t				\perp			\pm								
H										MATER	Ш				
+	++			+	+	-	++	1			П		1		
	H			H			H	7							
						1		1	19		14				
								2	h		Ш		- 1		
	H			H	+-		H								
						1		1		I					
					\Box			3							
	+	+		++	+	+					П				
_	H	+		H	\Box		1		l b		П	Ш			
	\Box	\pm					131	4							
	++	+			+		+	1							
_					H	+	H	- 1							
								5							
	+					+									
				1		-									
			015					6							
				1											
	+				++		\vdash								
				H	1			7			11				
				1	1										
	++			+	++										
				H				- 8							
								1							
	1			-				9			+ 1				
					H					ALLUVIUM					
										ALLOVION					
	1		+					10							
			-		H	-		— 10							
								1	П	C Color Color	11				
		+	-		\vdash			11		GLACIAL TILL					
				H	H			- 11	4	<pre>(depth to till extrapolated from DMT 7)</pre>					
									1	Trom Dirt 77					
		+						12							
			-		H			1.	:						
	I				\Box				N						
			+					13	4						
			-			+		13	14						

DYREGROV & B	UR	36	PROJECT KILDONAN CORRIDOR			.UG	
OGGED/DWN. CKD.	_		DATE OF INVEST. 14/10/87 JOB NO. 8		2		HOLE NO. 160
WATER CONTENT		7		_		AMPLE	
Wp - □ W - ○ W _L - △. PERCENT % 10 20 30 40 50 60	ОЕРТН	SOIL SYMBOL		CONDITION	TYPE	PENETRATION RESISTANCE	OTHER TEST:
	77.7	TT		-			
	- 14	丑	LIMESTONE BEDROCK SOUND ROCK				REC - 100% RQD - 85%
	-15	#	SOUND ROCK				REC - 92%
		#					RQD - 91%
	-16	H					
	10	典			-		
	-1 7	#	SOUND ROCK				REC - 98%
	17	+					R Q D - 96%
	10	五		+	1		
	-18	1	SOUND ROCK				REC - 100%
		11		H			RQD - 100%
	-19		NO RECOVERY				
				\perp			
	-20		BROKEN ROCK, NO RECOVERY	Ш			
		11	NO RECOVERY	H		-	
	-21	44	SOUND ROCK				REC - 93%
		H		П			RQD - 73%
	22	H					
			End hole at 22.3 m.				
	-23	7				7	
	331						
	1						
							PLATE A-32

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 15/10/87 JOB NO. CKD. HOLE NO. LOGGED/DWN. 87422 16D DRILL TYPE SOIL DESCRIPTION SOIL SAMPLE WATER CONTENT PENETRATION PESISTANCE CONDITION DATUM DEPTH W-0 WL-A. Wp -PERCENT % m SURFACE ELEVATION OTHER TESTS 50 20 30 40 10 WATER -1 -2 - 3 -4 -5 -6 -7 - 8 9 ALLUVIUM -10 GLACIAL TILL (depth to glacial till 11 extrapolated from DMT 7) - 12 13 LIMESTONE BEDROCK PLATE A-33

DVE	EGF	30	VE		UR	3 F	BOREH PROJECT	OLE	-	-OG	
LOGGED/DV	NY.	,0	СКС				KILDONAN CORRI DATE OF INVEST. 15/10/87 JOB NO.		422		HOLE NO. 16D
	WATER CONTENT					7	SOIL DESCRIPTION			AMPLE	
Wp - [Wp-□ W-O WL-△. PERCENT %				DEPTH	S	DATUM	CONDITION	T	PENETRATION	
10 2	0 30	40	50 6	50	m	SOIL	SURFACE ELEVATION	3		# #	OTHER TEST
					- 14	江井	150 mm clay or soft rock 150 mm clay or soft rock				REC - 69% RQD - 67%
					 15		NO RECOVERY				
					— 16	W.	SOUND ROCK				REC - 88%
					— 17	4	SOUND ROCK				REC - 100 RQD - 93%
					—18	H	SOUND ROCK				
							NO RECOVERY				
					_ 19	土	SOUND ROCK				
					— 20		UNSOUND ROCK				REC - 30% RQD - 10%
					— 21 — 22	TIT	SOUND ROCK				REC - 80% RQD - 63%
1						111	BROKEN ROCK				
							End hole at 22.5 m.				
											PLATE A-34

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 06/10/87 HOLE NO. 17 JOB NO. LOGGED/DWN. CKD. 87422 DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION RESISTANCE DEPTH DATUM Wp -W-O WL-A. PERCENT % 223.65 m m SURFACE ELEVATION OTHER TESTS 50 20 30 WATER -1 -3 -4 -5 6 7 -8 ALLUVIAL SOILS For tests in -9 alluvium see DMT 7 -10 GLACIAL TILL -11 VERY DENSEM HARD BELOW 11.2 m -12 -13 PLATE A-35

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR CKD. DATE OF INVEST. 06/10/87 LOGGED/DWN. JOB NO. 87422 HOLE NO. 17 DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION DEPTH DATUM Wp- W-O WL-A. PERCENT % m SURFACE ELEVATION OTHER TESTS 50 60 10 20 30 40 GLACIAL TILL -14 LIMESTONE BEDROCK -15 NO RECOVERY 14.3 to 15.5 m REC - 99% SOUND ROCK -16 RQD - 99% REC - 97% -17 SOUND ROCK RQD - 75% -18 REC - 97% SOUND ROCK RQD - 79% -19 SOUND ROCK REC 100% - 20 REC 0% BROKEN ROCK REC - 100% SOUND ROCK RQD - 70% - 21 REC - 93% SOUND ROCK RQD - 30% - 22 - 23 End hole at 22.6 m. PLATE A-36

_	Y	RE	E G	R	01	,	S. E	BUR	36	SS	PROJEC	T	OREHO			-UG				
		DWN.				Cx				DATE OF IN	VEST. 21		IN CORRIDO	R 874			HOLE NO.	1Ω		
	WATER CONTENT				۲			DESCRIPTION				AMPLE								
	Wp -	0	W	V-O WL		W-O WL		w _L -∆.		DEPTH	(0)	DATUM SURFACE E				CONDITION	TYPE	PENETRATION PESISTANCE		200.2
Т	10	20	30	40		50	60		S	SURFACE E	LEVATION	220.00		- 0		F. E.	OTHER	TEST		
+	H					+														
	\vdash	-		H			+	₹		WATE	R									
							11	+1												
-																				
-	H			H			+	4												
							\pm	1-2		N .										
-	+									(a										
				П			\Box			0										
							#	3								1				
+				++	+		++	-	1											
F		H	-	H	H		Π													
						0 = 2		1-4												
F				1																
E							11								14					
								5												
-				H				-												
						17														
1	1	+			1			-6												
				H		-	+													
E								1 1	М											
			+	+				7												
		1					H	7 1						11						
							\Box	1 1						11						
			+		1		++	-8												
	BB						\Box	-												
	1							1												
		H		1	+		++	9												
		\Box																		
		\perp						1 1								W. 7				
		11			+1			10												
		\Box						1												
		++		+	+			1 1												
			300					-11	11					- 1						
					\Box				1	GLAC	IAL TILL									
		1		+	+1	+		1	4	GLAC.	TUE ITEL									
		\Box	1		\Box			12												
									Till											
H	-	H			H			1	川		VXIX	1.0 A Part of the Control of the Con		++						
		Ħ						1-12	11	LIMES	STONE BE	DROCK, BR	OKEN TO 1	3 1m						
					\Box			13	4	SOUN	D ROCK,	13.1 - 13	.8 m				PLATE A	27		

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 21/09/87 LOGGED/DWN. CKD. JOB NO. 87422 HOLE NO. 18 DRILL TYPE SOIL DESCRIPTION WATER CONTENT SOIL SAMPLE PENETRATION DEPTH DATUM WP- W-O WL-A. PERCENT % m SURFACE ELEVATION 223.68 m OTHER TESTS 50 60 20 30 NO RECOVERY 13.8 - 13.9 m - 14 REC - 87% SOUND ROCK 25 mm clay seam at 14.6 m RQD - 82% REC - 95% 15 SOUND ROCK RQD - 87% - 16 REC - 95% SOUND ROCK - 17 RQD - 65% - 18 REC - 95% SOUND ROCK RQD - 87% - 19 REC - 95% SOUND ROCK - 20 - 21 SOUND ROCK REC - 93% - 22 End hole at 22.3 m. - 23 PLATE A-38

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 19/09/87 JOB NO. 87422 HOLE NO. 19 CKD. LOGGED/DWN. DRILL TYPE SOIL DESCRIPTION SOIL SAMPLE WATER CONTENT PENETRATION RESISTANCE DEPTH DATUM WL-A. WP- W-O PERCENT % SURFACE ELEVATION 223.62 m OTHER TESTS 50 60 20 30 40 WATER - 1 - 4 - 5 6 7 - 8 9 GLACIAL TILL (depth to glacial till extrapolated from DMT 5) 10 11 12 PLATE A-39

DYREGI	a vos	BUR	GE	BOREHO PROJECT		ı	LOG		
	СКО.	Y 1Y		KILDONAN CORRIDO					
OGGED/DWN.	- 0-3 SV/V		Ι.	DATE OF INVEST. 19/09/87 JOB NO.	_	_		DRILL TYPE	
wp-□ w-0	ο w _L -Δ.	DEPTH	SYMBOL	SOIL DESCRIPTION DATUM		_	AMPLE	OTHER TESTS	
PERCEN 10 20 30	40 50 60	m	SOIL	SURFACE ELEVATION	CONDITION	TYPE	PENETRATION		
			-	GLACIAL TILL			-		
		14	1	LIMESTONE BEDROCK				REC - 30%	
			III	BROKEN ROCK TO 14.6 m				REC - 30%	
			IT						
		15	1	SOUND ROCK				REC - 100%	
		+	1/1					300 0 3750	
			1						
		16							
			H					-7.1	
			1	SOUND ROCK				REC - 96%	
		17	11						
			ITT			V.Y		RQD - 94%	
			1		-		-		
		18	11	SOUND DOO!					
			14	SOUND ROCK				REC - 96%	
								DOD 740	
		19						RQD - 74%	
			1						
			11	SOUND ROCK				REC - 97%	
		20	M	Pro-19 C. Lan. 1982				NEG - 37/6	
			T						
		21		End hole at 20.7 m.					
		-	18	Life Hote at 20.7 m.		MM			
		H							
					П				
		H							
					11			PLATE A-40	

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 03/10/87 JOB NO. 87422 LOGGED/DWN. CKD. HOLE NO. DRILL TYPE SOIL SAMPLE WATER CONTENT SOIL DESCRIPTION PENETRATION DEPTH DATUM Wp -W-0 WL- A. PERCENT % SURFACE ELEVATION 223.61 m m OTHER TESTS 50 60 20 WATER -1 ALLUVIAL SOILS - 2 (for test results see DMT 4) - 3 - 4 - 5 - 6 - 7 GLACIAL TILL - 8 (depth to till extrapolated from DMT 4) - 9 -10 - 11 - 12 - 13 LIMESTONE BEDROCK PLATE A-41

DYREG	ROV & E	SUP	3 F	BOREH PROJECT	IOLE		LOG		
-1820				KILDONAN CORRI					
OGGED/DWN.	CKD.	-		DATE OF INVEST. 03/10/87 JOB NO				HOLE NO. 20	
WATER	CONTENT	DEPTH	301	SOIL DESCRIPTION	5	OIL	SAMPLE	DRILL TYPE	
	W-O W _L -△. PERCENT %		L SYMB	DATUM		TYPE	PENETRATION RESISTANCE		
10 20 30	40 50 60	m	SOIL	SURFACE ELEVATION 223.61 m	1	3	A 85	OTHER TESTS	
		14		BROKEN ROCK 13.4 - 14.0 m				DEC CAN	
		T 14	4	BROKE 1 ROCK 13.4 - 14.0 III				REC - 64%	
		7 1	1	SOUND ROCK BELOW 14.0 m	-14		144	RQD - 53%	
		15	4		-	+	-		
		1 13	4	SOUND DOCK				REC - 97%	
		7	+	SOUND ROCK					
		16	11					RQD - 81%	
		10	4						
			+		-	-	+ +		
		1 17	4	SOUND ROCK				REC - 95%	
		17	4	שואט אווכא					
		1 1	Ш			1		RQD - 93%	
		1 10							
		18				1			
		1 1		SOUND ROCK				REC - 92%	
		1 10							
		19	7	100 mm clay seam			12 4	RQD - 69%	
					-	-	-	_	
			1	SOUND ROCK			10.51	070	
		20					1 1	REC - 97%	
						1	1 1	RQD - 73%	
		1	H						
		21	1			1			
		1	H	SOUND ROCK				REC - 92%	
			Щ						
		22						RQD - 79%	
		1 1	M						
		1	1	100.00000000000000000000000000000000000					
		23		End hole at 22.6 m.					
		1							
		1							
		1							
		1							
								PLATE A-42	

	ΟY	RI	EG	R	ov	8	E	UR	36	ss	PROJEC		DREHOL	E	L	.OG		
						СКС		7			EF 00		CORRIDOR	7.0.0			Lugiana	
LOI	GGED		_							DATE OF INVE		09/87	JOB NO. 87	_			HOLE NO.	
_	_	_	_		NTEN			DEPTH	BOL		SOIL	DESCRIPTION	V		IL S	AMPLE	DAILE	11172
	Wp	-0			WL	-Δ.		DEPTH	SYN	DATUM				CONDITION	TYPE	PENETRATION		
		20	PERC 30	ENT 40			50	m	=	SURFACE ELE	VATION	223.63 m		COND	17	ENETH	OTHER	TEST
I	10	20		II	TĨ	I	Ĭ		-							2 -	Omen	1201
+	+			+	++	+	-			HATER.				П				
ļ	\Box		H	+		-				MAILK				П				
1								1							L B			
-	++			++	+	-								1				
F	H			-	\blacksquare			1		A1 1 1114	TI 000	1.0				, I]		
+								2		ALLUVA			- DAT 41					
+	+1			++	+	-				(†0	r test	results se	ee uni 4)					
1	H							1										
+								3	919					П				
+	11		-	H	11	-										TU		
F	\parallel	1														417		
+		1 2						- 4										
F			H		+	+								П				
I							() H							П				
+	+		+	++	++			- 5						П				
1				H	\blacksquare	-												
-																		
1	+	+	+					- 6										
F	\Box					+												
İ																		
+	+	+		++			-	7										
1				Н		\blacksquare												
1		\pm							H	EV 0325	7 . 22/7							
+	++	+	+	1	++	+	+	- 8	AH	GLACIA								
1	1			H			P		11	(de	om DMT	till extra	inolated					
1									14	11	Jin Dill	1.7						
-				+	+-	+		- 9	1.									
F	H				\Box													
1																		
F		3/2						- 10	1									
						\Box			1.11				1					
-					++													
								- 11	1									
-									1.1									
	1	15																
					H			- 12										
						\Box		12	19									
F	H	1			+	+			1									
						\Box		- 13	1									
-	++			++-					14	LIMEST	ONE DE	חפתכע					21, 22, 23	- 3
										LINESI	ONE DE	אטטאט		TE I			PLATE A	-43

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 28/09/87 JOB NO. 87422 HOLE NO. 21 LOGGED/DWN. CKD. DRILL TYPE SOIL DESCRIPTION SOIL SAMPLE WATER CONTENT PENETRATION DEPTH Wp-□ W-O WL-A. DATUM PERCENT % SURFACE ELEVATION OTHER TESTS 10 20 30 40 50 60 NO RECOVERY TO 14.2 m - 14 SOUND ROCK, 14.2 - 14.8 m - 15 REC - 99% --- 25 mm clay seam RQD - 44% SOUND ROCK - 16 SOUND ROCK REC - 97% - 17 RQD - 81% - 18 --6 mm clay seams (2) REC - 95% -- 12 mm clay seam RQD - 45% SOUND ROCK - 19 REC - 98% SOUND ROCK 20 RQD - 67% 21 SOUND ROCK REC - 100% RQD - 36% - 22 End hole at 22.4 m. - 23

PLATE A-44

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR HOLE NO. 22 DATE OF INVEST. JOB NO. 87422 CKD. LOGGED/DWN. 23/09/87 DRILL TYPE SOIL DESCRIPTION SOIL SAMPLE WATER CONTENT PENETRATION RESISTANCE DATUM DEPTH Wp-□ W-O WL-A. PERCENT % 223.68 m m SURFACE ELEVATION OTHER TESTS 50 30 10 20 MATER - 1 2 ALLUVIAL SOILS (for testing see DMT 3) - 3 - 4 - 5 6 - 7 - 8 GLACIAL TILL (depth to glacial till extranolated from DMT 3) 9 - 10 - 11 - 12 13 LIMESTONE BEDROCK PLATE A-45

DYRE	GRC	v	S. E	BURG	3 6	BOREHO PROJECT	LE	L	.OG	
						KILDONAN CORRIDO	_			
OGGED/DWN. CKD.						DATE OF INVEST. 23/09/87 JOB NO.	_	_		HOLE NO. 22
WATER	TENT			BOL	SOIL DESCRIPTION		IL S	AMPLE	DRILL TYPE	
	Wp-□ W-O WL-△. PERCENT %		DEPTH	IL S	DATUM	CONDITION	TYPE	PENETRATION RESISTANCE		
10 20	30 40	50	60	m	SC	SURFACE ELEVATION 223.68 m	ő		£ £	no RFC
			#	14	TÌ	BROKEN ROCK, 13.0-13.8 m	+			REC - 99%
				1 14	1	SOUND ROCK				RQD - 45%
				-		SOUND ROCK				REC - 99%
				1-15	T					RQD - 83%
				1	11					
					4					
				16	11	()	+			
				1	1	SOUND ROCK				REC - 96%
					1					
			+	17	T					RQD - 73%
			+		1					
			1		T	COUND DOCK				
			#	18	7	SOUND ROCK			1717	REC - 93%
					1					RQD - 66%
			1+		11					1040
				19	-	End hole at 19.0 m.				
						End hore at 19.0 m.				
			++	+						
			1	1			11			
			1							
				1						
				+ 1						
				7						
			#	1						
				1						
				1 1						
				1						
				1 1						
			++	1 1						
				1						
				1						
				1 1		V				
			1	1						
				1				16		
										PLATE A-46

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR HOLE NO. 23 DATE OF INVEST. 22/09/87 JOB NO. 87422 CKD. LOGGED/DWN. DRILL TYPE SOIL SAMPLE DEPTH SAMBOR SOIL DESCRIPTION WATER CONTENT PENETRATION PESISTANCE DATUM Wp-□ W-O WL-A. PERCENT % M SURFACE ELEVATION 223.70 m OTHER TESTS 50 WATER 1 ALLUVIAL SOILS - 2 (For testing see DMT 3) - 3 - 4 - 5 6 - 7 - 8 GLACIAL TILL (Depth to till extrapolated 9 from DMT 3) - 10 11 12 13 LIMESTONE BEDROCK PLATE A-47

BOREHOLE LOG PROJECT KILDONAN CORRIDOR

DYREGROV & BURGESS

LOGGED/DW	N.	CKD.			DATE OF INVEST. 22/09/87 JOB N	o. 87422			HOLE NO. 23
WA	TER CON	TENT		7	SOIL DESCRIPTION			AMPLE	DRILL TYPE
	W-O PERCENT	*	DEPTH	SOIL SYMBOL	DATUM	CONDITION	TYPE	PENETRATION RESISTANCE	
10 20	30 40	50 60		S	SURFACE ELEVATION 223.70 m	- 0		K &	OTHER TESTS
			1 14	T	SOUND ROCK				REC 87%
			14	4		111			RQD 83%
			1	11			ha!	11	17064 365
			1	7				-	
			15	11	SOUND ROCK				REC 97%
	++++	++++	1	4					RQD - /0%
				1		13111	111		
			16	#			1		
			1	1			-		
			1	1	SOUND ROCK				REC 100%
			17	4					
			1/						RQD - 88%
			1	11					
			10	4			-		
			18	1	SOUND ROCK				REC 95%
		5 5 5 5		IT			3		RQD - 47%
		++++	19	Atr					
				Ш		1	_		
			1		SOUND ROCK				222 223
	1136		20	1		- 11		- 11	REC 97%
			- 20	III		4.1			RQD - 61%
	0.8 24-1						_ 1		
+++			1	II				_	
			21		End hole at 20.9 m.				
					Elia Hore at Evis III.	1.1			
				819		- 11			
			1	18					
				1					
1									
$\Pi\Pi$									
			1						
	19 6 5 6		1						
			1						
HH			1						
			1					-	27.75.75.F.27.5
-			1						PLATE A-48

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR HOLE NO. DMT 3 DATE OF INVEST. 22/09/87 JOB NO. 8/422 LOGGED/DWN. CKD. DRILL TYPE CONTENT SOIL DESCRIPTION SOIL SAMPLE WATER PENETRATION RESISTANCE DEPTH DATUM Wp -W-0 WL-A. PERCENT % SURFACE ELEVATION 223.70 m OTHER TESTS 30 20 10 MATER 1 UNDRAINED 2 SHEAR SILT - clavey STRENGTH (kPa) 10.3 3 CLAY - silty - 11.3 12.1 13.1 4 13.9 14.8 15.8 5 16.6 15.8 26.9 20.7 6 19.8 STRATIFIED SILTY CLAY AND 31.2 CLAYEY SILT - 27.9 7 34.5 38.6 8 End Dilatometer testing at 7.9 m. Refusal on glacial till or boulder at 7.9 m. PLATE A-49

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 30/09/87 HOLE NO. DMT 4 CKD. JOB NO. 87422 LOGGED/DWN. DRILL TYPE DEPTH HTGEO SOIL DESCRIPTION WATER CONTENT SOIL SAMPLE PENETRATION DATUM Wp -W-O WL-A. PERCENT % SURFACE ELEVATION 223.61 OTHER TESTS 50 60 m UNDRAINED WATER SHEAR - 1 STRENGTH (kPa) - 2 CLAYEY SILT 28 27 27 - 3 36 STRATIFIED SILT, SAND, AND CLAY 4 45 39 5 SILTY SAND ø=34⁰ ø=36⁰ 6 7 51 SILTY CLAY 59 58 End dilatometer test at 7.5 m. 8 Refusal on boulder or glacial till. PLATE A-50

									PROJEC		OREHOL	E	L	.OG		
DY	RE	EGF	10/	/ 8	. 8	UR	3 E	SS	7.1.0020		AN CORRIDO	R				
OGGE	D/DWN.			CKD				DATE OF IN	VEST. 30,	09/87	JOB NO. 8	7422	2		HOLE NO.	
	WAT	ER C	ONTE	NT			10		SOIL	DESCRIPTIO	N	so	IL S	AMPLE		
W		W-O		L-Δ.		DEPTH	IL SYMBOL	DATUM				CONDITION	TYPE	PENETRATION		
10	20	30	40	50 6	0	m	SOIL	SURFACE E	LEVATION	223.61		8	13	PES PEN	OTHER	TESTS
+								LIATE	,				Ξ			
								WATER	(
H					-	- 1										
					9	- 2								N S		
					15											
						- 3										
			-			3										
-							W					11		8		
+	H					- 4		N.								
					20								11			
			+			- 20		l.								
						- 5										
-			++-													
	H						118									
						- 6										
	\vdash											Ш			UNDRAI	NED
															SHEAR	
						- 7									STRENG	TU
				++1												11)
							V	CLAVE	V CILT	CILTY CL	AND.		1	1	(kPa)	
						- 8	1	SAND	1 21LI	SILTY CLA	AT AND				- 24 - 34	
							1	SAND							$- \phi = 3$	90
								End	lilatom	ton tosti	ng a+ 0 E .				, ,	
		31				- 9		Refus	al on c	ter testir	19 01 0.5 1	1				
									3,11	70,0						
+																
-																
+					-											
+																
1														1		
-															PLATE A	1-51

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR DATE OF INVEST. 30/09/87 JOB NO. 87422 HOLE NO. DMT 6 LOGGED/DWN. CKD. DRILL TYPE WATER CONTENT SOIL DESCRIPTION SOIL SAMPLE PENETRATION RESISTANCE DATUM DEPTH W-O WL-A. Wp -PERCENT % SURFACE ELEVATION 223.61 OTHER TESTS m 10 20 WATER 1 - 2 - 3 - 4 5 - 6 - 7 8 -9 -10 ALLUVIAL SOILS Drill rod nushed from 10.0 to - 11 10.6 m. Refusal on glacial till or boulder at 10.6 m. - 12 PLATE A-52

BOREHOLE LOG PROJECT DYREGROV & BURGESS KILDONAN CORRIDOR JOB NO. 87422 HOLE NO. DMT 7 CKD. DATE OF INVEST. 30/09/87 LOGGED/DWN. DRILL TYPE DESCRIPTION SOIL SAMPLE SOIL WATER CONTENT PENETRATION RESISTANCE DATUM DEPTH W-0 WL - A. Wp -PERCENT % m SURFACE ELEVATION OTHER TESTS 50 60 20 30 40 MATER 1 2 - 3 4 5 6 7 8 - 9 10 GLACIAL TILL - soft/loose 11 - Drill rods pushed with no rotation from 10.4 to 13.1 m. Refusal on probable bedrock at 13.1 m. - 12 13 PLATE A-53

Appendix

AECOM 2016 Geotechnical Investigations Test Hole Logs

• AECOM 2016 Geotechnical Investigation Test Hole Logs

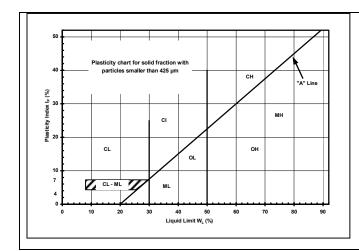
AECOM Canada Ltd.

GENERAL STATEMENT

NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations presented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions differ from those encountered in the exploratory borings and excavations, are observed or encountered during construction, or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.


Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.

In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition, we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

EXPLANATION OF FIELD & LABORATORY TEST DATA

					AECOM	USCS		Laborator	y Classification Crite	eria
		Descripti	on		Log Symbols	Classification	Fines (%)	Grading	Plasticity	Notes
		CLEAN GRAVELS	Well graded sandy gravels or no f	s, with little	2727	GW	0-5	C _U > 4 1 < C _C < 3		
	GRAVELS (More than 50% of coarse	(Little or no fines)	Poorly grade sandy gravels or no f	s, with little	77	GP	0-5	Not satisfying GW requirements		Dual symbols if 5-
SIICS	fraction of gravel size)	DIRTY GRAVELS	Silty gravels, grave			GM	> 12		Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols if above "A" line and
COARSE GRAINED SOILS		(With some fines)	Clayey grave sandy gi			GC	> 12		Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>
ARSE GR		CLEAN SANDS	Well grade gravelly sand or no f	s, with little	.O.:O 6:06:1	SW	0-5	C _U > 6 1 < C _C < 3		$C_U = \frac{D_{60}}{D_{10}}$
/OO	SANDS (More than 50% of	(Little or no fines)	Poorly grade gravelly sand or no f	s, with little	000	SP	0-5	Not satisfying SW requirements		$C_U = \frac{D_{60}}{D_{10}}$ $C_C = \frac{(D_{30})^2}{D_{10} x D_{60}}$
	coarse fraction of sand size)	DIRTY SANDS	Silty sa sand-silt n		39	SM	> 12		Atterberg limits below "A" line or W _P <4	
		(With some fines)	Clayey s sand-clay i	,		SC	> 12		Atterberg limits above "A" line or W _P <7	
	SILTS (Below 'A' line	W _L <50	Inorganic sil clayey fine s slight pla	ands, with		ML				
	negligible organic content)	W _L >50	Inorganic si plasti	•	Ш	МН				
SOILS	CLAYS	W _L <30	Inorganic c clays, sand low plasticity,	y clays of		CL				
FINE GRAINED SOILS	(Above 'A' line negligible organic	30 <w<sub>L<50</w<sub>	Inorganic cla clays of n plasti	nedium		CI			Classification is Based upon Plasticity Chart	
FINE	content)	W _L >50	Inorganic cla plasticity, f			СН				
	ORGANIC SILTS & CLAYS	W _L <50	Organic s organic silty o plasti	clays of low		OL				
	(Below 'A' line)	W _L >50	Organic cla plasti			ОН				
Н	IIGHLY ORGA	INIC SOILS	Peat and otl organic			Pt		on Post fication Limit		r odour, and often s texture
		Asphalt			Till					
3		Concrete			Bedrock fferentiated)				AE	COM
\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>		Fill		(Li	Bedrock mestone)				ianatad fractic	

When the above classification terms are used in this report or test hole logs, the designated fractions may be visually estimated and not measured.

FRAC	CTION	SEIVE S	SIZE (mm)	DEFINING R PERCENTAGE OF MINOR CO	BY WEIGHT
		Passing	Retained	Percent	Identifier
Gravel	Coarse	76	19	35-50	and
Gravei	Fine	19	4.75	33-30	and
	Coarse	4.75	2.00	20-35	"v" or "ev" *
Sand	Medium 2.00 0.425		0.425	20-33	y Oi C y
	Fine	0.425	0.075	10-20	some
0:11.7				10-20	Some
	n-plastic) (plastic)	< 0.0	75 mm	1-10	trace

^{*} for example: gravelly, sandy clayey, silty

Definition of Oversize Material

COBBLES: 76mm to 300mm diameter BOULDERS: >300mm diameter

LEGEND OF SYMBOLS

Laboratory and field tests are identified as follows:

qu - undrained shear strength (kPa) derived from unconfined compression testing.

T_v - undrained shear strength (kPa) measured using a torvane

pp - undrained shear strength (kPa) measured using a pocket penetrometer.

L_v - undrained shear strength (kPa) measured using a lab vane.

F_v - undrained shear strength (kPa) measured using a field vane.

 γ - bulk unit weight (kN/m³).

SPT - Standard Penetration Test. Recorded as number of blows (N) from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 51 mm O.D. Raymond type sampler 0.30 m into the soil.

DPPT - Drive Point Pentrometer Test. Recorded as number of blows from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 50 mm drive point 0.30 m into the soil.

w - moisture content (W_L, W_P)

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Su (kPa)	CONSISTENCY
<12	very soft
12 – 25	soft
25 – 50	medium or firm
50 – 100	stiff
100 – 200	very stiff
200	hard

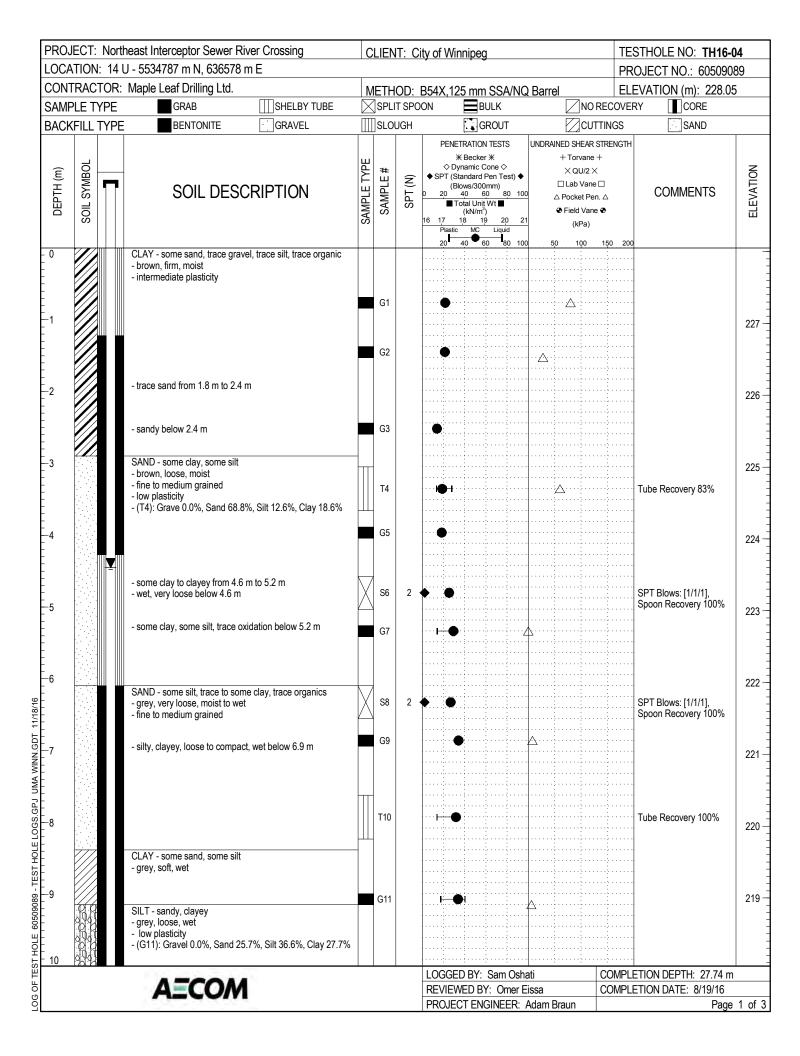
The resistance (N) of a non-cohesive soil can be related to compactness condition as follows

N – BLOWS/0.30 m	COMPACTNESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50	very dense

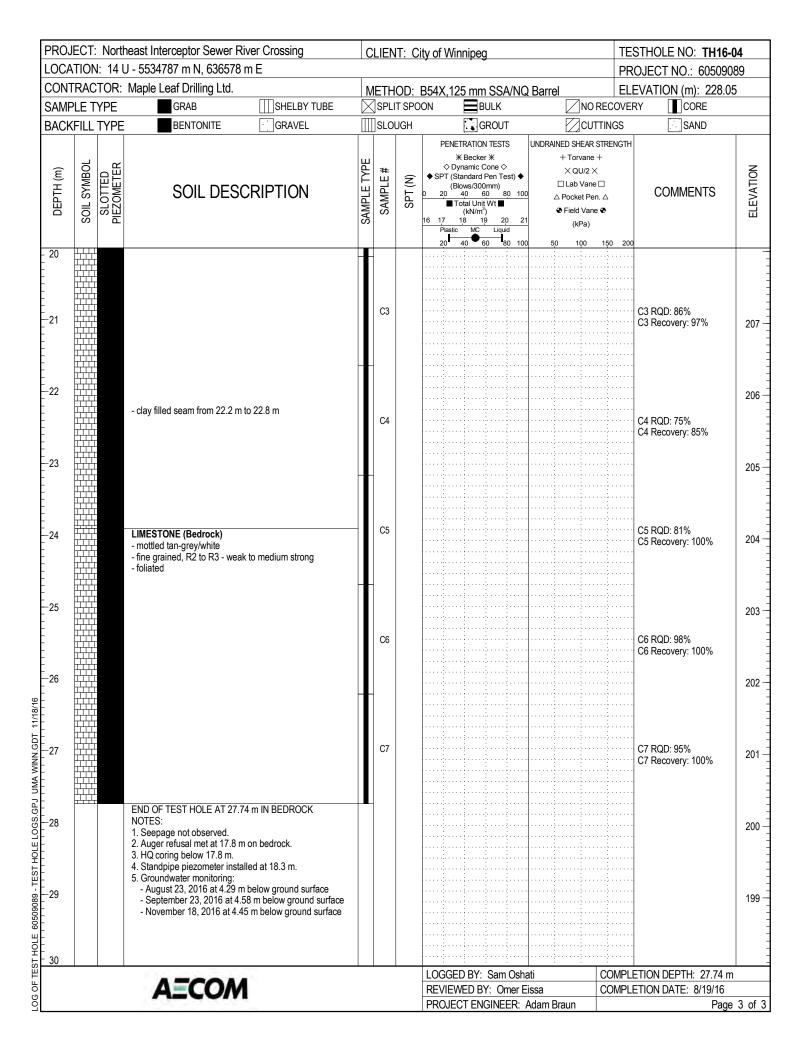
CONTRACTOR: 14 U - 5534686 m N, 636362 m E			Northeast Interceptor Sewer Rive		CL	IEN	T: C	ty of	Winni	peg					TES	STHOLE NO: TH16-0	1
SAMPLE TYPE				E													
SOIL DESCRIPTION SOIL DESCRIPTION Section Sectio												mm					}
CLAY silty, trace sand - dark prown, firm, dry to moist - intermediate plasticity SILT - some clay to clayey, trace to some sand - dark brown, soft to firm, moist - low to intermediate plasticity SAND - clayey, silty - brown, loose to compact, moist to wet - fine to medium grained G42 G43 - very loose below 3.0 m G44 G44 G44 G44 G44 G44 G44 G		SYMBOL	<u> </u>		Ī	*		◆ SF 0 2 16 17	PENETRA	TION TE ecker # nic Con lard Per s/300mn 60 Unit Wi N/m³) 19	ESTS e	00 21	DRAINED +1 × □ L △ Po	SHEAR STI	RENGTH		ELEVATION
- dark grey mottling below 4.4 m SAND - some clay, some silt - dark grey mottling below 4.4 m SAND - some clay, some silt - dark grey very loose and - dark grey very soft to soft, moist - intermediate plasticity G44 - G44 - G47 - G47 - G47 - G47 - G47 - G47 - G41 - 0 - - -		- dark brown, firm, dry to moist			G40											-	
- brown, losse to compact, moist to wet - fine to medium grained G42 - very losse below 3.0 m G43A S43 3	- 1 - - - -		- dark brown, soft to firm, moist - low to intermediate plasticity	e sand		G41											226
- very loose below 3.0 m SAT Blows: [1/1/2], Spoon Recovery: 0% G44 - dark grey mottling below 4.4 m SAND - some clay, some silt - dark grey, very loose, moist to wet - fine to medium grained CLAY - silty, some sand - dark grey, very soft to soft, moist - intermediate plasticity - moist to wet below 5.8 m G47 G47 G47	2 2		- brown, loose to compact, moist to wet			G42											225 -
- dark grey mottling below 4.4 m SAND - some clay, some silt - dark grey, very loose, moist to wet - fine to medium grained CLAY - silty, some sand - dark grey, very soft to soft, moist - intermediate plasticity - moist to wet below 5.8 m G47 SAND - clayey, silty	-3 3		- very loose below 3.0 m		\sqrt{I}		3	•	•							SPT Blows: [1/1/2], Spoon Recovery: 0%	224 –
SAND - some clay, some silt - dark grey, very loose, moist to wet - fine to medium grained CLAY - silty, some sand - dark grey, very soft to soft, moist - intermediate plasticity - moist to wet below 5.8 m G47 SAND - clayey, silty	- - -4 - -		dark grey mottling below 4.4 m			G44			•								223 –
- dark grey, very soft to soft, moist - intermediate plasticity - moist to wet below 5.8 m G47 G47	-5 -5		- dark grey, very loose, moist to wet - fine to medium grained	,	X	S45	1 •		•							SPT Blows: [0/0/1], Spoon Recovery: 100%	222
G47 IIII	- - - - - -		- dark grey, very soft to soft, moist - intermediate plasticity			G46						·					-
	Ė.		SAND - clayey, silty - dark grey, loose, moist to wet			G47		.									221 -
	MINN.GDT					G48											220 -
G49 G49 G49 G49 G49 G49 G49 G49	-HOLE LOGS.GPJ UM,	020202020				G49											219 —
Tube Recovery: 83%	OLE 60509089 - TEST	\$0\$0\$0\$0\$0\$ \$0\$0\$0\$0\$.0%, Clay 28.0%		T50			-01							Tube Recovery: 83%	218 –
- clayey, silty below 9.8 m	10 - 10		- clayey, silty below 9.8 m					1.00	OF 5	<u>.</u>				<u>;</u>	ON 4DL	TION DEDTIL OF TO	
LOGGED BY: Ryan Harras COMPLETION DEPTH: 25.76 m REVIEWED BY: Omer Eissa COMPLETION DATE: 8/24/16 PROJECT ENGINEER: Adam Braun Page 7	0G OF T		AECOM					REV	'IEWE[D BY:	Omer	Eiss		C		ETION DATE: 8/24/16	1 of 3

PROJ	ECT:	Northeast Interceptor Sewer River Crossing	С	LIEN	IT: C	ity c	f Wi	nnip	eg							TES	STHOLE NO: TH16-0	1
LOCA	TION	: 14 U - 5534868 m N, 636362 m E														PR	OJECT NO.: 6050908	39
—		TOR: Maple Leaf Drilling Ltd.	M	<u>1ETH</u>	OD:	Ack	er R	ene	gad	le,1	25 m	nm S	SA/H	Q Ba	rrel	ELE	EVATION (m): 227.03	l
SAMF	LE T	PE GRAB SHELBY TUBE		SPLI	T SPC	ON		E	BU	ILK				NO	RECC	OVEF	RY CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	◆ 5 0 16	♦ D SPT (S (B 20	# Bed ynam tanda lows/ 40 otal I (kN	cker > ic Co ard Pe 300m 60 Unit V I/m³)	₩ en Te nm) 8 Vt ■	est) 🔷 0 100)	+1 × □ Li	SHEAR orvane QU/2 × ab Vane cket Per eld Vane (kPa)	+ (n. \triangle		COMMENTS	ELEVATION
- 10 - - -		- medium grained brown sand pocket (< 50 mm in diameter) at																-
- - -11		10.4 m CLAY - silty, sandy, trace organics - brown, stiff, moist - intermediate to high plasticity		G51														216
- - - - -12		(T53): Gravel 0.0%, Sand 24.3%, Silt 33.3%, Clay 42.4%		G52														215 —
-13		- firm from 12.5 m to 15.2 m		T53			1		1								Tube Recovery: 90%	214 —
- - - - - - - - - - - - - - - - - - -		- moist to wet from 14.0 m 15.2 m		G54														213 –
-15 -15 -		- some sand to sandy, soft, wet below 15.2 m		G55														212 -
91/81/11		TILL - sandy, some silt, trace to some gravel, trace to some clay - light brown, loose to compact, moist		G56														211 -
2: -17 	10.70 M	LIMESTONE (Bedrock) - dolomitic, white with weak tan alterations - fine grained, foliated - weak (R2)																210 -
75- - 18 18 		- tan alteration from 18.3 m to 22.3 m		C1													C1 RQD: 82% C1 Recovery: 100%	209 –
100 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				C2													C2 RQD: 96% C2 Recovery: 98%	208 –
- 20						10	GGF	D R	Υ· F	Rvar	ı Harı	as			COV	/IPI F	ETION DEPTH: 25.76 m	
5		AECOM									ner E						ETION DATE: 8/24/16	
3		7.240///				_						Adam	Brau	n				2 of 3

		Northeast Interceptor Sewer Rive	•	С	LIEN	IT: C	ity of	Winn	ipeg					TE	STHOLE NO: TH16-0)1
		: 14 U - 5534868 m N, 636362 m	E												ROJECT NO.: 6050908	
SAME		TOR: Maple Leaf Drilling Ltd. /PE	SHELBY TUBE			<u>IOD:</u> IT SPC		r Ren	egad Bl	de,125	mı	m SSA/	HQ Barr		EVATION (m): 227.03 RY TORE	}
DEPTH (m)	SOIL SYMBOL F	SOIL DESCRI		SAMPLE TYPE	SAMPLE#	SPT (N)	◆ SF 0 2 16 1	PENETR **E Openation Description Description Plastic **E Description **E **E **E **E **E **E **E *	ATION Becker: amic Codard P rs/300n 0 60 al Unit \(\text{KN/m}^3 \) MC	TESTS # one <> ren Test) nm) 0 80 Wt 120 Liquid	◆ 100 21	+ □ △F	D SHEAR ST Torvane + X QU/2 X Lab Vane Cocket Pen. A Field Vane (kPa)	RENGTH	COMMENTS	ELEVATION
-21 -22 -23					C3 C4 C5			0 40	600	80	100	50	100	150 200	C3 RQD: 87% C3 Recovery: 95% C4 RQD: 100% C4 Recovery: 100%	206
- 25 - - - - -		END OF TEST HOLE AT 25.76 m IN BE	- DDOCK		C6										C6 RQD: 98% C6 Recovery: 98%	202 -
- 26 		NOTES: 1. Seepage not observed. 2. Sloughing observed below 15.2 m. 3. Auger refusal met at 17.1 m on bedro 4. HQ coring below 17.1 m. 5. Test hole backfilled with bentonite-gro	ck.													201 -
O.MA WINN.																200 -
10G OF TEST HOLE 6059089 - TEST HOLE LOGS GPJ UMA WINN, GDT																198 —
SE 30		4.50011	1		1	<u> </u>				Ryan H					ETION DEPTH: 25.76 m	
90 06		A=COM								: Omei				COMPL	ETION DATE: 8/24/16	2 - (2
<u>ـــــا</u> کـ							PK(IJĽCĬ	⊨NG	INEER	: A	dam Bra	un		Page	3 of 3


			neast Interceptor Sewer Ri	-	C	LIEN	NT: C	ity of	Winnipeg				TE:	STHOLE NO: TH16-0)2
			J - 5534859 m N, 636384 ı	m E									PR	OJECT NO.: 6050908	89
			Maple Leaf Drilling Ltd.											EVATION (m): 226.33	3
-	/IPLE T		GRAB	SHELBY TUBE			IT SPC	ON	BL			NO RE			
BAC	KFILL	TYPE	BENTONITE	GRAVEL	Щ	SLO	UGH		GF	ROUT	L	CUTTI	INGS	SAND	
DEPTH (m)	SOIL SYMBOL	–	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	◆ SF 0 2 16 1,	PENETRATION # Becker Opnamic Cc Cf (Standard P (Blows/300r 0 40 60 Total Unit \ (kN/m²) 7 18 19 Plastic MC	# one ♦ den Test) ♦ nnm) 0 80 100 Wt ■ 20 2*	× □L △ Po	Forvane + CQU/2 × ab Vane □ cket Pen. ∠ eld Vane € (kPa)] <u>^</u>	COMMENTS	ELEVATION
- 0	111		SILT - clayey, some sand						40 60	0 80 100	50		200		
- - - - - - - 1			- dark brown, soft, moist - low to intermediate plasticity CLAY - silty, sandy			G21			•						226
			- dark brown, soft, moist - intermediate plasticity SAND - some silt, trace clay - brown, loose, moist to wet - medium grained		/ [G22									225 -
2 		¥	SAND - silty, clayey - brown, loose, moist to wet - fine to medium grained - trace clay pockets (< 30 mm i	n diameter)		G23			•						224 –
- -3 - - - -			- grey mottling, very loose from (S24): Gravel 0.0%, Sand 47.9		X	S24	3	*	•					SPT Blows: [2/1/2], Spoon Recovery: 100%	223 -
- -4 - -			- trace gravel, dark grey, loose	below 4.1 m		G25									222 -
5 5			- low plasticity below 4.6 m		X	S26 G27	2	*	•					SPT Blows: [0/0/2], Spoon Recovery: 75%	221 -
6						G28			•						220 -
31/11 TO TO TO TO TO TO TO TO TO TO TO TO TO						G29			•						219 -
LOGS.GPJ UM/			- (S30): Gravel 0.0%, Sand 54 - wet from 7.9 m to 8.2 m	5%, Silt 24.9%, Clay 20.6%		S30	1 ·	♦	•					SPT Blows: [2/0/1], Spoon Recovery: 100%	
LOG OF TEST HOLE 60509089 - TEST HOLE LOGS.GPJ UMA WINN.GDT 1/1/18/16			moist to wet below 8.2 m			G31									218 -
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												T =			217 -
H H			A=COM	11					GED BY: /IEWED BY					ETION DEPTH: 25.96 m ETION DATE: 8/23/16	
000			A=CU/V					_	DJECT ENG				JUIVIPLI		1 of 3
								1.11	LI10					i uye	. 01 0

LOCATION: 14 U - 5534859 m N, 636384 m E CONTRACTOR: Maple Leaf Drilling Ltd. SAMPLE TYPE GRAB JSHELBY TUBE SPLIT SPOON BULK NO RECOVERY COMMENTAL TYPE BENTONITE GRAVEL BACKFILL TYPE BENTONITE GRAVEL SOIL DESCRIPTION BENTONITE SOIL DESCRIPTION WETHOD: Acker Renegade, 125 mm SSA/HQ Barrel ELEVATION (m) SPLIT SPOON BULK NO RECOVERY COMMENTAL TYPE SPLIT SPOON BULK NO RECOVERY COMMENTAL TYPE SPLIT SPOON BULK NO RECOVERY COMMENTAL TYPE SPLIT SPOON BULK NO RECOVERY COMMENTAL TYPE SPLIT SPOON BULK NO RECOVERY COMMENTAL TYPE SPLIT SPOON BULK NO RECOVERY COMMENTAL TYPE SPLIT SPOON BULK NO RECOVERY COMMENTAL TYPE SPLIT SPOON BULK NO RECOVERY COMMENTAL TYPE SPLIT SPOON BULK NO RECOVERY COMMENTAL TYPE SPOON BULK	226.33 E D
SAMPLE TYPE BACKFILL TYPE BENTONITE GRAVEL SPLIT SPOON BULK NO RECOVERY COMME SPLIT SPOON BULK NO RECOVERY COMME SPLIT SPOON BULK NO RECOVERY COMME COMME SPLIT SPOON BULK NO RECOVERY COMME CO	E C C C C C C C C C C C C C C C C C C C
BACKFILL TYPE BENTONITE GRAVEL SLOUGH FENETRATION TESTS # Becker # Opynamic Cone O SPT (Standard Pen Test) (Blows/300mm) 2 00 40 60 80 100 Field Vane A Pocket Pen. \(\text{A} \) A Pocket Pen. \(\text{A} \) A Pocket Pen. \(\text{A} \) Field Vane Field Vane Field Vane Trace to some silt, dark grey, very loose, moist to wet - low plasticity - trace to some silt, dark grey, very loose, moist to wet	ELEVATION
SOIL DESCRIPTION A	ELEVATION
SOIL DESCRIPTION H	
- lace to some siit, dark grey, very loose, moist to wet - low plasticity	216
	216
Spoon Recover	2], : 75% 215
- wet below 12.2 m	214
-13 - loose to compact below 13.0 m SILT - some sand, trace clay - light brown, stiff, dry to moist - low plasticity - low plasticity	21:
-14 CLAY - some silt, some sand, trace gravel - grey, soft, moist to wet - high plasticity - trace silt inclusions (< 30 mm in diameter)	21:
TILL (SAND)- silty, clayey, trace to some gravel - light brown, very loose to loose, moist to wet	21
G39 LIMESTONE (Bedrock) - white - fine grained - no foliations - weak to medium strong (R2 to R3) - iron alteration to 17.1 m	0%
C2 RQD: 87% C2 Recovery: 9	%
-19 C3 C3 RQD: 91%	20
C3 Recovery: 9	20
LOGGED BY: Ryan Harras COMPLETION DEPTH: REVIEWED BY: Omer Eissa COMPLETION DATE: 8	
LOGGED BY: Ryan Harras COMPLETION DEPTH: REVIEWED BY: Omer Eissa COMPLETION DATE: 8 PROJECT ENGINEER: Adam Braun	Page 2 of


PROJ	JECT: North	neast Interceptor Sewer Ri	ver Crossing	С	LIEN	NT: C	ity of \	Vinnipe]			TE	STHOLE NO: TH16-	02
-		J - 5534859 m N, 636384	m E									PF	ROJECT NO.: 605090)89
		Maple Leaf Drilling Ltd.								nm SSA			EVATION (m): 226.3	3
	PLE TYPE	GRAB	SHELBY TUBE			IT SPO	ON					RECOVE		
BACK	(FILL TYPE	BENTONITE	GRAVEL		SLO	UGH			ROUT		CUT		SAND	1
DEPTH (m)	SOIL SYMBOL SLOTTED PIEZOMETER	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	SP10 2016 17	(Blows/300 40 C Total Uni (kN/m 18 1	r ★ Cone ♦ Pen Test) ♦ Dmm) 60 80 100 t Wt ■ 1) 9 20 2 Liquid	0 △1	Torvane X QU/2 X Lab Vane Pocket Per Field Vane (kPa)	< n. △ e ⊕	COMMENTS	ELEVATION
-21 -22 -23 -24 -25					C4 C5 C6		200	40 1	30 1 90 10	0 50	100	150 20	C4 RQD: 96% C4 Recovery: 99% C5 RQD: 93% C5 Recovery: 100% C6 RQD: 96% C6 Recovery: 100%	206 - 205 - 204 - 203 - 202 -
106 OF TEST HOLE 6056989 - TEST HOLE LOGS.GPJ UMA WINN.GDT 11/18/16		END OF TEST HOLE AT 25.9 NOTES: 1. Seepage observed at 4.6 m 2. Water at 4.0 m upon remove and a second of the se	al of auger. 10.7 m. on bedrock. lled at depth of 25.8 m. below ground surface											200 - 199 - 198 -
SEL T		A = 00 1	11						Ryan Har				ETION DEPTH: 25.96 m	1
0 90		A=COM							Y: Omer E			COMPL	ETION DATE: 8/23/16	2 -1 0
ا							PRO	JECT EN	GINEER:	Adam Bra	aun		Page	3 of 3

LOCA	TION	Northeast Interceptor Sewer River Crossing : 14 U - 5534783 m N, 636494 m E			NT: C											PI	ESTHOLE NO: TH16-0 ROJECT NO.: 605090	89
		TOR: Maple Leaf Drilling Ltd.	M	IETH	HOD:	Floa	ating	<u>Ba</u>	rge,	Cric	cket	B20	, BC				LEVATION (m): 223.80	0
SAMP	LE I	YPE GRAB SHELBY TUBE		JSPL	IT SPO	JON			BU							COVI		_
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	◆ \$ 0 16		# Be Dynan Stand Blows 40 Total (kN 18	cker: nic Co ard Po /300n 60	one <> en Tes nm) 80 Wt 20 Liquid	st) ♦ 0 100		+ - - - - -	Torva X QU/ Lab V ocket	ane + 2 × ane □ Pen. △ ⁄ane �		COMMENTS	Ē
0	$\overline{\mathbb{M}}$	WATER																
,							 											22
-1	\mathfrak{M}						 											
	\mathbb{M}																• •	2
-2																		
							 								 			2
-3										;]]		
	$\frac{1}{2}$						· ·:· · · · · ·:· · · ·										• •	2
-4	\mathbb{M}																	
																		2
-5	33															:		
	\mathbb{H}						· · · · · · · · · · · · · · · · · · ·											2
-6																		
		SAND (Alluvial) - some gravel																2
-7		- brown, compact, wet														:		
				ļ			: : 			;								2
-8			X	S1	16											2	SPT Blows [4/6/10], Spoon Recovery 10%	-
				S2	19												SPT Blows [18/12/7],	2
-9				02	13		. Y :))	Spoon Recovery 0%	-
																		2
-10		CLAY - trace silt	$\overline{}$	S3	2												CDT Plants [2/4/4]	-
		- grey, very soft, moist to wet - high plasticity		33			 								 		SPT Blows [2/1/1], Spoon Recovery 10%	2
-11		5 P 9					 										• •	-
]] S4-A	_ ا												ODT DI M/0/01	2
-12		TILL (SAND) - silty, some clay, trace gravel - light brown, loose, wet		S4-B	5		•		- :: :								SPT Blows [1/2/3], Spoon Recovery 100%	-
		- low plasticity														 !		2
-13		- sandy, compact, no plasticity below 13.2 m			40)	ODT DIA 10/40/03	-
	M			S5	19												SPT Blows [8/10/9], Spoon Recovery 0%	2
-14 -15 -16 -17		LIMESTONE (Bedrock) - white/brown																-
		- fine grained - weak to medium strong (R2 to R3)		C1)]	C1 RQD: 83%	2
-15		- no foliations																
																}		2
-16				C2						: : : :						:	C2 RQD: 89% C2 Recovery: 100%	
)		2
-17)		-
18				C3											 		C3 RQD: 94% C3 Recovery: 100%	2
	T1	1.0014	1		-					Musta							LETION DEPTH: 30.51 m	_
		AECOM				RF	VIF	WFF) RY	: Orr	ner F	icea			С	OMP	LETION DATE: 9/9/16	

PROJECT: Northeast Interceptor Sewer River Crossing LOCATION: 14 U - 5534783 m N, 636494 m E				U	LIEN	II: C	ity of Winnipeg	TESTHOLE NO: TH16-03 PROJECT NO.: 60509089		
CONTRACTOR: Maple Leaf Drilling Ltd.			N	1FTH	IUD.	Floating Barge, Cricke	ELEVATION (m): 223.8			
	PLE T		SHELBY TUBE			IT SPO		NO RE		,,,
DEPTH (m)	SOIL SYMBOL	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE#	SPT (N)	PENETRATION TESTS	□ Lab Vane □ □ △ Pocket Pen. △ ♣ Field Vane ♣ (kPa)	COMMENTS	NO F
18		- tan to yellow, solution pitting, alter	ed from 18.2 m to 20.9 m	H			20 40 00 00 1			
·19					C4				C4 RQD: 27% C4 Recovery: 36%	20
20					C5				C5 RQD: 62%	2
21									C5 Recovery: 89%	2
22 23		LIMESTONE (Bedrock) - tan/white - fine grained, - medium strong (R3)			C6				C6 RQD: 39% C6 Recovery: 98%	2
24		- increased foliation			C7				C7 RQD: 33% C7 Recovery: 97%	2
25					C8				C8 RQD: 80% C8 Recovery: 96%	1
26					C9				C9 RQD: 68%	1
27									C9 Recovery: 99%	1
29					C10				C10 RQD: 73% C10 Recovery: 100%	1
					C11				C11 RQD: 87% C11 Recovery: 99%	1
30 31		END OF TEST HOLE AT 30.51 m I			_			1		1
32		Test hole drilled in-water by float See the second of the secon	vitched to BQ core barrel. enviroplug to river bed.						2 · · · · · · · · · · · · · · · · · · ·	1
32 33 34		September 8, 2016.						1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	1
34									1 2 3 3	1
									1 2 2 2	1
36							LOGGED BY: Mustafa	Alkiki O	OMPLETION DEPTH: 30.51 r	<u> 18</u>
		AECON	A				REVIEWED BY: Omer		OMPLETION DEPTH: 30.511	11
		7207	-				PROJECT ENGINEER:			e 2 d

PROJ	PROJECT: Northeast Interceptor Sewer River Crossing CLIENT: City of Winnipeg TESTHOLE NO: TH16-04)4								
LOCA	ATION: 14	4 U - 5534787 m N, 636578 ı	m E										PF	ROJECT NO.: 605090	89
CON	TRACTOF	R: Maple Leaf Drilling Ltd.						(,125 m	nm SS/	√NQ	Barre			EVATION (m): 228.05	5
SAMF	PLE TYPE	GRAB	SHELBY TUBE	\geq	SPLI	IT SPO	ON		BULK			NO	RECOVE	RY CORE	
BACK	(FILL TYF	PE BENTONITE	GRAVEL		SLO	UGH]GROU1	Γ		CUT	TINGS	SAND	
DEPTH (m)	SOIL SYMBOL SLOTTED	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1;	Dynam T (Standa (Blows/ 0 40 ■ Total U (kN 7 18	cker # c Cone \$ rd Pen Te 300mm) 60 8 Jnit Wt /m³) 19 20 C Liqui	est) • 80 100	4	HED SHEAR + Torvane × QU/2 × □ Lab Vane 2 Pocket Per Field Vane (kPa) 100	+ : ::.	COMMENTS	ELEVATION
- 10 - - - - - - - - - - - - - - - - - - -	#0505050 #10505050	- very loose below 10.7 m ORGANIC - sandy, trace to so	me silt, trace clay		G13										217 -
- - - - - - - - - - - - - - - - - - -		- dark brown to black, very loos SAND - trace gravel, trace to s - grey, loose, wet - medium to coarse grained - trace fossil (suspected seash CLAY - some silt, trace gravel, - grey, stiff, moist	ome silt, trace clay,		G14 S15	12	•	•						SPT Blows: [3/5/7], Spoon Recovery 100%	216 -
		 high plasticity trace organic pockets (T16) Gravel 2.2%, Sand 89. very stiff from 13.7 m to 14.8 	6%, Silt 3.9%, Clay 4.6% m		T40										215 -
- 14 		- trace to some gravel, firm bel - silt inclusions/lenses (< 15 mi - low plasticity	ow 14.8 m		T16						Δ.		Z	Tube Recovery 100%	214 -
11/18/16		TILL (SAND) - silty, some clay, - light brown, loose to compact - low plasticity	t, moist to wet												212
109. -17 -17		- (G18): Gravel 7.5%, Sand 45	o.8%, Silt 32.8%, Clay		G18						<u> </u>				211 -
- TEST HOLE LOGS.GPJ UMA		Dolomitic LIMESTONE (Bedr - white - fine grained, homogeneous - no foliation	ock)		C1									C1 RQD: 92% C1 Recovery: 100%	210 -
OF TEST HOLE 60509089 -11.					C2									C2 RQD: 96% C2 Recovery: 97%	209 -
2							LOC	GED B	Y: Sam	Osha	ati		COMPL	ETION DEPTH: 27.74 m	
3 OF		A=COM						/IEWED						ETION DATE: 8/19/16	
50							PRO	JECT E	NGINE	ER: /	Adam E	Braun		Page	2 of 3

Appendix

Geotechnical Laboratory Reports

- E-1: AECOM 2017 Geotechnical Testing Results
- E-2a: TREK Geotechnical 2014 Geotechnical Soil Testing Results
- E-2b: TREK Geotechnical 2014 Geotechnical Rock Testing Results
- E-3: Dyregrov and Burgess 1988 Geotechnical Testing Results

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

204 477 5381 tel 204 284 2040 fax

Memorandum

То	Omer Eissa	Page 1
СС		
Subject	City of Winnipeg – North East	Interceptor – Materials Testing Results
From	Zeyad Shukri	
Date	September 22, 2016	Project Number 60509089.100

Please find attached the following material test result(s) on sample(s) submitted to the Winnipeg Geotechnical Laboratory:

- Fifty-four (54) Moisture Content tests.
- Twelve (12) Atterberg Limits (3 points) tests.
- Eight (8) Grain Size Distribution (hydrometer) tests.

If you have any questions, please contact the undersigned.

Sincerely,

Zeyad Shukri Al-Hayazai, M.Sc., P.Eng.

Senior Geotechnical Engineer

Att.

Phone: 204 477 5381

Fax: 204 284 2040

Project Name:	North East Interceptor
Project Number:	60509089
Client:	City of Winnipeg
Sample Location:	Varies
Sample Depth:	Varies
Sample Number:	Varies

Supplier:	AECOM
Specification:	N/A
Field Technician:	Rharras/MAlkiki
Sample Date:	Varies
Lab Technician:	EManimbao
Date Tested:	September 13, 2016

Moisture Content (ASTM D2216-10)

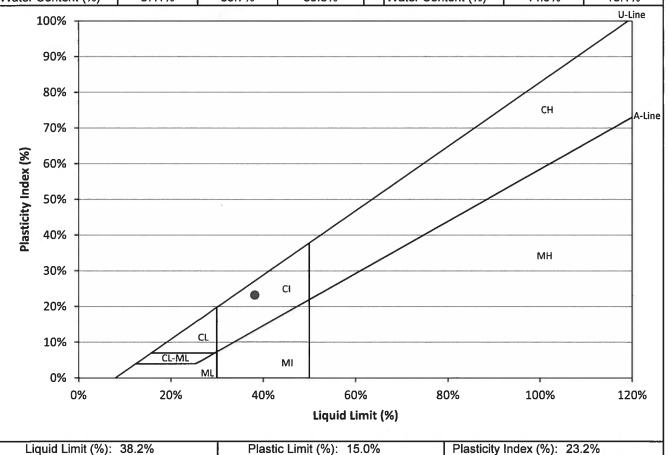
Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

Location	Sample	Depth (m)	Moisture
		, , , ,	Content (%)
TH16-01	G40	0.76 - 0.91 m	21.4%
	G41	1.52 - 1.68 m	27.7%
= .	G42	2.29 - 2.44 m	32.1%
	G43A	3.05 - 3.20 m	32.6%
0.00	G43	3.05 - 3.20 m	N/A
	G44	3.81 - 3.96 m	32.3%
	S45	4.57 - 5.03 m	33.3%
	G46	5.33 - 5.49 m	35.4%
	G46	6.10 - 6.25 m	35.6%
	G48	6.86 - 7.01 m	34.5%
	G49	7.62 - 7.77 m	34.7%
	T50	9.14 - 9.75 m	32.7%
	G51	10.67 - 10.82 m	31.0%
F	G52	11.43 - 11.58 m	40.6%
	T53	12.19 - 12.80 m	36.1%
	G54	13.72 - 13.87 m	52.3%
	G55	15.24 - 15.39 m	50.2%
	G56	16.76 - 16.92 m	17.3%
TH16-02	G21	0.76 - 0.91 m	24.7%
	G22	1.52 - 1.68 m	22.8%
	G23	2.29 - 2.44 m	28.7%
	S24	3.05 - 3.51 m	31.5%
	G25	3.81 - 3.96 m	31.8%
	S26	4.57 - 5.03 m	36.2%
	G27	5.33 - 5.49 m	33.2%
	G28	6.10 - 6.25 m	32.5%
	G29	6.86 - 7.01 m	34.8%
	S30	7.62 - 8.08 m	35.6%
	G31	9.14 - 9.30 m	31.3%
	S32	10.67 - 11.13 m	32.3%
	G33	12.19 - 12.34 m	37.0%
	G34	13.26 - 13.41 m	21.5%
	G36	14.48 - 14.63 m	44.9%
	G37	15.24 - 15.39 m	51.1%
	G39	16.15 - 16.31 m	18.4%
TH16-03	S4A	11.67 - 12.13 m	52.6%
	S4B	11.89 - 12.34 m	17.7%
TH16-04	G1	0.76 - 0.91 m	21.5%
		=:: 0 0:0:	,

			Moisture
Location	Sample	Depth (m)	Content (%)
	G2	1.52 - 1.68 m	21.2%
	G3	2.44 - 2.59 m	13.7%
	T4	3.05 - 3.66 m	18.7%
	G5	3.96 - 4.11 m	18.2%
	S6	4.57 - 5.03 m	25.2%
	G7	5.33 - 5.49 m	29.3%
	S8	6.10 - 6.55 m	26.6%
	G9	6.86 - 7.01 m	34.1%
	T10	7.62 - 8.23 m	31.7%
	G11	9.14 - 9.30 m	33.6%
	G13	10.97 - 11.13 m	44.2%
	G14	11.89 - 12.04 m	26.5%
	S15	12.19 - 12.65 m	36.6%
	T16	13.72 - 14.33 m	20.8%
	G17	15.24 - 15.39 m	44.7%
	G18	16.76 - 16.92 m	13.3%
	G19	17.68 - 17.83 m	11.4%
		· · ·	
	- 1		

Phone: 204 477 5381

Fax: 204 284 2040


Project Name:	North East Interceptor	
Project Number:	60509089	
Client:	City of Winnipeg	
Sample Location:	TH16-01	
Sample Depth:	6.10 - 6.25 m	
Sample Number:	G47	

Supplier:	AECOM
Specification:	N/A
Field Technician:	RHarras
Sample Date:	Varies
Lab Technician:	EManimbao
Date Tested:	September 20, 2016

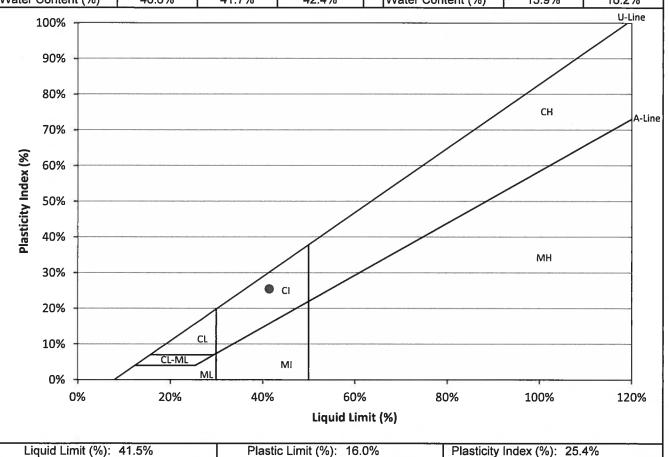
Atterberg Limits (ASTM D4318)

Liquid Li	mit	
31	22	18
7.4	7.1	6.8
5.4	5.2	4.9
37.1%	38.7%	39.6%
	31 7.4 5.4	31 22 7.4 7.1 5.4 5.2

Plastic Limit						
Trial	1	2				
Wet Sample (g)	6.7	8.1				
Dry Sample (g)	5.8	7.0				
Water Content (%)	14.9%	15.1%				

Phone: 204 477 5381

Fax: 204 284 2040


Project Name:	North East Interceptor	
Project Number:	60509089	
Client:	City of Winnipeg	
Sample Location:	TH16-01	
Sample Depth:	9.14 - 9.75 m	
Sample Number:	T50	

Supplier:	AECOM
Specification:	N/A
Field Technician:	RHarras
Sample Date:	Varies
Lab Technician:	EManimbao
Date Tested:	September 20, 2016

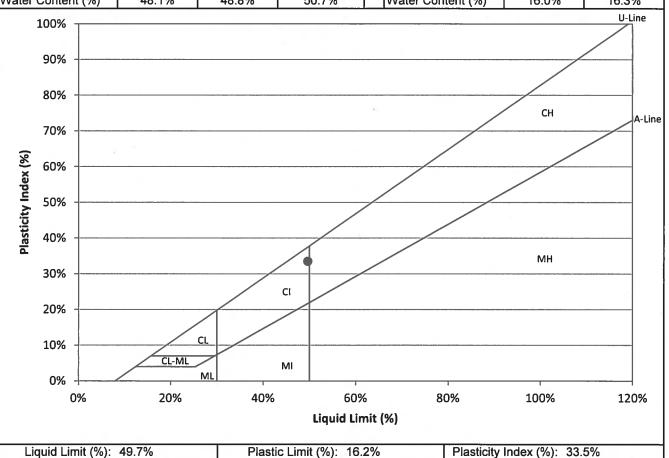
Atterberg Limits (ASTM D4318)

Liquid Limit				
33	24	19		
6.4	8.3	8.5		
4.5	5.9	6.0		
40.6%	41.7%	42.4%		
	33 6.4 4.5	33 24 6.4 8.3 4.5 5.9		

Plastic Limit			
Trial	1	2	
Wet Sample (g)	7.7	7.1	
Dry Sample (g)	6.7	6.1	
Water Content (%)	15.9%	16.2%	

Phone: 204 477 5381

Fax: 204 284 2040


Project Name:	North East Interceptor	
Project Number:	60509089	
Client:	City of Winnipeg	
Sample Location:	TH16-01	
Sample Depth:	12.19 - 12.80 m	_
Sample Number:	T53	

Supplier:	AECOM	
Specification:	N/A	
Field Technician:	RHarras	_
Sample Date:	Varies	_
Lab Technician:	EManimbao	
Date Tested:	September 20, 2016	

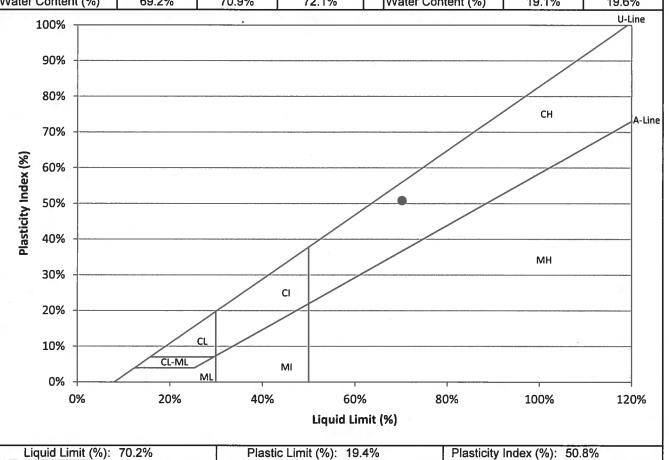
Atterberg Limits (ASTM D4318)

Liquid Limit			
Blows	33	29	21
Wet Sample (g)	7.5	7.7	8.1
Dry Sample (g)	5.1	5.2	5.4
Water Content (%)	48.1%	48.8%	50.7%

Plastic Limit			
Trial	1	2	
Wet Sample (g)	8.3	8.6	
Dry Sample (g)	7.2	7.4	
Water Content (%)	16.0%	16.3%	

Phone: 204 477 5381

Fax: 204 284 2040


Project Name:	North East Interceptor
Project Number:	60509089
Client:	City of Winnipeg
Sample Location:	TH16-02
Sample Depth:	15.24 - 15.39 m
Sample Number:	G37

Supplier:	AECOM
Specification:	N/A
Field Technician:	RHarras
Sample Date:	Varies
Lab Technician:	EManimbao
Date Tested:	September 20, 2016

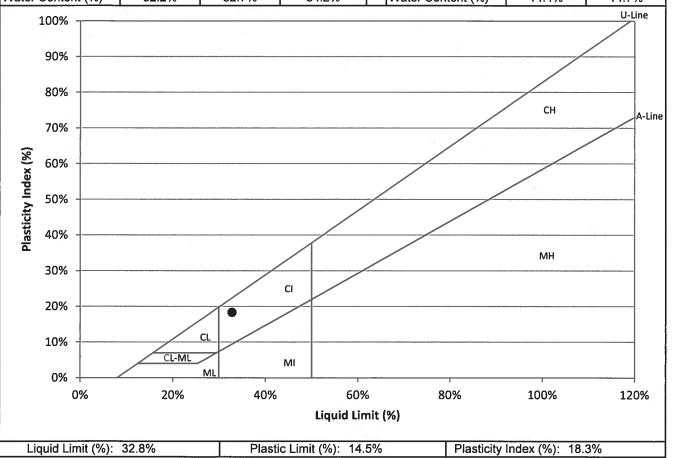
Atterberg Limits (ASTM D4318)

	Liquid Li	mit	
Blows	30	22	18
Wet Sample (g)	6.5	7.7	6.8
Dry Sample (g)	3.9	4.5	4.0
Water Content (%)	69.2%	70.9%	72.1%

Plastic Limit			
Trial	1	2	
Wet Sample (g)	6.6	8.5	
Dry Sample (g)	5.5	7.1	
Water Content (%)	19.1%	19.6%	

Phone: 204 477 5381

Fax: 204 284 2040


Project Name:	North East Interceptor
Project Number:	60509089
Client:	City of Winnipeg
Sample Location:	TH16-02
Sample Depth:	7.62 - 8.08 m
Sample Number:	S30

Supplier:	AECOM	
Specification:	N/A	
Field Technician:	RHarras	
Sample Date:	Varies	
Lab Technician:	EManimbao	
Date Tested:	September 20, 2016	

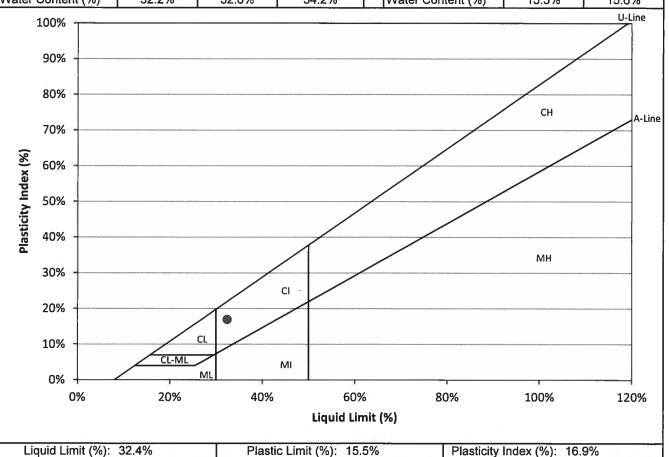
Atterberg Limits (ASTM D4318)

Liquid Limit			
Blows	28	25	19
Wet Sample (g)	9.0	7.1	6.9
Dry Sample (g)	6.8	5.4	5.2
Water Content (%)	32.2%	32.7%	34.2%

Plastic Limit				
Trial	1	2		
Wet Sample (g)	7.3	7.4		
Dry Sample (g) 6.4 6.4				
Water Content (%) 14.4% 14.7%				

Phone: 204 477 5381

Fax: 204 284 2040


Project Name:	North East Interceptor	
Project Number:	60509089	
Client:	City of Winnipeg	
Sample Location:	TH16-02	
Sample Depth:	10.67 - 11.28 m	
Sample Number:	S32	

Supplier:	AECOM
Specification:	N/A
Field Technician:	RHarras
Sample Date:	Varies
Lab Technician:	EManimbao
Date Tested:	September 20, 2016

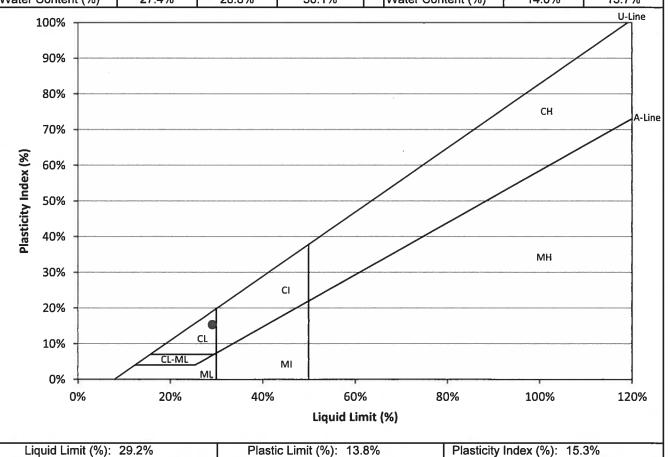
Atterberg Limits (ASTM D4318)

	1 (4.1)	:4	
	Liquid Li	TTIIL	
Blows	28	25	16
Wet Sample (g)	8.6	8.0	8.4
Dry Sample (g)	6.5	6.1	6.3
Water Content (%)	32.2%	32.6%	34.2%

Plastic Limit			
Trial	1	2	
Wet Sample (g)	6.3	6.8	
Dry Sample (g)	5.5	5.9	
Water Content (%)	15.5%	15.6%	

Phone: 204 477 5381

Fax: 204 284 2040


Project Name:	North East Interceptor	
Project Number:	60509089	
Client:	City of Winnipeg	
Sample Location:	TH16-04	
Sample Depth:	5.33 - 5.49m	
Sample Number:	G7	

Supplier:	AECOM
Specification:	N/A
Field Technician:	RHarras
Sample Date:	Varies
Lab Technician:	EManimbao
Date Tested:	September 21, 2016

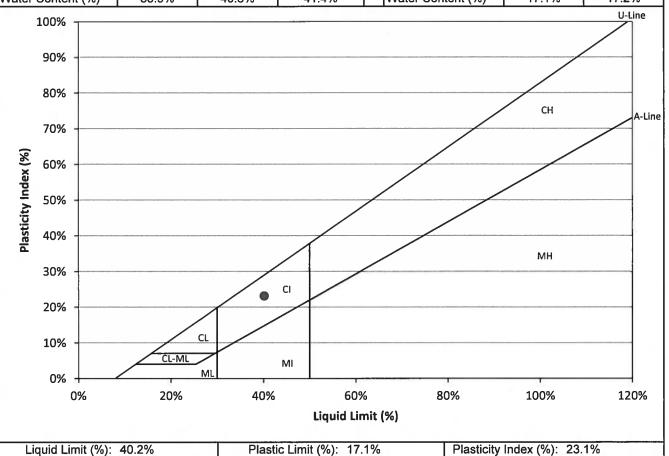
Atterberg Limits

Liquid Limit			
Blows	33	26	22
Wet Sample (g)	9.2	7.2	7.9
Dry Sample (g)	7.2	5.6	6.1
Water Content (%)	27.4%	28.8%	30.1%

Plastic Limit			
Trial	1	2	
Wet Sample (g)	8.9	9.2	
Dry Sample (g)	7.8	8.1	
Water Content (%)	14.0%	13.7%	

Phone: 204 477 5381

Fax: 204 284 2040


Project Name:	North East Interceptor	
Project Number:	60509089	
Client:	City of Winnipeg	_
Sample Location:	TH16-04	
Sample Depth:	9.14 - 9.30m	_
Sample Number:	G11	

N/A
RHarras
Varies
EManimbao
September 21, 2016

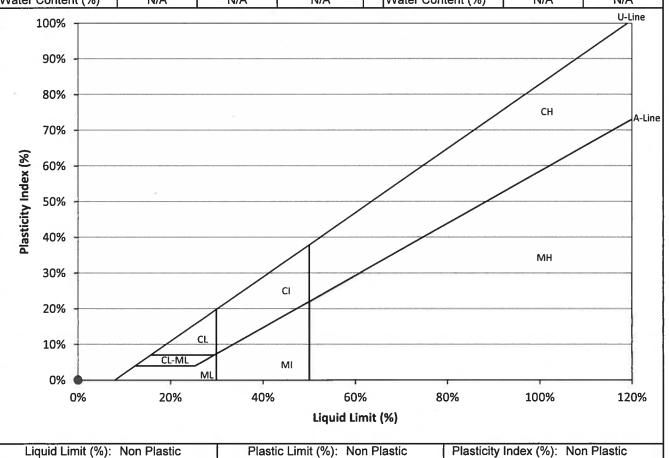
Atterberg Limits

Liquid Limit			
Blows	31	23	19
Wet Sample (g)	8.6	8.6	8.5
Dry Sample (g)	6.2	6.1	6.0
Water Content (%)	38.9%	40.6%	41.4%

Plastic Limit			
Trial	1	2	
Wet Sample (g)	7.6	8.7	
Dry Sample (g)	6.5	7.4	
Water Content (%)	17.1%	17.2%	

Phone: 204 477 5381

Fax: 204 284 2040


Project Name:	North East Interceptor	
Project Number:	60509089	
Client:	City of Winnipeg	
Sample Location:	TH16-04	
Sample Depth:	10.97 - 11.13m	
Sample Number:	G13	

Supplier:	AECOM
Specification:	N/A
Field Technician:	RHarras
Sample Date:	Varies
Lab Technician:	EManimbao
Date Tested:	September 20, 2016

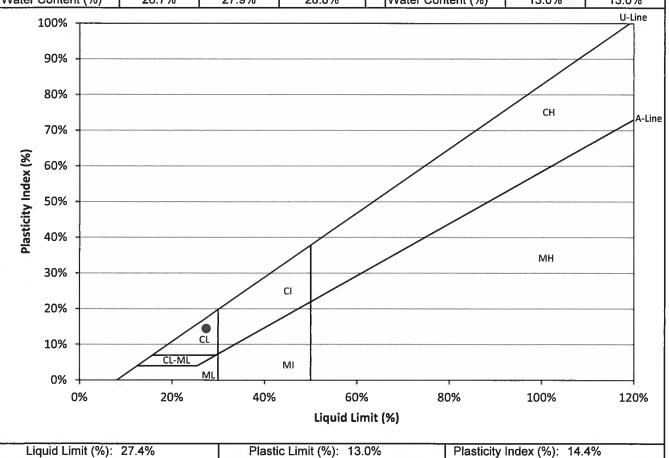
Atterberg Limits

	Liquid Li	mit	
Blows	0	0	0
Wet Sample (g)	0.0	0.0	0.0
Dry Sample (g)	0.0	0.0	0.0
Water Content (%)	N/A	N/A	N/A

Plastic Limit			
Trial	1	2	
Wet Sample (g)	0.0	0.0	
Dry Sample (g)	0.0	0.0	
Water Content (%)	N/A	N/A	

Phone: 204 477 5381

Fax: 204 284 2040


Project Name:	North East Interceptor
Project Number:	60509089
Client:	City of Winnipeg
Sample Location:	TH16-04
Sample Depth:	3.05 - 3.66m
Sample Number:	T4

AECOM
N/A
RHarras
Varies
EManimbao
September 20, 2016

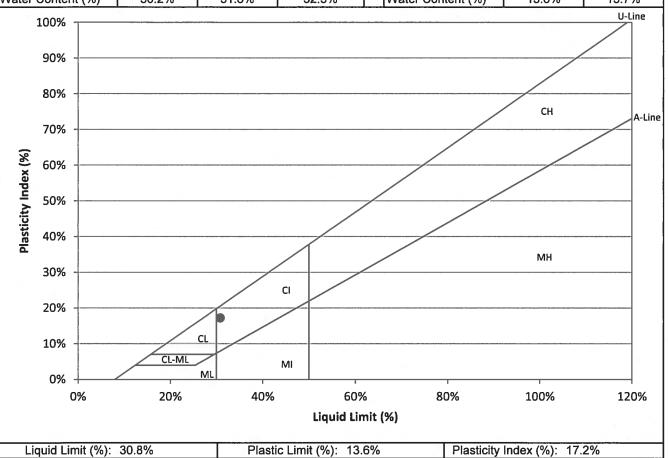
Atterberg Limits

Liquid Limit			
Blows	30	21	16
Wet Sample (g)	10.1	9.7	8.5
Dry Sample (g)	8.0	7.6	6.6
Water Content (%)	26.7%	27.9%	28.8%

Plastic Limit			
Trial	1	2	
Wet Sample (g)	7.3	7.4	
Dry Sample (g)	6.5	6.6	
Water Content (%)	13.0%	13.0%	

Phone: 204 477 5381

Fax: 204 284 2040


Project Name:	North East Interceptor
Project Number:	60509089
Client:	City of Winnipeg
Sample Location:	TH16-04
Sample Depth:	7.62 - 8.23m
Sample Number:	T10

Supplier:	AECOM
Specification:	N/A
Field Technician:	RHarras
Sample Date:	Varies
Lab Technician:	EManimbao
Date Tested:	September 21, 2016

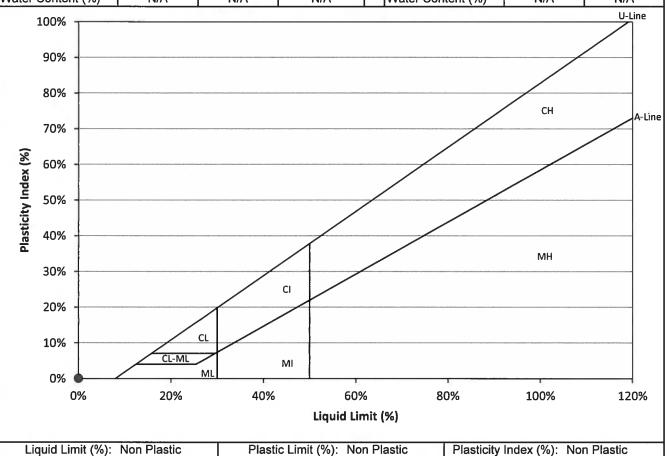
Atterberg Limits

Liquid Limit			
Blows	28	21	17
Wet Sample (g)	8.3	6.7	8.0
Dry Sample (g)	6.4	5.1	6.0
Water Content (%)	30.2%	31.6%	32.3%

Plastic Limit			
Trial	1	2	
Wet Sample (g)	6.8	7.1	
Dry Sample (g)	6.0	6.3	
Water Content (%)	13.6%	13.7%	

Phone: 204 477 5381

Fax: 204 284 2040


Project Name:	North East Interceptor	
Project Number:	60509089	
Client:	City of Winnipeg	
Sample Location:	TH16-04	
Sample Depth:	13.72 - 14.33m	
Sample Number:	T16	

Supplier:	AECOM	
Specification:	N/A	
Field Technician:	RHarras	
Sample Date:	Varies	
Lab Technician:	EManimbao	
Date Tested:	September 20, 2016	

Atterberg Limits

Liquid Limit			
Blows	0	0	0
Wet Sample (g)	0.0	0.0	0.0
Dry Sample (g)	0.0	0.0	0.0
Water Content (%)	N/A	N/A	N/A

Plastic Limit			
Trial	1	2	
Wet Sample (g)	0.0	0.0	
Dry Sample (g)	0.0	0.0	
Water Content (%)	N/A	N/A	

GRAIN SIZE DISTRIBUTION (ASTM D422-63)

AECOM AECOM

MATERIALS LABORATORY

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.:

60509089

Client:

Project:

Date Tested:

Tested By:

City of Winnipeg

North East Interceptor

19-Sep-16

EManimbao

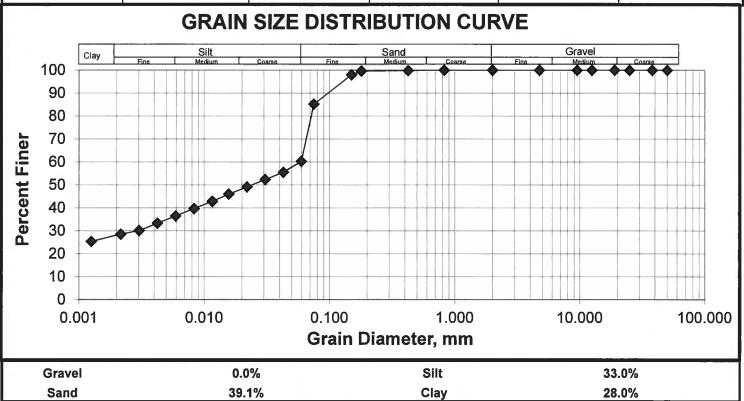
Hole No.:

TH 16-01

Sample No.:

T50

Depth:


9.14 - 9.75m

Date Sampled: Varies

Sampled By:

AECOM

GRAVE	L SIZES	SAN	D SIZES	FIN	ES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	85.2
38.0	100.0	0.83	100.0	0.0596	60.3
25.0	100.0	0.43	99.8	0.0429	55.5
19.0	100.0	0.18	99.6	0.0307	52.3
12.5	100.0	0.15	98.0	0.0220	49.2
9.5	100.0	0.075	85.2	0.0157	46.0
4.75	100.0			0.0116	42.8
2.00	100.0			0.0083	39.6
				0.0059	36.5
				0.0042	33.3
				0.0030	30.1
				0.0022	28.5
				0.0013	25.3

^{**} Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

(ASTM D422-63)

AECOM AECOM

MATERIALS LABORATORY

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client:

60509089

City of Winnipeg

Project:

North East Interceptor

Date Tested:

19-Sep-16

Tested By:

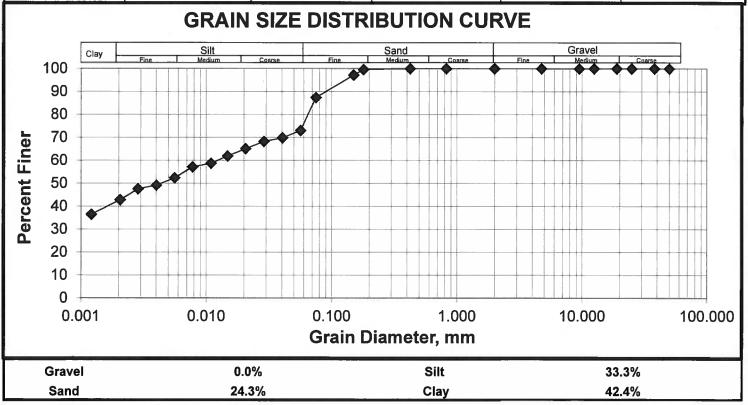
EManimbao

Hole No.:

TH 16-01

Sample No.:

T53


Depth:

12.19 - 12.80m

Date Sampled: Varies

Sampled By: **AECOM**

GRAVE	L SIZES	SANI	O SIZES	FIN	ES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	87.4
38.0	100.0	0.83	100.0	0.0565	73.0
25.0	100.0	0.43	100.0	0.0405	69.8
19.0	100.0	0.18	99.6	0.0288	68.2
12.5	100.0	0.15	97.2	0.0207	65.1
9.5	100.0	0.075	87.4	0.0148	61.9
4.75	100.0			0.0110	58.7
2.00	100.0			0.0078	57.1
				0.0056	52.3
				0.0040	49.2
				0.0029	47.6
				0.0021	42.8
				0.0012	36.5
					-

^{**} Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

GRAIN SIZE DISTRIBUTION (ASTM D422-63)

AECOM AECOM

MATERIALS LABORATORY

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.:

60509089

Client: Project: City of Winnipeg

Date Tested:

North East Interceptor

Tested By:

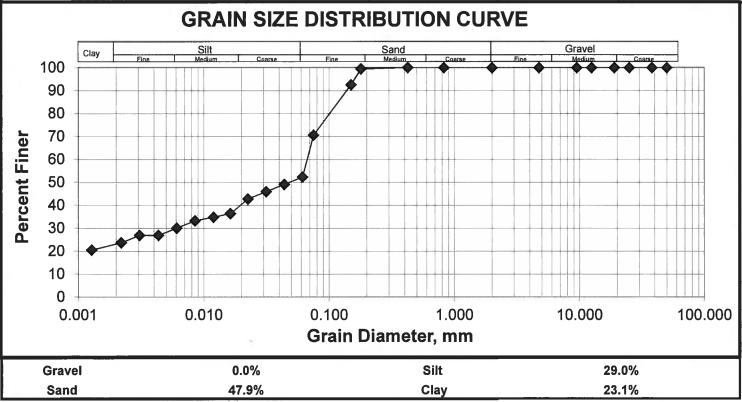
19-Sep-16 **EManimbao** Hole No .:

TH 16-02

Sample No.:

S24

Depth:


3.05 - 3.51m

Date Sampled: Varies

Sampled By:

AECOM

GRAVE	L SIZES	SAN	D SIZES	FIN	ES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	70.6
38.0	100.0	0.83	100.0	0.0615	52.3
25.0	100.0	0.43	100.0	0.0440	49.2
19.0	100.0	0.18	99.4	0.0315	46.0
12.5	100.0	0.15	92.6	0.0225	42.8
9.5	100.0	0.075	70.6	0.0163	36.5
4.75	100.0			0.0119	34.9
2.00	100.0			0.0085	33.3
		4		0.0061	30.1
				0.0043	26.9
				0.0031	26.9
r				0.0022	23.8
				0.0013	20.6

^{**} Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

GRAIN SIZE DISTRIBUTION (ASTM D422-63)

AECOM AECOM

MATERIALS LABORATORY

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

24.9%

20.6%

Job No.:

60509089

Client:

City of Winnipeg

Project:

North East Interceptor

Date Tested: Tested By:

Gravel

Sand

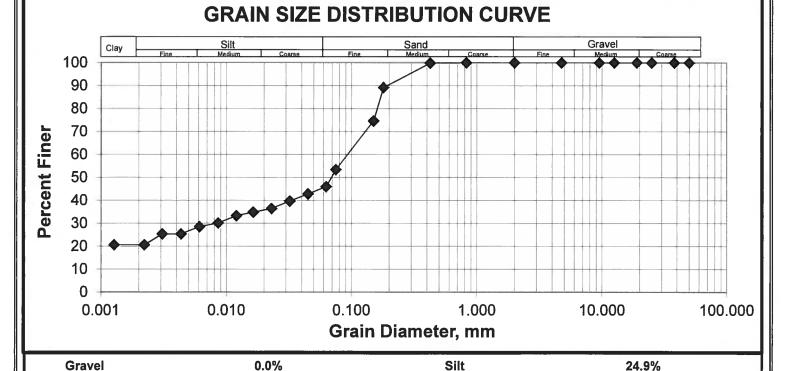
19-Sep-16

Hole No.:

TH 16-02

Sample No.:

S30


Depth:

7.62 - 8.23m

Date Sampled: Varies

EManimbao	Sampled By:	AECOM
	-	

GRAVEL SIZES		SAN	D SIZES	FINES		
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	
50.0	100.0	2.00	100.0	0.0750	53.4	
38.0	100.0	0.83	100.0	0.0629	46.0	
25.0	100.0	0.43	99.8	0.0450	42.8	
19.0	100.0	0.18	89.2	0.0322	39.6	
12.5	100.0	0.15	74.6	0.0230	36.5	
9.5	100.0	0.075	53.4	0.0164	34.9	
4.75	100.0			0.0120	33.3	
2.00	100.0			0.0086	30.1	
				0.0061	28.5	
				0.0044	25.3	
				0.0031	25.3	
				0.0022	20.6	
				0.0013	20.6	

Silt

Clay

54.5%

^{**} Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

(ASTM D422-63)

AECOM AECOM

MATERIALS LABORATORY

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.:

60509089

Client:

City of Winnipeg

Project:

North East Interceptor

Date Tested:

Tested By:

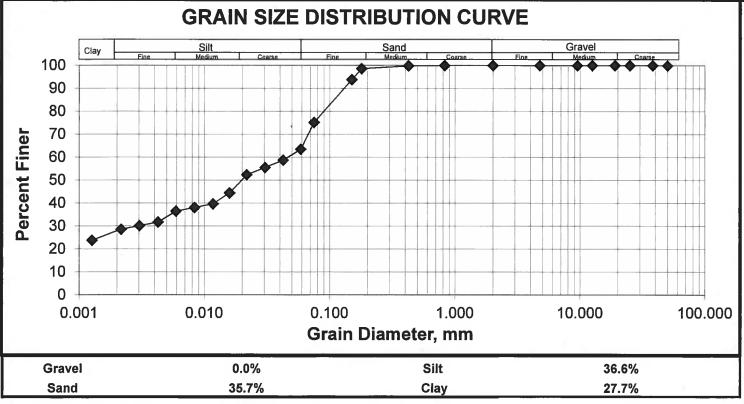
19-Sep-16 EManimbao Hole No.:

TH 16-04

Sample No.:

G11

Depth:


9.14 - 9.30m

Date Sampled: Varies

Sampled By:

AECOM

GRAVE	L SIZES	SAN	D SIZES	FIN	ES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	75.2
38.0	100.0	0.83	100.0	0.0588	63.5
25.0	100.0	0.43	99.8	0.0424	58.7
19.0	100.0	0.18	98.6	0.0304	55.5
12.5	100.0	0.15	93.8	0.0217	52.3
9.5	100.0	0.075	75.2	0.0158	44.4
4.75	100.0			0.0118	39.6
2.00	100.0			0.0084	38.1
				0.0059	36.5
				0.0043	31.7
				0.0030	30.1
				0.0022	28.5
				0.0013	23.8

^{**} Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

(ASTM D422-63)

AECOM AECOM

MATERIALS LABORATORY

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.:

60509089

Client:

City of Winnipeg

Project:

North East Interceptor

Date Tested:

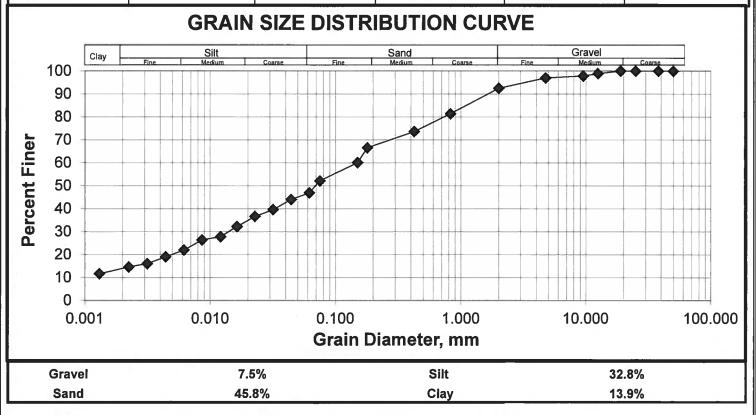
Tested By:

19-Sep-16 **EManimbao** Hole No.:

TH 16-04

Sample No.:

G18


Depth:

16.76 - 16.92m

Date Sampled: Varies Sampled By:

AECOM

GRAVE	L SIZES	SANI	D SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	92.5	0.0750	52.2
38.0	100.0	0.83	81.4	0.0619	46.9
25.0	100.0	0.43	73.6	0.0443	44.0
19.0	100.0	0.18	66.6	0.0318	39.6
12.5	98.9	0.15	60.1	0.0228	36.7
9.5	97.8	0.075	52.2	0.0164	32.3
4.75	97.0			0.0121	27.8
2.00	92.5			0.0086	26.4
				0.0062	22.0
				0.0044	19.0
				0.0032	16.1
				0.0022	14.6
				0.0013	11.7

^{**} Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

(ASTM D422-63)

AECOM AECOM

MATERIALS LABORATORY

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.:

60509089

Client:

City of Winnipeg

Project:

North East Interceptor

Date Tested: Tested By:

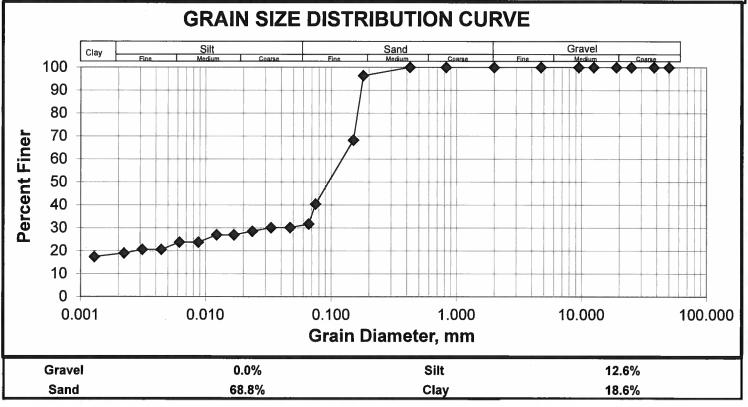
19-Sep-16 **EManimbao**

Hole No.:

TH 16-04

Sample No.:

T4


Depth:

3.05 - 3.66m

Date Sampled: Varies

Sampled By: **AECOM**

GRAVE	GRAVEL SIZES		D SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	40.4
38.0	100.0	0.83	100.0	0.0661	31.7
25.0	100.0	0.43	100.0	0.0470	30.1
19.0 12.5	100.0 100.0	0.18 0.15	96.4 68.2	0.0332 0.0236	30.1 28.5
9.5	100.0	0.15	40.4	0.0236	26.9
4.75	100.0			0.0123	26.9
2.00	100.0		•	0.0088	23.8
				0.0062	23.8
				0.0044	20.6
				0.0031	20.6
				0.0022	19.0
				0.0013	17.4
			1		

^{**} Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

(ASTM D422-63)

AECOM AECOM

MATERIALS LABORATORY

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.:

60509089

Client: Project: City of Winnipeg North East Interceptor

Date Tested:

19-Sep-16

Tested By:

EManimbao

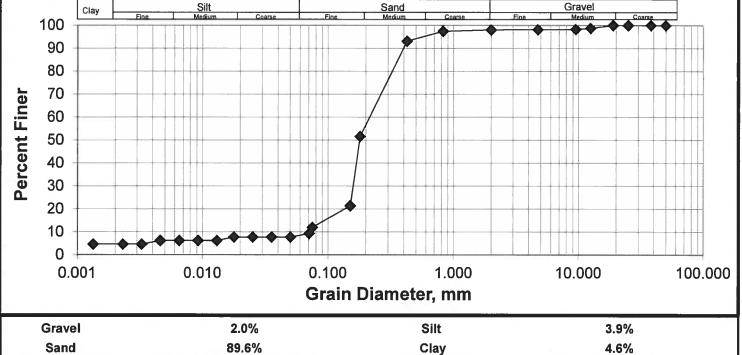
Hole No.:

TH 16-04

Sample No.: Depth:

T16

13.72 - 14.33m


Date Sampled: Varies

Sampled By:

AECOM

GRAVE	L SIZES	SANI	O SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	98.0	0.0750	12.0
38.0	100.0	0.83	97.4	0.0708	9.3
25.0	100.0	0.43	93.1	0.0503	7.7
19.0	100.0	0.18	51.6	0.0355	7.7
12.5	98.8	0.15	21.4	0.0251	7.7
9.5	98.3	0.075	12.0	0.0178	7.7
4.75	98.2			0.0130	6.2
2.00	98.0			0.0092	6.2
				0.0065	6.2
				0.0046	6.2
				0.0033	4.6
				0.0023	4.6
				0.0013	4.6

^{**} Note: Soil Classification based on Grain Size from Canadian Foundation Engineering Manual, 3rd edition (1992).

ROCK CORE

AECOM Canada Ltd. 99 Commerce Drive Winnipeg, Manitoba R3P 0Y7 File No.:

16-027-01

Ref. No.:

16-27-1-20

Attention:

Omer Eissa

Project:

CITY OF WINNIPEG NE INTERCEPTOR; AECOM PROJECT 60509089

Contractor:

Maple Leaf Drilling Ltd.

Page:

1 of 1

Date Cored:

August / September : 2016

Date Received:

Nov 7/16

Cored By:

Maple Leaf Drilling Ltd.

Received By:

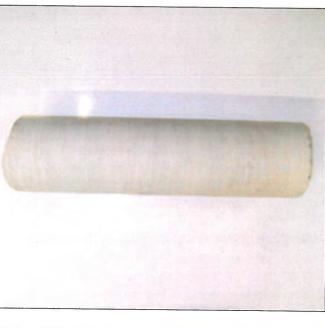
ENG-TECH

Caus Na	15.00	Length		Average	Compressive	Date
Core No.	Location	Cored (mm)	Tested (mm)	Diameter (mm)	Strength (MPa)	Tested (m/d/y)
1	TH 16 – 01 West Riverbank; C5.	239.9	125.4	63.3	93.5	Nov 22/16
2	TH 16 – 02 West Riverbank; C4.	164.5	125.5	63.3	149.6	Nov 22/16
3	TH 16 – 03 East side of Red River; C5.	253.2	77.5	36.2	58.9	Nov 22/16
4	TH 16 – 03 East side of Red River; C7.	117.7	74.1	36.2	39.7	Nov 22/16
5	TH 16 – 04 East Riverbank; C5.	323.8	100.0	50.5	77.8	Nov 22/16
6	TH 16 – 04 East Riverbank; C6.	298.4	102.4	50.5	96.6	Nov 22/16

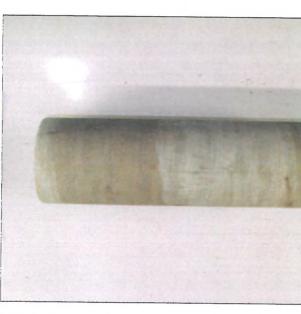
Comments:

The unconfined strength was determined in accordance with ASTM D2938-95 procedure with the cores in the as received moisture content.

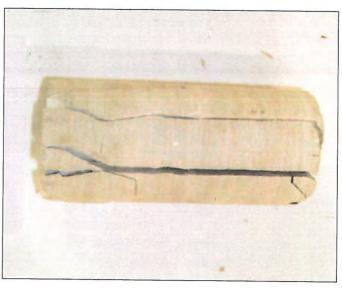
Cc: Email: omer.eissa@aecom.com


Enclosure: Photographs of Cores (6 pages)

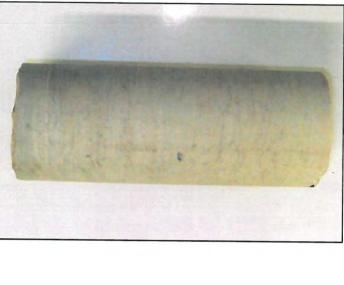
ENG-TECH Consulting Limited


Per Danny Holfeld, Principal

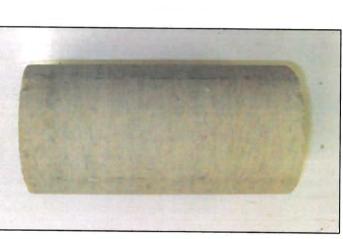
Ph: (204) 233-1694 Fx: (204) 235-1579


CORE NUMBER 1
TH 16-01
WEST RIVER BANK C5

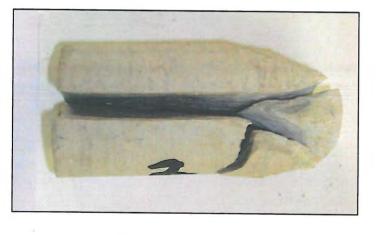
BEFORE TRIMMING



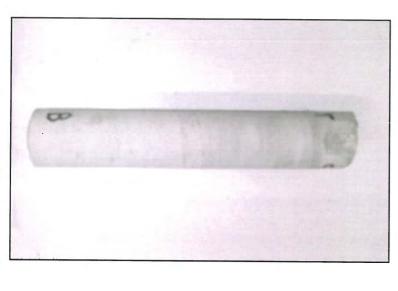
AFTER TRIMMING



AFTER TEST

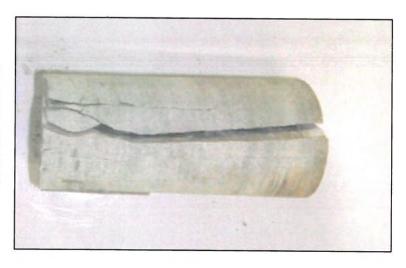

CORE NUMBER 2 TH 16-02 WEST RIVER BANK C4

BEFORE TRIMMING



AFTER TRIMMING

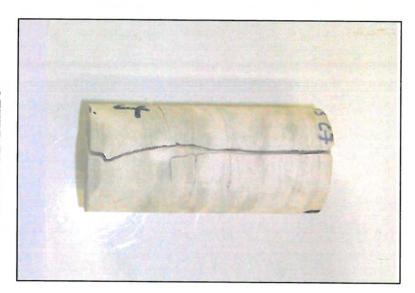
AFTER TESTING


CORE NUMBER 3
TH 16-03
EASTSIDE OF RED RIVER C5

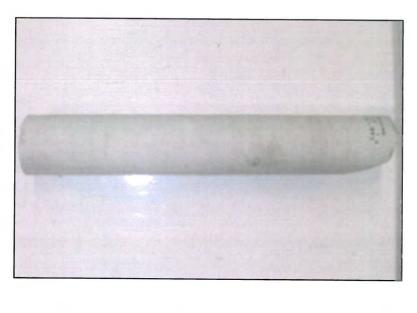
BEFORE TRIMMING

AFTER TRIMMING

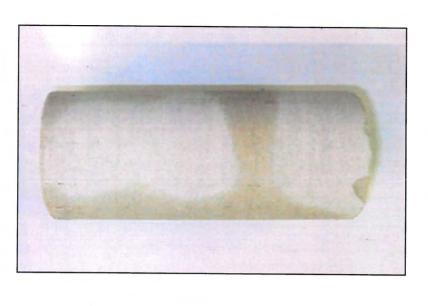
AFTER TESTING


CORE NUMBER 4 TH 16-03 EASTSIDE OF RED RIVER C7

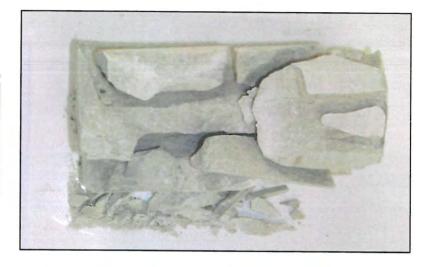
BEFORE TRIMMING



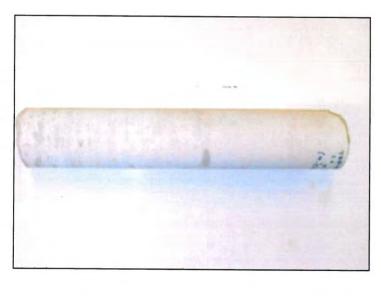
AFTER TRIMMING



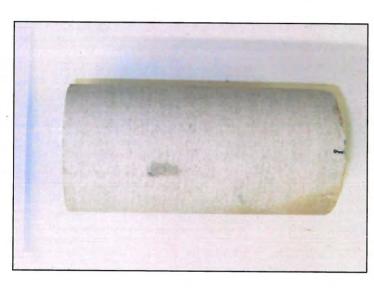
AFTER TESTING



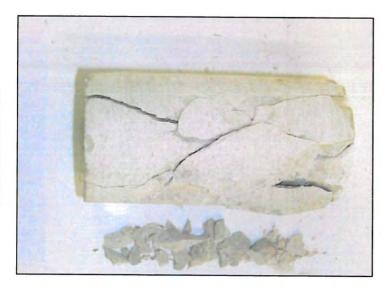
BEFORE TRIMMING



AFTER TRIMMING



AFTER TESTING


CORE NUMBER 6 TH 16-04 EAST RIVER BANK C6

BEFORE TRIMMING

AFTER TRIMMING

AFTER TESTING

Project No.

0115 004 00

Client

Associated Engineering

Project

Detailed Design North Kildonan Feedermain

Sample Date

22-Oct-13

Test Date

24-Oct-13

Technician

Chiran Peiris

Test Hole	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01
Depth (m)	0.2 - 0.3	0.9 - 1.1	1.4 - 1.5	1.8 - 2.1	2.9 - 4.6	5.9 - 6.1
Sample #	G29	G30	G31	G32	G33	G35
Tare ID	P30	КЗ	F32	F124	D8	N99
Mass of tare	8.3	8.4	8.2	8.3	8.4	8.4
Mass wet + tare	339.3	399.8	439.9	224.7	390.2	403.8
Mass dry + tare	270.3	327.4	352.9	191.4	306.6	309.4
Mass water	69.0	72.4	87.0	33.3	83.6	94.4
Mass dry soil	262.0	319.0	344.7	183.1	298.2	301.0
Moisture %	26.3%	22.7%	25.2%	18.2%	28.0%	31.4%

Test Hole	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01
Depth (m)	4.3 - 4.4	4.7 - 4.9	5.3 - 5.6	6.1 - 6.4	6.6 - 6.6	7.3 - 7.5
Sample #	SB 36A	SB 36B	SB 36C	SB 37A	SB 37B	SB 37C
Tare ID	F104	E10	Z30	Z75	F102	F66
Mass of tare	8.5	8.8	8.3	8.4	8.5	8.4
Mass wet + tare	588	468.8	653.3	446.3	387.3	649.9
Mass dry + tare	444.3	363.1	479.5	334.3	296.3	498.5
Mass water	143.7	105.7	173.8	112.0	91.0	151.4
Mass dry soil	435.8	354.3	471.2	325.9	287.8	490.1
Moisture %	33.0%	29.8%	36.9%	34.4%	31.6%	30.9%

Test Hole	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01
Depth (m)	7.9 - 8.2	8.5 - 8.8	10.1 - 10.4	11.3 - 11.6	12.8 - 13.3	13.3 - 13.7
Sample #	SB 38A	SB 38B	SB 39	SB 40	SB 42A	SB 42B
Tare ID	H79	E96	N90	Z64	Z101	F33
Mass of tare	8.4	8.6	8.5	8.2	8.3	8.4
Mass wet + tare	398.0	599.7	656.3	470.9	474.1	457.6
Mass dry + tare	296.2	486.4	501.9	379.0	386.3	361.1
Mass water	101.8	113.3	154.4	91.9	87.8	96.5
Mass dry soil	287.8	477.8	493.4	370.8	378.0	352.7
Moisture %	35.4%	23.7%	31.3%	24.8%	23.2%	27.4%

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Sample Date 22-Oct-13
Test Date 24-Oct-13
Technician Chiran Peiris

Test Hole	TH13-01	TH13-01	TH13-01	TH13-04	TH13-04	TH13-04
Depth (m)	14.9 - 15.2	15.2 - 15.7	16.8 - 17.2	1.8 - 2.4	2.4 - 3.0	3.7 - 4.3
Sample #	SB 43	SB 44	SB 45B	SB 1	SB 2	SB 4
Tare ID	W39	F29	N54	F56	D29	Z50
Mass of tare	8.2	8.3	8.3	8.2	8.1	8.2
Mass wet + tare	403.8	379.1	294.2	359.7	403.0	626.7
Mass dry + tare	318.9	315.9	268.0	228.2	258.3	410.1
Mass water	84.9	63.2	26.2	131.5	144.7	216.6
Mass dry soil	310.7	307.6	259.7	220.0	250.2	401.9
Moisture %	27.3%	20.5%	10.1%	59.8%	57.8%	53.9%

Test Hole	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04
Depth (m)	4.3 - 4.9	4.9 - 5.5	5.5 - 6.1	6.7 - 7.3	7.3 - 7.9	7.9 - 8.5
Sample #	SB 5	SB 6	SB 7	SB 9	SB 10	SB 11
Tare ID	N71	N37	H41	N68	P21	W16
Mass of tare	8.4	8.6	8.4	8.3	8.5	8.3
Mass wet + tare	466.7	502.5	369.4	402.5	481.1	505.9
Mass dry + tare	306.8	327.4	250.7	283.3	326.2	344.5
Mass water	159.9	175.1	118.7	119.2	154.9	161.4
Mass dry soil	298.4	318.8	242.3	275.0	317.7	336.2
Moisture %	53.6%	54.9%	49.0%	43.3%	48.8%	48.0%

Test Hole	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04
Depth (m)	8.5 - 9.1	9.8 - 10.4	10.4 - 11.0	11.0 - 11.6	11.6 - 12.2	12.8 - 13.4
Sample #	SB 12	SB 14	SB 15	SB 16	SB 17	SB 19
Tare ID	F89	F53	F55	Z130	W27	A103
Mass of tare	8.3	8.5	8.4	8.3	8.2	8.4
Mass wet + tare	649.4	602.3	542.2	781.3	552.8	551.4
Mass dry + tare	421.3	472.1	363.0	520.3	354.8	382.3
Mass water	228.1	130.2	179.2	261.0	198.0	169.1
Mass dry soil	413.0	463.6	354.6	512.0	346.6	373.9
Moisture %	55.2%	28.1%	50.5%	51.0%	57.1%	45.2%

Project No.

0115 004 00

Client

Associated Engineering

Project

Detailed Design North Kildonan Feedermain

Sample Date 22-Oct-13
Test Date 24-Oct-13
Technician Chiran Peiris

Test Hole	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04
Depth (m)	13.4 - 14.0	14.0 - 14.6	15.1 - 15.2	15.2 - 15.7	15.8 - 16.5	16.5 - 16.6
Sample #	SB 20	SB 21	SB 22	SB 23	SB 24	SB 25
Tare ID	A26	E38	W65	W15	P08	F14
Mass of tare	8.2	8.3	8.3	8.3	8.5	8.5
Mass wet + tare	402.6	568.1	582.7	350.7	486.7	337.1
Mass dry + tare	265.1	415.6	529.6	261.9	439.4	310.3
Mass water	137.5	152.5	53.1	88.8	47.3	26.8
Mass dry soil	256.9	407.3	521.3	253.6	430.9	301.8
Moisture %	53.5%	37.4%	10.2%	35.0%	11.0%	8.9%

Test Hole	TH13-04	TH13-04	TH13-04	TH13-04	
Depth (m)	0.5 - 0.8	1.2 - 1.5	1.8 - 2.1	2.7 - 3.0	
Sample #	G46	G47	G48	G49	
Tare ID	D15	K1	N65	N72	
Mass of tare	8.4	8.3	8.4	8.4	
Mass wet + tare	366.8	373.1	414.0	380.5	
Mass dry + tare	296.0	294.2	260.6	244.0	
Mass water	70.8	78.9	153.4	136.5	
Mass dry soil	287.6	285.9	252.2	235.6	
Moisture %	24.6%	27.6%	60.8%	57.9%	

Test Hole			
Depth (m)			
Sample #			
Tare ID			
Mass of tare			
Mass wet + tare			
Mass dry + tare			
Mass water			
Mass dry soil			
Moisture %			

Client Associated Engineering

Chiran Peiris

Project Detailed design of North Kildonan Feedermain

 Test Hole
 TH13-01

 Sample #
 T 34

 Depth (m)
 3-3.5

 Sample Date
 12-Nov-13

 Test Date
 25-Nov-13

Liquid Limit	45	
Plastic Limit	15	
Plasticity Index	29	

Liquid Limit

Technician

Trial #	1	2	3	4	5
Number of Blows (N)	34	15	23		
Mass Wet Soil + Tare (g)	18.021	19.111	19.345		
Mass Dry Soil + Tare (g)	16.832	17.544	17.640		
Mass Tare (g)	14.060	14.181	13.883		
Mass Water (g)	1.189	1.567	1.705		
Mass Dry Soil (g)	2.772	3.363	3.757		
Moisture Content (%)	42.893	46.595	45.382		

Plastic Limit

I lastic Littit					
Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	20.660	20.395			
Mass Dry Soil + Tare (g)	19.799	19.534			
Mass Tare (g)	14.222	13.986			
Mass Water (g)	0.861	0.861			
Mass Dry Soil (g)	5.577	5.548			
Moisture Content (%)	15.438	15.519			

Client Associated Engineering

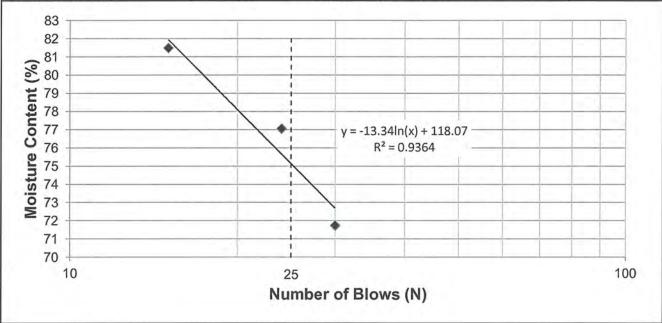
Project Detailed design of North Kildonan Feedermain

 Test Hole
 TH13-01

 Sample #
 T 08

 Depth (m)
 6-6.7

 Sample Date
 15-Nov-13


 Test Date
 25-Nov-13

 Technician
 Chiran Peiris

Liquid Limit 75	
Plastic Limit 18	
Plasticity Index 57	

Liquid Limit

Trial #	1	2	3	4	5
Number of Blows (N)	30	24	15		
Mass Wet Soil + Tare (g)	19.850	20.389	18.145		
Mass Dry Soil + Tare (g)	17.367	17.635	16.305		
Mass Tare (g)	13.906	14.061	14.047		
Mass Water (g)	2.483	2.754	1.840		
Mass Dry Soil (g)	3.461	3.574	2.258		
Moisture Content (%)	71.742	77.057	81.488		

Plastic Limit

Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	20.611	20.638			
Mass Dry Soil + Tare (g)	19.619	19.630			
Mass Tare (g)	14.222	13.967			1
Mass Water (g)	0.992	1.008			
Mass Dry Soil (g)	5.397	5.663			
Moisture Content (%)	18.381	17.800			

Client Associated Engineering

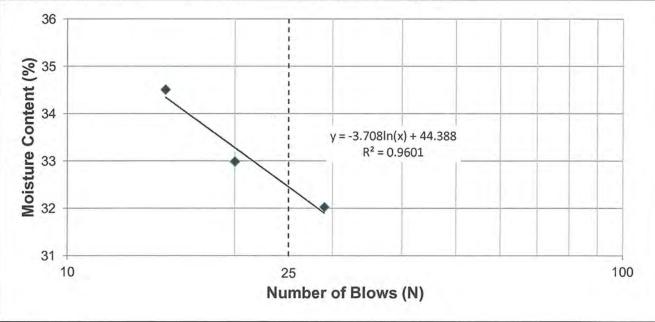
Project Detailed design of North Kildonan Feedermain

 Test Hole
 TH13-01

 Sample #
 SB 42B

 Depth (m)
 13-13.7

 Sample Date
 15-Nov-13


 Test Date
 25-Nov-13

 Technician
 Chiran Peiris

Plasticity Index	17	
Plastic Limit	15	
Liquid Limit	32	

Liquid Limit

Trial #	1	2	3	4	5
Number of Blows (N)	15	20	29		
Mass Wet Soil + Tare (g)	19.717	20.793	21.239		
Mass Dry Soil + Tare (g)	18.267	19.125	19.516		
Mass Tare (g)	14.065	14.069	14.136		
Mass Water (g)	1.450	1.668	1.723		
Mass Dry Soil (g)	4.202	5.056	5.380		
Moisture Content (%)	34.507	32.991	32.026		

Plastic Limit

Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	20.928	20.248			<u></u>
Mass Dry Soil + Tare (g)	20.033	19.440			
Mass Tare (g)	14.121	14.019			
Mass Water (g)	0.895	0.808			
Mass Dry Soil (g)	5.912	5.421			
Moisture Content (%)	15.139	14.905			

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

 Test Hole
 TH13-01

 Sample #
 SB 39

 Depth (m)
 4.6 - 5.0


 Sample Date
 15-Nov-13

 Test Date
 22-Nov-13

 Technician
 Chiran Peiris

Gravel	0.0%
Sand	50.7%
Silt	27.3%
Clay	22.0%

Particle Size Distribution Curve

Gravel		Sand		Silt and Clay	
Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing
50.0	100.00	4.75	100.00	0.0750	49.26
37.5	100.00	2.00	100.00	0.0484	38.46
25.0	100.00	0.825	100.00	0.0343	36.87
19.0	100.00	0.425	99.84	0.0242	35.28
12.5	100.00	0.180	83.00	0.0171	33.69
9.50	100.00	0.150	76.96	0.0121	32.11
4.75	100.00	0.075	49.26	0.0089	28.93
				0.0064	27.34
				0.0045	25.75
				0.0033	23.74
				0.0024	21.74
				0.0017	19.86
				0.0010	17.39

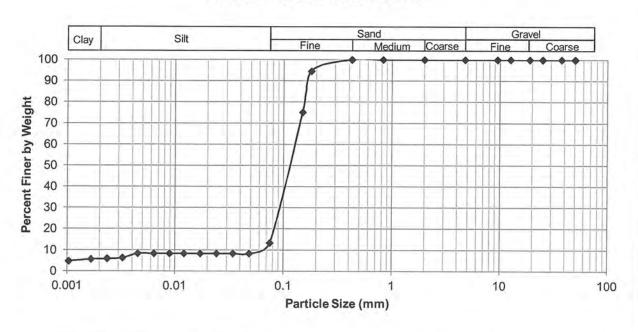
Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

 Test Hole
 TH13-01

 Sample #
 SB 43

 Depth (m)
 4.6 - 5.0


 Sample Date
 15-Nov-13

 Test Date
 22-Nov-13

 Technician
 Chiran Peiris

Gra	vel	0.0%	
San	d	50.7%	
Silt		27.3%	
Clay	1	22.0%	

Particle Size Distribution Curve

Gravel		Sand		Silt and Clay	
Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing
50.0	100.00	4.75	100.00	0.0750	13.29
37.5	100.00	2.00	100.00	0.0484	8.28
25.0	100.00	0.825	99.98	0.0343	8.28
19.0	100.00	0.425	99.96	0.0242	8.28
12.5	100.00	0.180	94.55	0.0171	8.28
9.50	100.00	0.150	75.09	0.0121	8.28
4.75	100.00	0.075	13.29	0.0089	8.28
				0.0064	8.28
				0.0045	8.28
				0.0033	6.27
				0.0024	5.86
				0.0017	5.57
				0.0010	4.68

Project No.

0115 004 00

Client

Associated Engineering

Project

Detailed Design North Kildonan Feedermain

Test Hole

TH13-01

Sample #

T34

Depth (m)

3.0 - 3.7

Sample Date

15-Nov-13

Test Date

20-Nov-13

Technician

Hachem Ahmed

Tube Extraction

Recovery (mm) 550

Bottom - 3.7 m		3.0 m - Top
PP		Qu
Tv		YBulk
Visual		
Moisture	Some clay	With clay
180 mm	210 mm	160 mm

Visual Class			Moisture Co	ntent	
Material	Silt (Alluvial)		Tare ID		N03
Composition	Some clay to with c	lay	Mass tare (g)		8.4
Trace sand			Mass wet + ta	re (g)	493.8
Trace oxidatio	n		Mass dry + tar	re (g)	370.3
Trace organics	s (roots)		Moisture %	-	34.1%
			Unit Weight		
			Bulk Weight (g)	1097.00
Color	dark grey				
Moisture	moist		Length (mm)	1 _	140.95
Consistency	stiff			2	140.82
Plasticity	high plasticity			3	140.93
Structure	-			4	140.14
Gradation	-		Average Leng	th (m)	0.141
Torvane			Diam. (mm)	1	71.94
Reading		0.70		2	71.66
Vane Size (s,r	n,l)	m		3	72.51
Undrained Sh	ear Strength (kPa)	68.7		4	72.37
			Average Diam	eter (m)	0.072
Pocket Pen	etrometer				
Reading	1	1.30	Volume (m ³)		5.75E-04
	2	1.60	Bulk Unit Weig	ght (kN/m³)	18.7
	3	1.40	Bulk Unit Weig		119.1
	Average	1.43	Dry Unit Weigl		14.0
Undrained Sh	ear Strength (kPa)	70.3	Dry Unit Weigl		88.8

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Test Hole TH13-01 Sample # T34 Depth (m) 3.0 - 3.7 Sample Date 15-Nov-13

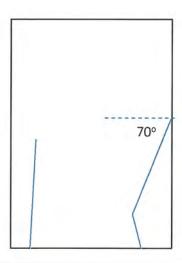
Test Date 20-Nov-13
Technician Hachem Ahmed

Unconfined Strength

	kPa	ksf
Max q _u	45.1	0.9
Max S _u	22.5	0.5

Specimen Data

Description Silt (Alluvial) - Some clay to with clay, Trace sand, Trace oxidation, Trace organics (roots), dark grey, moist, stiff, high plasticity

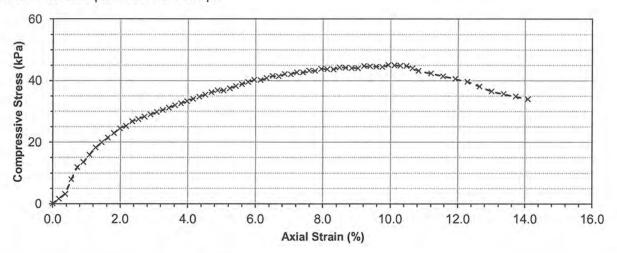

Length	140.7	(mm)	Moisture %	34%	
Diameter	72.1	(mm)	Bulk Unit Wt.	18.7	(kN/m^3)
L/D Ratio	2.0		Dry Unit Wt.	14.0	(kN/m^3)
Initial Area	0.00409	(m ²)	Liquid Limit	-	,
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	- 9	

Undrained Shear Strength Tests

Torvane			Pocket Pene	etrometer		
Reading	Undrained SI	near Strength	Reading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf	kPa	ksf	
0.70	68.7	1.43	1.30	63.8	1.33	
Vane Size			1.60	78.5	1.64	
m			1.40	68.7	1.43	
			1.43	70.3	1.47	

Failure Geometry

Sketch:


Photo:

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Graph

Unconfined Compression Test Data

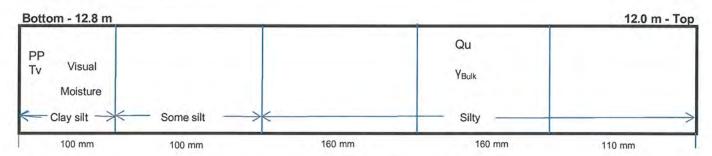
Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004085	0.0	0.00	0.00
10	2	0.2540	0.18	0.004092	6.5	1.60	0.80
20	4	0.5080	0.36	0.004100	13.1	3.19	1.59
30	10	0.7620	0.54	0.004107	32.7	7.96	3.98
40	15	1.0160	0.72	0.004115	49.1	11.93	5.97
50	17	1.2700	0.90	0.004122	55.7	13.50	6.75
60	20	1.5240	1.08	0.004130	65.5	15.86	7.93
70	23	1.7780	1.26	0.004137	75.3	18.21	9.11
80	25	2.0320	1.44	0.004145	82.4	19.89	9.94
90	27	2.2860	1.62	0.004153	89.0	21.43	10.72
100	29	2.5400	1.81	0.004160	95.6	22.98	11.49
110	31	2.7940	1.99	0.004168	102.2	24.53	12.26
120	32	3.0480	2.17	0.004176	105.5	25.27	12.63
130	34	3.3020	2.35	0.004183	112.1	26.80	13.40
140	35	3.5560	2.53	0.004191	115.4	27.53	13.77
150	36	3.8100	2.71	0.004199	118.7	28.27	14.13
160	37	4.0640	2.89	0.004207	122.0	29.00	14.50
170	38	4.3180	3.07	0.004214	125.3	29.73	14.87
180	39	4.5720	3.25	0.004222	128.6	30.46	15.23
190	40	4.8260	3.43	0.004230	131.9	31.18	15.59
200	41	5.0800	3.61	0.004238	135.2	31.90	15.95
210	42	5.3340	3.79	0.004246	138.5	32.61	16.31
220	43	5.5880	3.97	0.004254	141.8	33.32	16.66
230	44	5.8420	4.15	0.004262	145.1	34.03	17.02

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m²)	Axial Load (N)	Compressive Stress, q _u (kPa)	
240	45	6.0960	4.3323	0.004270	148.3	34.74	17.37
250	46	6.3500	4.51	0.004278	151.7	35.46	17.73
260	47	6.6040	4.69	0.004286	155.0	36.16	18.08
270	48	6.8580	4.87	0.004294	158.3	36.85	18.43
280	48	7.1120	5.05	0.004303	158.3	36.78	18.39
290	49	7.3660	5.23	0.004311	161.6	37.48	18.74
300	50	7.6200	5.42	0.004319	164.9	38.17	19.08
310	51	7.8740	5.60	0.004327	168.1	38.86	19.43
320	52	8.1280	5.78	0.004336	171.4	39.54	19.77
330	53	8.3820	5.96	0.004344	174.7	40.22	20.11
340	53	8.6360	6.14	0.004352	174.7	40.15	20.07
350	54	8.8900	6.32	0.004361	178.0	40.82	20.41
360	55	9.1440	6.50	0.004369	181.4	41.51	20.75
370	55	9.3980	6.68	0.004377	181.4	41.43	20.71
380	56	9.6520	6.86	0.004386	184.6	42.10	21.05
390	56	9.9060	7.04	0.004394	184.6	42.02	21.01
400	57	10.1600	7.22	0.004403	187.9	42.68	21.34
410	57	10.4140	7.40	0.004412	187.9	42.60	21.30
420	58	10.6680	7.58	0.004420	191.2	43.26	21.63
430	58	10.9220	7.76	0.004429	191.2	43.18	21.59
440	59	11.1760	7.94	0.004438	194.5	43.84	21.92
450	59	11.4300	8.12	0.004446	194.5	43.75	21.87
460	59	11.6840	8.30	0.004445	194.5	43.66	21.83
470	60	11.9380	8.48	0.004464	197.8	44.31	22.16
480	60	12.1920	8.66	0.004473	197.8	44.23	22.10
490	60	12.4460	8.85	0.004473	197.8	44.14	22.07
500	60	12.7000	9.03	0.004481	197.8	44.05	22.07
510	61	12.7000	9.03	0.004490	201.1	44.70	22.05
520	61	13.2080	9.39		201.1	44.61	22.30
530	61	13.4620	9.57	0.004508 0.004517	201.1	44.52	22.26
		13.7160	9.75		201.1	44.43	22.22
540	61			0.004526	201.1	45.07	22.53
550	62	13.9700	9.93	0.004535			
560	62	14.2240	10.11	0.004544	204.4	44.98	22.49
570	62	14.4780	10.29	0.004554	204.4 204.4	44.89	22.44
580	62	14.7320	10.47	0.004563		44.80	22.40
590	61	14.9860	10.65	0.004572	201.1	43.99	21.99
600	60	15.2400	10.83	0.004581	197.8	43.18	21.59
620	59	15.7480	11.19	0.004600	194.5	42.29	21.14
640	58	16.2560	11.55	0.004619	191.2	41.40	20.70
660	57	16.7640	11.91	0.004638	187.9374	40.52	20.26
680	56	17.2720	12.27	0.004657	184.6457	39.65	19.83
700	54	17.7800	12.64	0.004676	178.0178	38.07	19.04
720	52	18.2880	13.00	0.004695	171.4345	36.51	18.26
740	51	18.7960	13.36	0.004715	168.1428	35.66	17.83


Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Test Hole TH13-01
Sample # T41
Depth (m) 12 - 12.8
Sample Date 15-Nov-13
Test Date 21-Nov-13
Technician Hachem Ahmed

Tube Extraction

Recovery (mm) 630

Visual Class	sification		Moisture Cor	ntent	
Material	Caly and silt (Alluvial)		Tare ID		f151
Composition	Some silt to silty		Mass tare (g)	T	8.4
Trace organics	S		Mass wet + tar	re (g)	409.4
Trace oxidatio	n		Mass dry + tar	re (g)	309.3
			Moisture %	_	33.3%
		-	Unit Weight		
-7-5 - 1			Bulk Weight (g		1161.70
Color	Dark grey			· · · · · · · ·	
Moisture	Moist		Length (mm)	1	151.52
Consistency	Stiff			2	151.64
Plasticity	Intermediate			3	151.82
Structure	-			4	151.37
Gradation	2		Average Lengt	th (m)	0.152
Torvane			Diam. (mm)	1	72.38
Reading		0.52	4-2-4-	2	72.58
Vane Size (s,	m,l)	m		3	72.38
Undrained Sh	ear Strength (kPa)	51.0		4	72.55
			Average Diame	eter (m)	0.072
Pocket Pen	etrometer			-	
Reading	1	1.10	Volume (m ³)		6.25E-04
	2	1.20	Bulk Unit Weig	ght (kN/m³)	18.2
	3	1.10	Bulk Unit Weig		116.0
	Average	1.13	Dry Unit Weigh	nt (kN/m³)	13.7
Undrained Sh	ear Strength (kPa)	55.6	Dry Unit Weigh		87.0

Client Associated Engineering

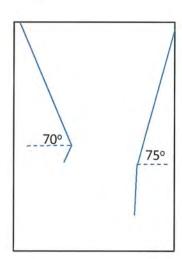
Project Detailed Design North Kildonan Feedermain

Test Hole TH13-01 Sample # T41 Depth (m) 12 - 12.8 Sample Date 15-Nov-13 **Test Date** 21-Nov-13 Technician Hachem Ahmed

Unconfined	Strength	
	kPa	ksf
Max q _u	106.6	2.2
Mays	E2 2	1.1

Specimen Data

Description Caly and silt (Alluvial) - Some silty to silt, Trace organics, Trace oxidation, Dark grey, Moist, Stiff, Intermediate

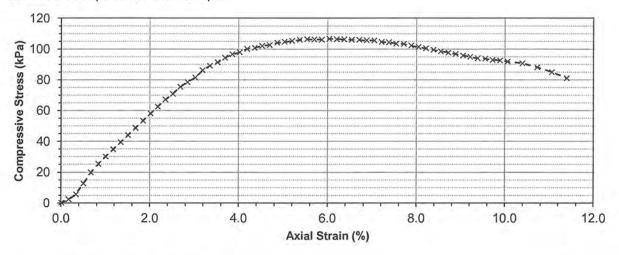

151.6	(mm)	Moisture %	33%	
72.5	(mm)	Bulk Unit Wt.	18.2	(kN/m^3)
2.1		Dry Unit Wt.	13.7	(kN/m^3)
0.00413	(m ²)	Liquid Limit	-	1,000
1.00	(%/min)	Plastic Limit	-	
		Plasticity Index	-	
	72.5 2.1 0.00413	72.5 (mm) 2.1 0.00413 (m ²)	72.5 (mm) 2.1 0.00413 (m²) 1.00 (%/min) Bulk Unit Wt. Dry Unit Wt. Liquid Limit Plastic Limit	72.5 (mm) Bulk Unit Wt. 18.2 2.1 Dry Unit Wt. 13.7 0.00413 (m²) Liquid Limit - 1.00 (%/min) Plastic Limit -

Undrained Shear Strength Tests

Torvane			Pocket Pene	etrometer		
Reading	Undrained SI	near Strength	Reading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf	kPa	ksf	
0.52	51.0	1.07	1.10	54.0	1.13	
Vane Size			1.20	58.9	1.23	
m			1.10	54.0	1.13	
			1.13	55.6	1.16	

Failure Geometry

Sketch:


Photo:

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004125	0.0	0.00	0.00
10	3	0.2540	0.17	0.004132	9.8	2.37	1.19
20	7	0.5080	0.34	0.004139	22.9	5.53	2.76
30	16	0.7620	0.50	0.004146	52.4	12.63	6.32
40	25	1.0160	0.67	0.004153	82.4	19.85	9.92
50	32	1.2700	0.84	0.004160	105.5	25.36	12.68
60	38	1.5240	1.01	0.004167	125.3	30.07	15.04
70	44	1.7780	1.17	0.004174	145.1	34.75	17.38
80	50	2.0320	1.34	0.004181	164.9	39.43	19.71
90	56	2.2860	1.51	0.004188	184.6	44.09	22.04
100	62	2.5400	1.68	0.004195	204.4	48.72	24.36
110	68	2.7940	1.84	0.004203	224.2	53.35	26.67
120	74	3.0480	2.01	0.004210	244.0	57.96	28.98
130	80	3.3020	2.18	0.004217	263.8	62.55	31.28
140	86	3.5560	2.35	0.004224	283.5	67.12	33.56
150	91	3.8100	2.51	0.004231	300.0	70.91	35.45
160	97	4.0640	2.68	0.004239	319.8	75.45	37.73
170	101	4.3180	2.85	0.004246	333.1	78.45	39.22
180	105	4.5720	3.02	0.004253	346.6	81.48	40.74
190	111	4.8260	3.18	0.004261	366.8	86.08	43.04
200	115	5.0800	3.35	0.004268	380.2	89.09	44.54
210	118	5.3340	3.52	0.004276	390.3	91.29	45.65
220	122	5.5880	3.69	0.004283	403.8	94.28	47.14
230	125	5.8420	3.85	0.004290	413.9	96.47	48.24

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	and the state of the party of t
240	127	6.0960	4.0214	0.004298	420.6	97.87	48.93
250	130	6.3500	4.19	0.004305	430.7	100.04	50.02
260	131	6.6040	4.36	0.004313	434.1	100.65	50.32
270	133	6.8580	4.52	0.004321	440.8	102.03	51.01
280	134	7.1120	4.69	0.004328	444.2	102.63	51.31
290	136	7.3660	4.86	0.004336	451.0	104.01	52.00
300	137	7.6200	5.03	0.004343	454.3	104.59	52.30
310	138	7.8740	5.19	0.004351	457.7	105.19	52.59
320	139	8.1280	5.36	0.004359	461.1	105.78	52.89
330	140	8.3820	5.53	0.004367	464.4	106.35	53.18
340	140	8.6360	5.70	0.004374	464.4	106.16	53.08
350	140	8.8900	5.86	0.004382	464.4	105.98	52.99
360	141	9.1440	6.03	0.004390	467.8	106.56	53.28
370	141	9.3980	6.20	0.004398	467.8	106.37	53.18
380	141	9.6520	6.37	0.004406	467.8	106.18	53.09
390	141	9.9060	6.53	0.004414	467.8	105.99	52.99
400	141	10.1600	6.70	0.004421	467.8	105.80	52.90
410	141	10.4140	6.87	0.004429	467.8	105.61	52.80
420	141	10.6680	7.04	0.004437	467.8	105.42	52.71
430	140	10.9220	7.21	0.004445	464.4	104.47	52.23
440	140	11.1760	7.37	0.004453	464.4	104.28	52.14
450	139	11.4300	7.54	0.004462	461.1	103.34	51.67
460	139	11.6840	7.71	0.004470	461.1	103.15	51.58
470	138	11.9380	7.88	0.004478	457.7	102.21	51.11
480	137	12.1920	8.04	0.004486	454.3	101.27	50.64
490	136	12.4460	8.21	0.004494	451.0	100.34	50.17
500	135	12.7000	8.38	0.004502	447.6	99.41	49.71
510	134	12.9540	8.55	0.004511	444.2	98.48	49.24
520	133	13.2080	8.71	0.004519	440.8	97.55	48.78
530	132	13.4620	8.88	0.004527	437.5	96.64	48.32
540	131	13.7160	9.05	0.004536	434.1	95.71	47.86
550	130	13.9700	9.22	0.004544	430.7	94.79	47.40
560	129	14.2240	9.38	0.004552	427.4	93.88	46.94
570	129	14.4780	9.55	0.004561	427.4	93.71	46.86
580	128	14.7320	9.72	0.004569	424.0	92.80	46.40
590	128	14.9860	9.89	0.004578	424.0	92.62	46.31
600	127	15.2400	10.05	0.004586	420.6	91.72	45.86
620	126	15.7480	10.39	0.004603	417.2	90.64	45.32
640	123	16.2560	10.72	0.004621	407.1	88.11	44.06
660	119	16.7640	11.06	0.004638	393.6676	84.88	42.44
680	114	17.2720	11.39	0.004656	376.8533	80.95	40.47
700	105	17.7800	11.73	0.004673	346.5609	74.16	37.08

www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No. 0115 004 00

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

 Test Hole
 TH13-04

 Sample #
 T08

 Depth (m)
 6.1 - 6.7

 Sample Date
 15-Nov-13

 Test Date
 21-Nov-13

 Technician
 HA

Tube Extraction

Recovery (mm) 450

Bottom - 6.7		6.1 m - Top
PP Tv Visual Moisture	Qu Y _{Bulk}	
120 mm	170 mm	160 mm

Visual Class	ification		Moisture Co	ntent	
Material	Clay		Tare ID		P10
Composition	Silty		Mass tare (g)		8.3
Trace silt inclus	sions (< 10mm dia.)		Mass wet + ta	re (g)	470.6
Trace gravel			Mass dry + tar	re (g)	304.4
		_	Moisture %	<u> </u>	56.1%
		-	Unit Weight		
			Bulk Weight (g		1152.10
Color	Dark grey				
Moisture	Moist		Length (mm)	1	150.91
Consistency	Firm			2	150.83
Plasticity	High plasticity			3	150.90
Structure	-			4	150.88
Gradation	+		Average Leng	th (m)	0.151
Torvane			Diam. (mm)	1	72.38
Reading		0.35	74.7 V. V.	2	71.83
Vane Size (s,n	n,l)	m		3	72.08
Undrained She	ear Strength (kPa)	34.3		4	72.63
			Average Diam	eter (m)	0.072
Pocket Pene	etrometer		2.		
Reading	1	0.70	Volume (m³)	_	6.18E-04
	2	0.75	Bulk Unit Weig	ght (kN/m³)	18.3
	3	0.70	Bulk Unit Weig		116.3
	Average	0.72	Dry Unit Weigl		11.7
Undrained She	ear Strength (kPa)	35.1	Dry Unit Weigl	ht (pcf)	74.5

kPa

ksf

1.9

0.9

Unconfined Strength

Project No. 0115 004 00

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

 Test Hole
 TH13-04

 Sample #
 T08

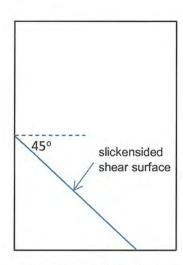
 Depth (m)
 6.1 - 6.7

 Sample Date
 15-Nov-13

Test Date 21-Nov-13 Technician HA

Specimen Data

Description Clay - Silty, Trace silt inclusions (< 10mm dia.), Trace gravel, Dark grey, Moist, Firm, High plasticity


Length	150.9	(mm)	Moisture %	56%	
Diameter	72.2	(mm)	Bulk Unit Wt.	18.3	(kN/m^3)
L/D Ratio	2.1		Dry Unit Wt.	11.7	(kN/m^3)
Initial Area	0.00410	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	4.5	
			Plasticity Index	-	

Undrained Shear Strength Tests

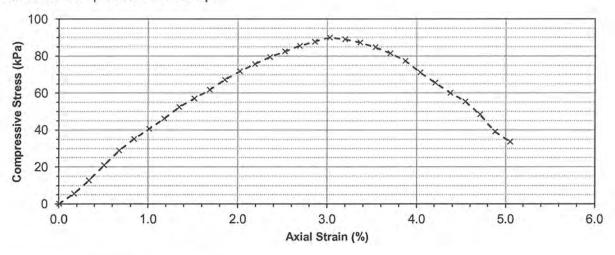
Torvane		Pocket Penetrometer				
Reading	Undrained S	hear Strength	Reading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf	kPa	ksf	
0.35	34.3	0.72	0.70	34.3	0.72	
Vane Size			0.75	36.8	0.77	
m			0.70	34.3	0.72	
			0.72	35.2	0.73	

Failure Geometry

Sketch:

Photo:

Project No.


0115 004 00

Client

Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m²)	Axial Load (N)	Compressive Stress, q _u (kPa)	
0	0	0.0000	0.00	0.004098	0.0	0.00	0.00
10	7	0.2540	0.17	0.004104	22.9	5.58	2.79
20	16	0.5080	0.34	0.004111	52.4	12.74	6.37
30	26	0.7620	0.51	0.004118	85.7	20.81	10.41
40	36	1.0160	0.67	0.004125	118.7	28.77	14.38
50	44	1.2700	0.84	0.004132	145.1	35.10	17.55
60	51	1.5240	1.01	0.004139	168.1	40.62	20.31
70	58	1.7780	1.18	0.004146	191.2	46.12	23.06
80	66	2.0320	1.35	0.004153	217.6	52.39	26.20
90	72	2.2860	1.52	0.004161	237.4	57.06	28.53
100	78	2.5400	1.68	0.004168	257.2	61.70	30.85
110	85	2.7940	1.85	0.004175	280.2	67.12	33.56
120	91	3.0480	2.02	0.004182	300.0	71.74	35.87
130	96	3.3020	2.19	0.004189	316.5	75.56	37.78
140	101	3.5560	2.36	0.004196	333.1	79.37	39.69
150	105	3.8100	2.53	0.004204	346.6	82.44	41.22
160	109	4.0640	2.69	0.004211	360.0	85.49	42.74
170	112	4.3180	2.86	0.004218	370.1	87.75	43.87
180	115	4.5720	3.03	0.004226	380.2	89.98	44.99
190	114	4.8260	3.20	0.004233	376.9	89.03	44.51
200	112	5.0800	3.37	0.004240	370.1	87.29	43.64
210	109	5.3340	3.54	0.004248	360.0	84.75	42.37
220	105	5.5880	3.70	0.004255	346.6	81.45	40.72
230	100	5.8420	3.87	0.004263	329.7	77.35	38.67

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	92	6.0960	4.0403	0.004270	303.3	71.03	35.52
250	85	6.3500	4.21	0.004278	280.2	65.51	32.76
260	78	6.6040	4.38	0.004285	257.2	60.01	30.01
270	72	6.8580	4.55	0.004293	237.4	55.30	27.65
280	63	7.1120	4.71	0.004300	207.7	48.31	24.15
290	51	7.3660	4.88	0.004308	168.1	39.03	19.52
300	44	7.6200	5.05	0.004316	145.1	33.61	16.81

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

 Test Hole
 TH13-04

 Sample #
 T13

 Depth (m)
 9.1 - 9.8

 Sample Date
 15-Nov-13

 Test Date
 21-Nov-13

 Technician
 Hachem Ahmed

Tube Extraction

Recovery (mm) 450

Bottom - 9.8 m		9.1 m - Top
PP Tv Visual Moisture	Qu Y _{Bulk}	
110 mm	170 mm	190 mm

Visual Class	sitication		Moisture Co	ntent	
Material	Clay Silty		Tare ID		K22
Composition			Mass tare (g)		8.5
Trace silt inclusions			Mass wet + ta	462.8	
Trace gravel			Mass dry + tare (g)		351.3
			Moisture %	-	32.5%
			Unit Weight		
			Bulk Weight (g)	1196.70
Color	Dark grey			77	
Moisture	Moist		Length (mm)	1	152.25
Consistency	Firm			2	152.31
Plasticity	High plasticity			3	152.35
Structure				4	152.39
Gradation	40		Average Leng	th (m)	0.152
Torvane			Diam. (mm)	1	71.81
Reading		0.25		2	72.71
Vane Size (s,n	n,l)	m		3	72.43
Undrained Shear Strength (kPa)		24.5		4	72.32
	4		Average Diam	eter (m)	0.072
Pocket Pene	etrometer				
Reading	1	0.60	Volume (m³)	Market La	6.26E-04
	2	0.50		Bulk Unit Weight (kN/m³)	
	3	0.80	Bulk Unit Weig	Bulk Unit Weight (pcf)	
	Average	Average 0.63		Dry Unit Weight (kN/m³)	
Undrained Shear Strength (kPa) 31.1		Dry Unit Weight (pcf)		90.1	

Project No. 0115 004 00

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

 Test Hole
 TH13-04

 Sample #
 T13

 Depth (m)
 9.1 - 9.8

 Sample Date
 15-Nov-13

 Test Date
 21-Nov-13

Sample Date 15-Nov-13
Test Date 21-Nov-13
Technician Hachem Ahmed

Unconfined	Strength	
	kPa	ksf
Max qu	78.3	1.6
Max S	39.1	0.8

Specimen Data

Description Silty clay - trace silt inclusions, trace gravel, dark grey, moist, firm, high plasticity

 Length
 152.3 (mm)

 Diameter
 72.3 (mm)

 L/D Ratio
 2.1

 Initial Area
 0.00411 (m²)

 Load Rate
 1.00 (%/min)

 Moisture %
 33%

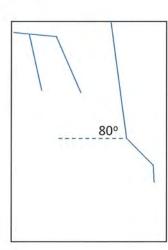
 Bulk Unit Wt.
 18.8 (kN/m³)

 Dry Unit Wt.
 14.2 (kN/m³)

 Liquid Limit

Plastic Limit Plasticity Index -

Undrained Shear Strength Tests


Torvane		
Reading	Undrained SI	hear Strength
tsf	kPa	ksf
0.25	24.5	0.51
Vane Size		
m		

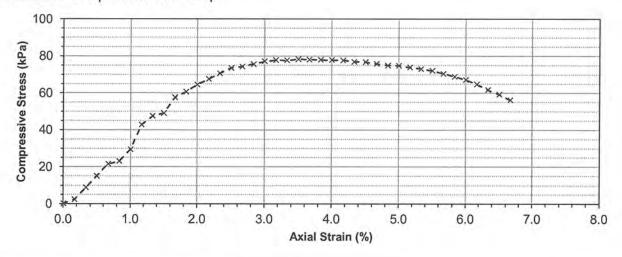
Pocket Penetrometer

Readin	ng	Undrained S	hear Strength
tsf		kPa	ksf
(0.60	29.4	0.61
(0.50	24.5	0.51
(0.80	39.2	0.82
(0.63	31.1	0.65

Failure Geometry

Sketch:

Photo:



Project No. 0115 004 00

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004107	0.0	0.00	0.00
10	3	0.2540	0.17	0.004114	9.8	2.38	1.19
20	11	0.5080	0.33	0.004121	36.0	8.73	4.37
30	19	0.7620	0.50	0.004128	62.2	15.07	7.54
40	27	1.0160	0.67	0.004135	89.0	21.53	10.76
50	29	1.2700	0.83	0.004142	95.6	23.08	11.54
60	37	1.5240	1.00	0.004149	122.0	29.40	14.70
70	54	1.7780	1.17	0.004156	178.0	42.83	21.42
80	60	2.0320	1.33	0.004163	197.8	47.52	23.76
90	62	2.2860	1.50	0.004170	204.4	49.01	24.51
100	73	2.5400	1.67	0.004177	240.7	57.62	28.81
110	77	2.7940	1.83	0.004184	253.9	60.67	30.34
120	82	3.0480	2.00	0.004191	270.4	64.50	32.25
130	86	3.3020	2.17	0.004199	283.5	67.53	33.77
140	90	3.5560	2.33	0.004206	296.7	70.56	35.28
150	94	3.8100	2.50	0.004213	309.9	73.56	36.78
160	95	4.0640	2.67	0.004220	313.2	74.22	37.11
170	97	4.3180	2.83	0.004227	319.8	75.66	37.83
180	99	4.5720	3.00	0.004235	326.4	77.08	38.54
190	100	4.8260	3.17	0.004242	329.7	77.73	38.86
200	100	5.0800	3.33	0.004249	329.7	77.59	38.80
210	101	5.3340	3.50	0.004257	333.1	78.25	39.13
220	101	5.5880	3.67	0.004264	333.1	78.12	39.06
230	101	5.8420	3.84	0.004271	333.1	77.98	38.99

Project No. 0115 004 00

Client Associated Engineering

Project Detailed Design North Kildonan Feedermain

Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	101	6.0960	4.0020	0.004279	333.1	77.85	38.92
250	101	6.3500	4.17	0.004286	333.1	77.71	38.86
260	100	6.6040	4.34	0.004294	329.7	76.79	38.39
270	100	6.8580	4.50	0.004301	329.7	76.65	38.33
280	99	7.1120	4.67	0.004309	326.4	75.76	37.88
290	98	7.3660	4.84	0.004316	323.1	74.86	37.43
300	98	7.6200	5.00	0.004324	323.1	74.73	37.37
310	97	7.8740	5.17	0.004331	319.8	73.84	36.92
320	96	8.1280	5.34	0.004339	316.5	72.95	36.48
330	95	8.3820	5.50	0.004347	313.2	72.05	36.03
340	93	8.6360	5.67	0.004354	306.6	70.42	35.21
350	91	8.8900	5.84	0.004362	300.0	68.78	34.39
360	89	9.1440	6.00	0.004370	293.4	67.15	33.58
370	86	9.3980	6.17	0.004378	283.5	64.77	32.38
380	82	9.6520	6.34	0.004385	270.4	61.65	30.83
390	79	9.9060	6.50	0.004393	260.4	59.28	29.64
400	75	10.1600	6.67	0.004401	247.3	56.19	28.09

TREK GEOTECHNICAL INC. 19-6104-3

LABORATORY TESTING RESULTS DECEMBER 2013

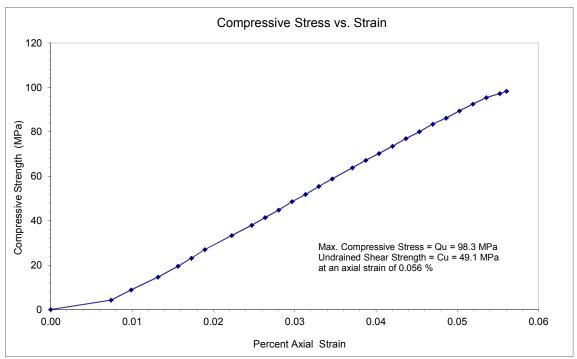
DRILL	SAMPLE	DE	DEPTH		COMPRESSIVE		
HOLE	#	FROM	то	STRE	NGTH		
NUMBER				C _u	Strain		
		(FT)	(FT)	(MPa)	(%)		
TH13-01	CB57	65' 4"	66'	49.1	0.056	Limestone	
	CB64	99' 9"	100' 5"	31.2	0.042	Limestone	
	CB65	101' 4"	102' 2"	21.8	0.045	Limestone	
	CB67	114'	114' 11"	33.1	0.066	Limestone	
TH13-05	CB72	62' 9"	63' 6"	39.5	0.048	Limestone	
	CB74	71' 5"	72' 4"	39.5	0.081	Limestone	
	CB79	97' 4"	98' 3"	11.9	0.037	Limestone	

UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC REPORT DATE: Dec 4/13 FILE NUMBER: 19-6104-3 REPORT NUMBER: UC13-1c

Unconfined Compressive Strengths

TEST DATE: Dec 4/13


SAMPLE: TH13-01, CB57, @ 65'-4" to 66'

DESCRIPTION: Limestone, massive.

SPECIMEN DETAILS:

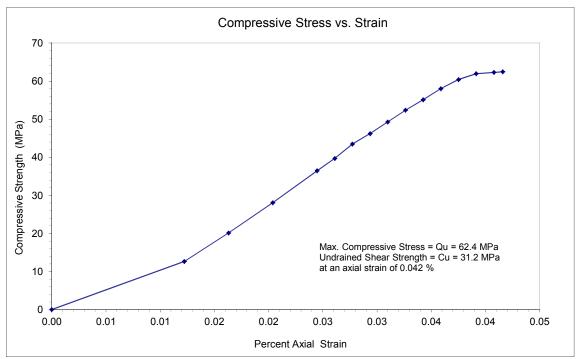
Wet Density (kg/m³): 2487 Dry Density (kg/m³): 2478 Moisture Content (%): 0.4

UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC REPORT DATE: Dec 4/13 FILE NUMBER: 19-6104-3 REPORT NUMBER: UC13-4c

Unconfined Compressive Strengths

TEST DATE: Dec 4/13


SAMPLE: TH13-01, CB64, @ 99'-9" to 100'-5"

DESCRIPTION: Limestone, nodular.

SPECIMEN DETAILS:

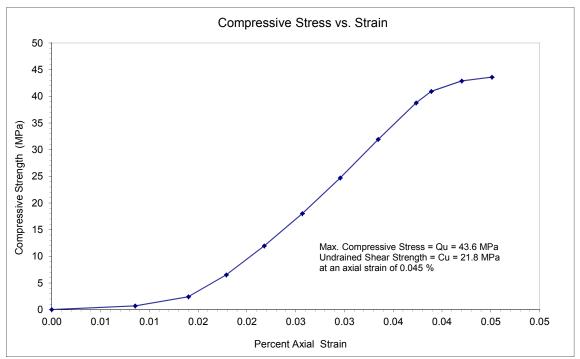
Wet Density (kg/m³): 2561 Dry Density (kg/m³): 2535 Moisture Content (%): 1.0

UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC REPORT DATE: Dec 4/13 FILE NUMBER: 19-6104-3 REPORT NUMBER: UC13-2c

Unconfined Compressive Strengths

TEST DATE: Dec 4/13


SAMPLE: TH13-01, CB65, @ 101'-4" to 102'-2"

DESCRIPTION: Limestone, nodular.

SPECIMEN DETAILS:

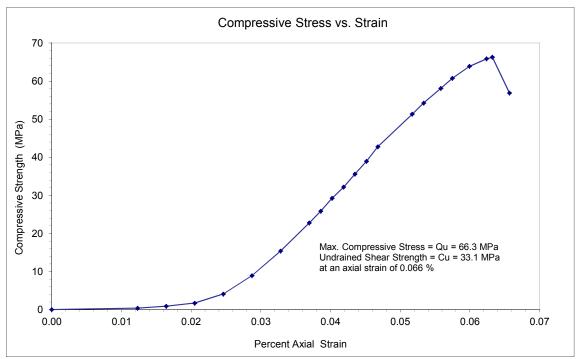
Wet Density (kg/m³): 2305 Dry Density (kg/m³): 2206 Moisture Content (%): 4.5

UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC REPORT DATE: Dec 4/13 FILE NUMBER: 19-6104-3 REPORT NUMBER: UC13-3c

Unconfined Compressive Strengths

TEST DATE: Dec 4/13


SAMPLE: TH13-01, CB67, @ 114' to 114'-11"

DESCRIPTION: Limestone, nodular.

SPECIMEN DETAILS:

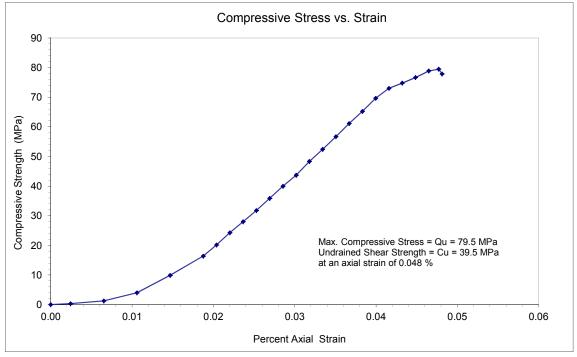
Wet Density (kg/m³): 2547 Dry Density (kg/m³): 2502 Moisture Content (%): 1.8

UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC REPORT DATE: Dec 4/13 FILE NUMBER: 19-6104-3 REPORT NUMBER: UC13-5c

Unconfined Compressive Strengths

TEST DATE: Dec 4/13


SAMPLE: TH13-05, CB72, @ 62'-9" to 63'-6"

DESCRIPTION: Limestone, massive.

SPECIMEN DETAILS:

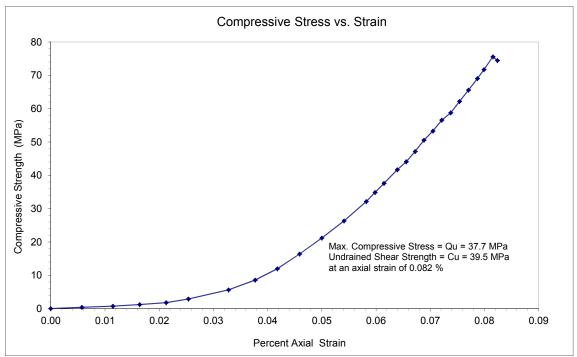
Wet Density (kg/m³): 2647 Dry Density (kg/m³): 2633 Moisture Content (%): 0.6

UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC REPORT DATE: Dec 4/13 FILE NUMBER: 19-6104-3 REPORT NUMBER: UC13-6c

Unconfined Compressive Strengths

TEST DATE: Dec 4/13


SAMPLE: TH13-05, CB74, @ 71'-5" to 72'-4"

DESCRIPTION: Limestone, massive.

SPECIMEN DETAILS:

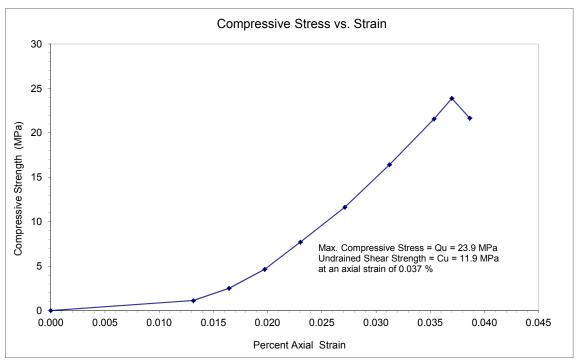
Wet Density (kg/m³): 2534 Dry Density (kg/m³): 2496 Moisture Content (%): 1.5

UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC REPORT DATE: Dec 4/13 FILE NUMBER: 19-6104-3 REPORT NUMBER: UC13-7c

Unconfined Compressive Strengths

TEST DATE: Dec 4/13

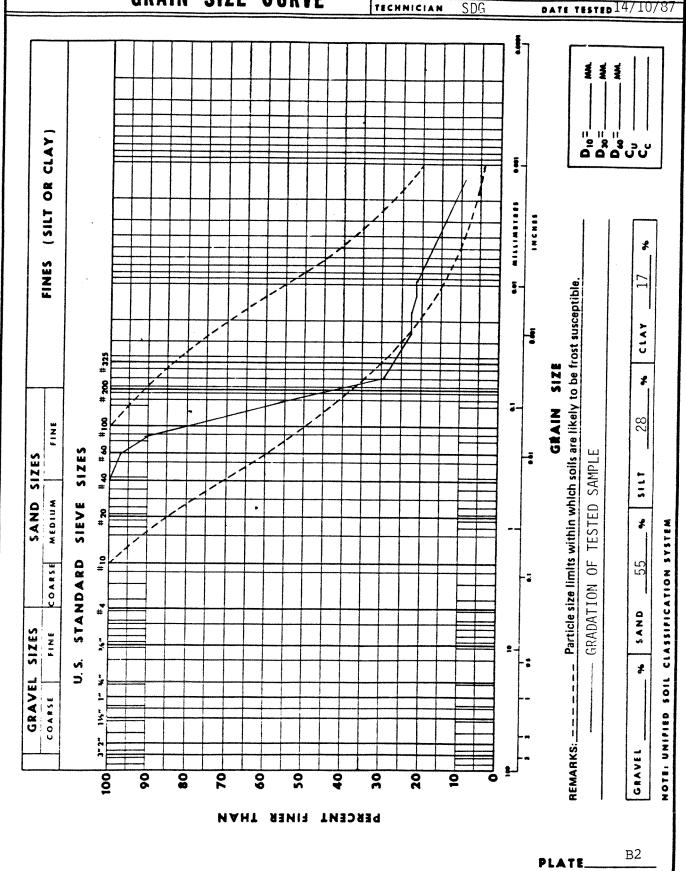

SAMPLE: TH13-05, CB79, @ 97'-4" to 98'-3"

DESCRIPTION: Limestone, nodular.

SPECIMEN DETAILS:

Wet Density (kg/m³): 2388
Dry Density (kg/m³): 2256
Moisture Content (%): 5.8

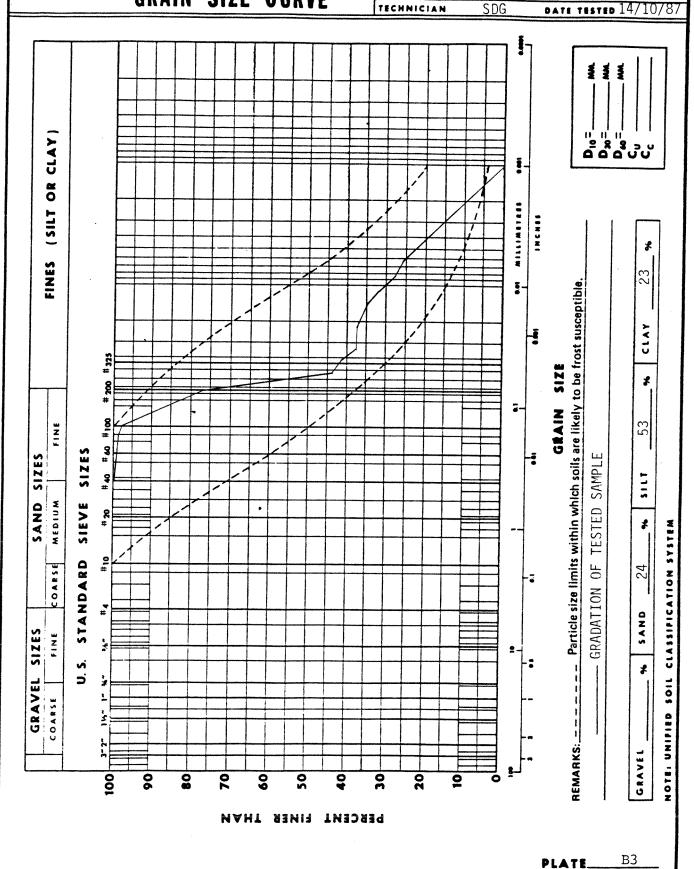
LAB ORDER NO. 87422 CLIENT **DYREGROV & BURGESS** SAMPLE Consulting Geotechnical Engineers SOURCE KILDONAN CORRIDOR GRAIN SIZE CURVE HOLE DEPTH 4.6 m 6 DATE REC'D. TECHNICIAN SDG DATE TESTED 14/10/87 **\$ \$ \$** CLAY õ MILLIMBTRES (SILT FINES -Particle size limits within which soils are likely to be frost susceptible. CLAY Ę GRAIN SIZE \$ 3-# 8 Z Z 2 3 SIZES TESTED SAMPLE SIZES # 5117 SAND MEDIUM SIEVE # 20 CLASSIFICATION SYSTEM STANDARD GRADATION OF SAND SIZES I NE 2vi NOTE: UNIFIED SOIL GRAVEL COARSE REMARKS: GRAVEL 80 96 80 9 50 20 6 30 PERCENT FINER THAN Bl PLATE_


1

100

Consulting Geotechnical Engineers

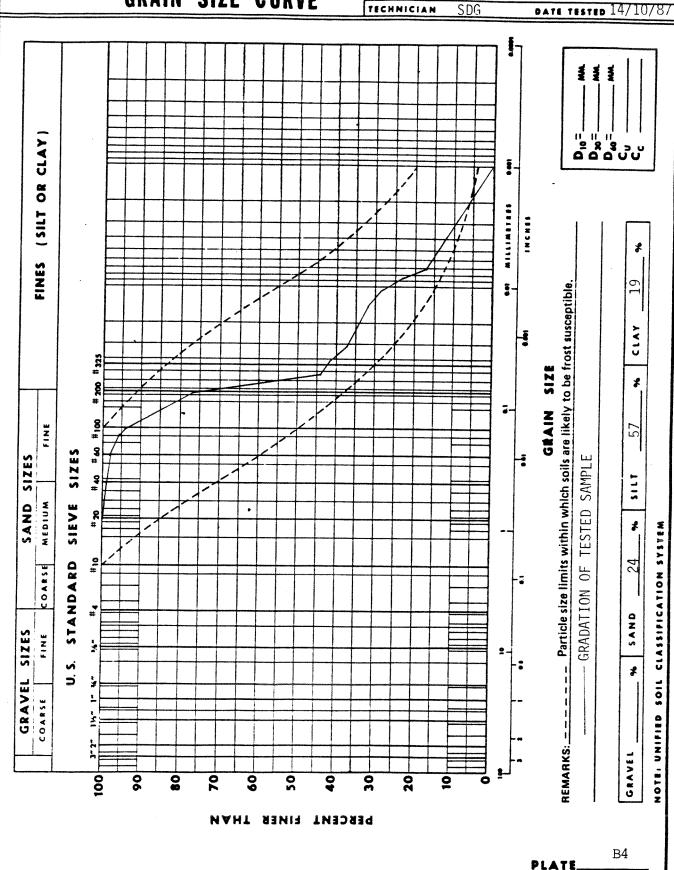
GRAIN SIZE CURVE


CLIENT
SAMPLE
SOURCE KILDONAN CORRIDOR
HOLE 6 DEPTH 6.1 m DATE REC'D.
TECHNICIAN SDG DATE TESTED 14/10/87

Consulting Geotechnical Engineers

GRAIN SIZE CURVE

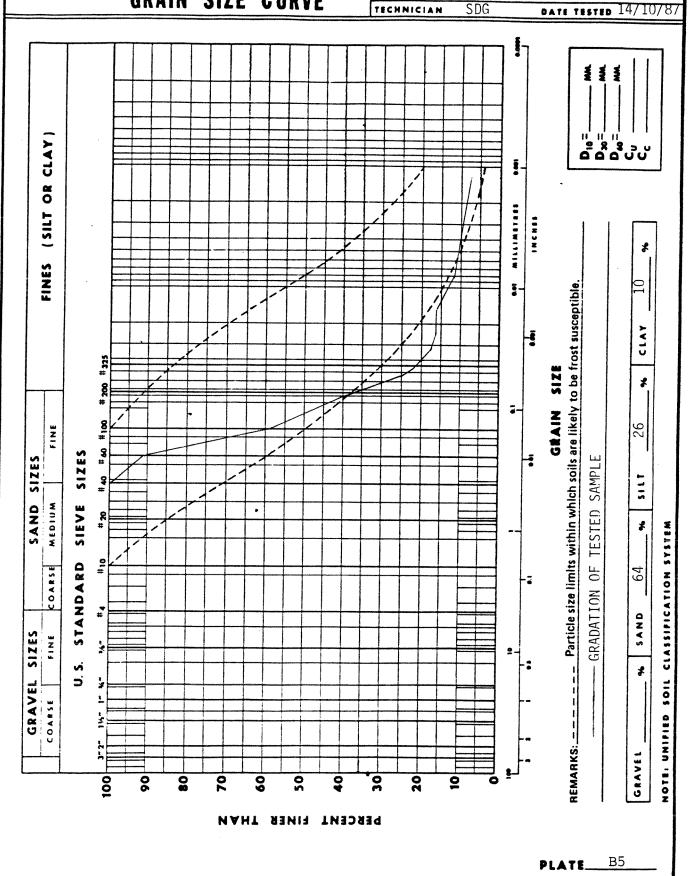
CLIENT
SAMPLE
SOURCE KILDONAN CORRIDOR
HOLE 6 DEPTH 7.6 m DATE REC'D. 14/10/87



Consulting Geotechnical Engineers

0

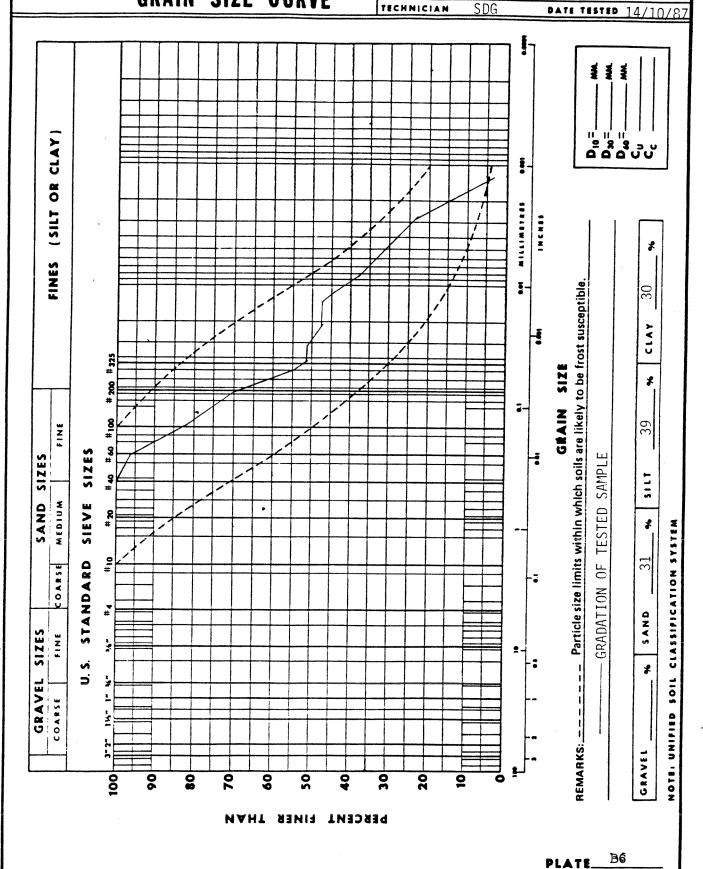
GRAIN SIZE CURVE

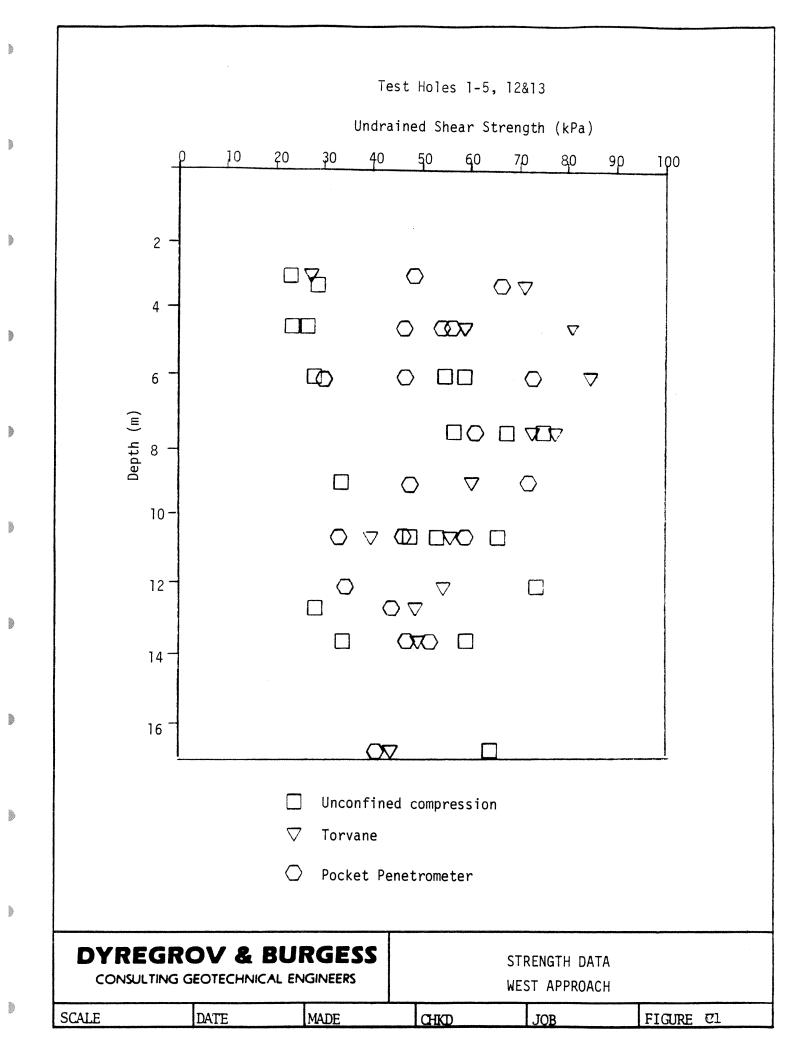

CLIENT
SAMPLE
SOURCE KILDONAN CORRIDOR
HOLE 6 DEPTH 10.4m DATE REC'D.

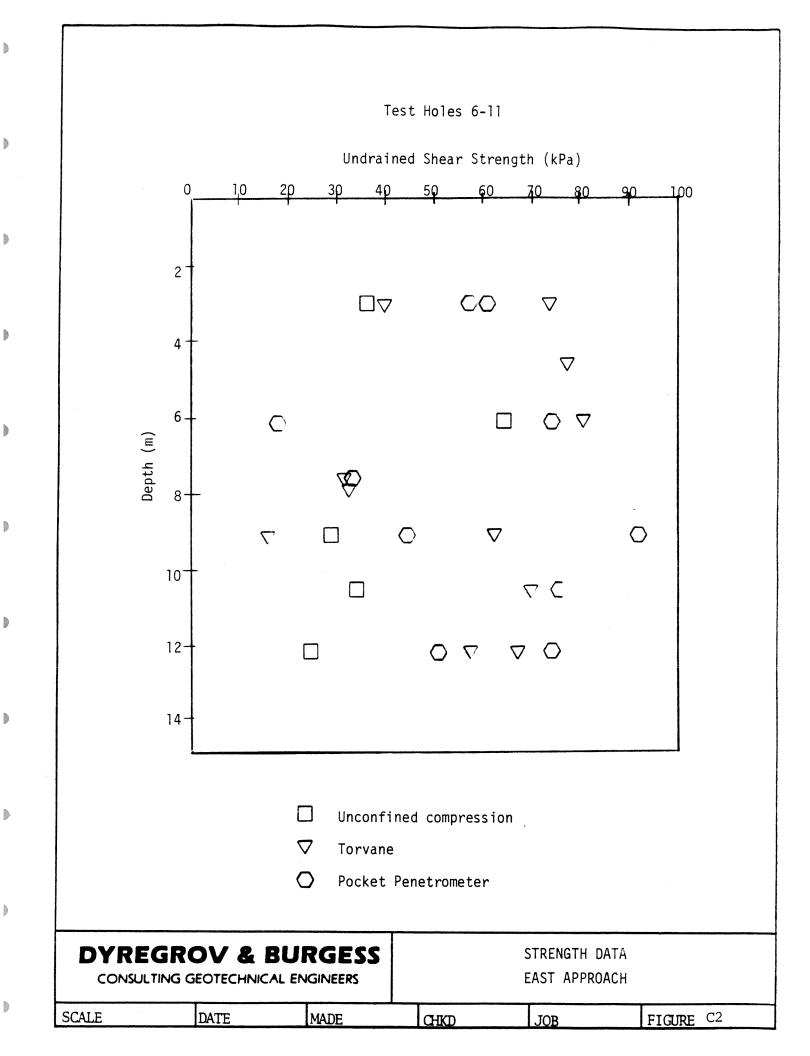
Consulting Geotechnical Engineers

GRAIN SIZE CURVE

CLIENT
SAMPLE
SOURCE KILDONAN CORRIDOR
HOLE 7 DEPTH 3.0 M DATE REC'D.




Consulting Geotechnical Engineers


1000

GRAIN SIZE CURVE

CLIENT
SAMPLE
SOURCE KILDONAN CORRIDOR
HOLE 7 DEPTH 7.9 m DATE REC'D.
TECHNICIAN SDG DATE TESTED 14/10/27

Appendix

Friesen Drillers Ltd. Hydrogeological Assessment Report

• F-1: Friesen Drillers Ltd. (February 2018) Hydrogeological Assessment Report

February 28, 2018

Mr. Adam Braun, P.Eng. Municipal Engineer, Conveyance, Water AECOM 99 Commerce Dr. Winnipeg, Manitoba R3P 0Y7

Dear Mr. Braun,

Subject Hydrogeological Assessment / Aquifer Characterization
Northeast Interceptor Sewer River Crossing Project – River Lot 25 Parish of Kildonan
Kildonan Settlers Bridge - Chief Peguis Trail, Winnipeg, Manitoba

Friesen Drillers Ltd. is pleased to present this report detailing the results of our hydrogeological investigation at the above noted site. Friesen Drillers was retained by AECOM to undertake hydrogeological test drilling and aquifer testing to determine the potential for aquifer depressurization which would allow for deep excavations as part of the above noted project. It is our understanding that the project is to include deep chambers sunk into the bedrock at sites on the east and west banks of the river, and a tunnel excavated under the river connecting the two sites where a pipe would be installed. The investigation involved test well drilling, aquifer pump testing and technical analysis.

Project Background

The City of Winnipeg sanitary waste system makes a number of crossings of the rivers in Winnipeg. The Northeast Interceptor is an 1800 mm Interceptor sewer servicing the northeast quadrant of the City, conveying flows to the North End Water Pollution Control Center. The siphon crossing at the Kildonan Settlers Bridge was installed in approximately 1971 and consists of two steel pipelines installed by sinking the pipelines across the river and open cut methods on each bank. In an effort to increase capacity of the siphon crossing, the city has proposed micro-tunneling to install a pipe protected in the carbonate bedrock underlying the river channel sediments. The location of the Northeast Interceptor site and a cross section showing the existing and proposed interceptor infrastructure are shown below and on the following page in Figures 1 and 2.

Figure 1 – Well Locations – Interceptor Site – Winnipeg, MB. (Source – Google Earth, 2016)

Friesen Drillers was retained by AECOM to undertake a groundwater investigation of the site. The objective of the investigation was to assess the hydrogeological conditions and to determine the potential for a dewatering system at the site.

Project Background (Cont'd)

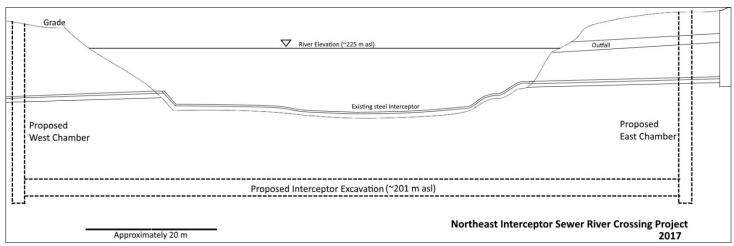


Figure 2 - Cross section of Red River Channel showing existing interceptor infrastructure and the proposed new chambers and tunnel excavation; scale is approximate, elevation given as meters above sea level (asl). (Modified source – AECOM, 2017)

Scope of Services

The following is the scope of work for the Interceptor project:

- Obtain a Groundwater Exploration Permit (GEP) from Manitoba Sustainable Development (MSD). This is required by the Water Rights Act prior to commencing the work. A copy of the GEP is attached.
- Install four 5 inch (12.7 cm) diameter PVC cased test wells into the carbonate aquifer to a maximum depth of 200 feet (60.96 m) below grade. The wells will be located at two sites on opposing river banks, with two wells installed at each site. It should be noted that the upper fractured zone of the carbonate aquifer will be the target well completion.
- Complete a short term pumping test on each site, including monitoring for recovery.
- Provide engineering services, which include test supervision, aquifer parameter analysis, local well inventory preparation and analytical sampling and monitoring. Provide dewatering estimates for proposed deep structures on the site.
- Prepare a report which details the results, discussions of groundwater conditions, and options for dewatering, proposed well design, and monitoring.
- The test wells will be maintained and kept functional once this hydrogeological investigation stage is completed.
- Friesen Drillers applied for a Groundwater Exploration Permit (GEP) for the site on October 27, 2016. The Province awarded a GEP on November 15, 2016 which detailed the scope of work. A copy of the GEP is attached. The permit expires in one year.

Site Setting

The NE Interceptor site is located along the Kildonan Settlers Bridge over the Red River, which is part of Chief Peguis Trail in north Winnipeg. The site is in a region of the city with both old and new residential neighborhoods and minor commercial and industrial development. The following property uses surround the site:

- North Residential and commercial development.
- East Multi dwelling and single home residential.
- South Red River and Kildonan Park.

Site Setting (Cont'd)

West - Kildonan Golf Course.

The topography of the area is of relatively low relief and surface drainage is towards the Red River. Water supplies for residents in the area are provided by the City of Winnipeg municipal water supply system, although many private wells still exist in the area. In addition, some industrial wells are also present nearby which are used for industrial cooling.

The site is located at the center of the Red River basin, along the Red River. The Red River is well known for interactions with the Carbonate Aquifer in the north part of Winnipeg (Render, 1970).

Geological and Hydrogeological Setting

The surficial geology underlying the Interceptor site consists of a succession of till and silty grey clay, approximately 45 to 55 feet (13.7-16.8 m) thick, overlying up to 26 feet (7.9 m) of calcareous grey till. The lower till unit was shown to compose a greater total thickness at the east chamber site and was less than 10 feet (3.0 m) thick or absent at the west chamber site. The carbonate bedrock was intersected at a depth of approximately 57 feet (17.4 m) below grade in most of the boreholes, although at the east bank site, bedrock was intersected at a depth of 78 (23.8 m) feet below grade. In some locations, the upper surface of the bedrock is highly fractured and karstic features have also been noted in the area. The thickness of the fractured rubble zone is known to be variable across the area. The rubble zone grades into more competent, fractured carbonate rock of the Fort Garry Member of the Red River Formation. The Red River Formation typically consists of alternating layers of limestone and dolostone with basal shale layers. The Red River Formation is in turn underlain by the Winnipeg Formation clastic (sandstone and shale) unit, and Precambrian basal granites (Render, 1970). A geological cross section is shown below as Figure 3.

The general hydrogeological conditions of the area were determined from a review of the applicable hydrogeological reports and information available through MSD. Groundwater aquifers in the Winnipeg area can be found in the overburden till (in specific places), the Red River Formation carbonate, and the deeper Winnipeg Formation (Betcher et. al, 1995). The inter-till sand and gravel aquifers are generally of limited extent in areas of more granular till deposits and are typically hydraulically connected to the underlying carbonate bedrock. Consequently, to adequately drain the till and inter till material, the underlying and generally higher yielding carbonate bedrock must be hydraulically depressurized.

Groundwater flow in the carbonate bedrock of the Red River Formation occurs preferentially in the fracture and joint sets of the rock. The size, extent, and interconnectivity of the fracture systems govern horizontal and vertical groundwater movement through the bedrock. Due to this geologic condition, aquifer transmissivity and storativity can vary significantly over relatively short distances, resulting in substantial variations in well yield (Render, 1970). This variability was reflected in the test drilling results conducted at the Interceptor site.

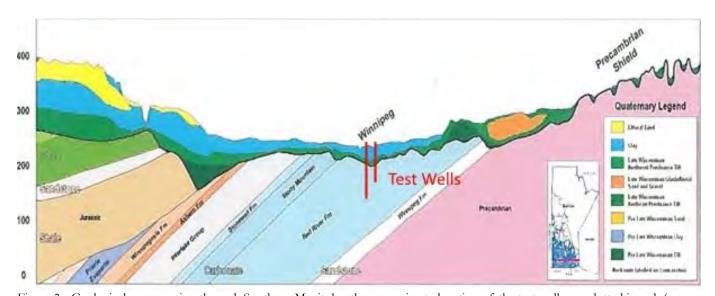


Figure 3 - Geological cross section through Southern Manitoba; the approximate location of the test wells are plotted in red. (source Manitoba Geological Survey, 2013)

Geological and Hydrogeological Setting (Cont'd)

Render (1980) separated the carbonate aquifer into two distinct zones: an upper zone, which is typically higher producing on a local scale, and a lower zone. The thickness of the upper zone is highly variable and changes significantly over short distances. As noted above, the only permeability in the bedrock is through the fractures and joints sets of the bedrock. Fracture zones in the upper bedrock have been noted to exceed 100 feet.

Baracos et. al. (1983) conducted mapping of the transmissive conditions in the upper carbonate aquifer in the Winnipeg region. A portion of this map is shown below as Figure 4. From these maps, the transmissivity of the carbonate aquifer in the area around the Interceptor site is anticipated to be between 10,000 and 100,000 U.S.G.P.D./ft. (1.44 x10⁻³ to 1.44 x 10⁻² m²/s). It should be noted in the mapping that Baracos it al. (1983) did not differentiate between the upper and lower aquifer in the immediate area. Recent testing of nearby wells has indicated transmissivity conditions even higher than 100,000 U.S.G.P.D./ft. (1.44 x 10⁻² m²/s). The high variability of the transmissive conditions highlights the importance of aquifer testing, even across relatively small areas. The design and discharge requirements of a dewatering system will change drastically for transmissivity values across this range. Given the scope and size of the proposed dewatering project, it is prudent to consider the potential for highly transmissive conditions to be encountered at the site, as these conditions can occur within the Winnipeg area.

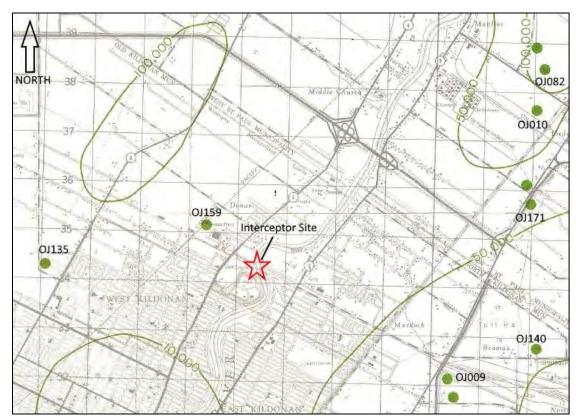


Figure 4 – Transmissivity of the upper carbonate aquifer in northern Winnipeg; Provincial monitoring wells plotted as green dots. (modified source - Baracos et. al.,1983)

The nearest MSD hydrograph station is G05OJ159, about 0.75 miles (~1,200 m) west from the Interceptor site. The hydrograph record is plotted with the Red River elevation in Figure 5, shown on the following page.

The hydrograph record from G05OJ159 indicates seasonal and yearly fluctuations in groundwater levels. The typical static water level is between 224.0 to 227.0 meters geodetic. Although G05OJ159 was only installed in the early 2000s, other hydrograph stations in the area indicate that the water levels have been rising over the past 25 years. For example, station G05OJ025, shown on the following page as Figure 6, contains a hydrograph record dating back to the late 1960s. The dynamic history of groundwater levels within the City are apparent from Figure 6. Since the year 2000, water levels have been on a progressive rise, although there was a change into a slightly declining trend after 2011. During the testing conducted in October, 2017, static water levels in the test wells at the West chamber site were 15.3 feet (4.7 m) below grade, or approximately 222.8 m geodetic (based on a grade elevation of 227.5 m geodetic). It should be noted that the annul low points on the hydrograph typically occur in the mid to late summer months, when groundwater demand for commercial and industrial purposes is at the highest point.

Geological and Hydrogeological Setting (Cont'd)

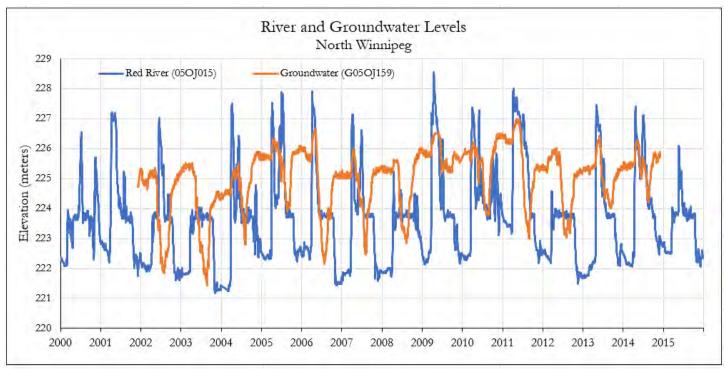
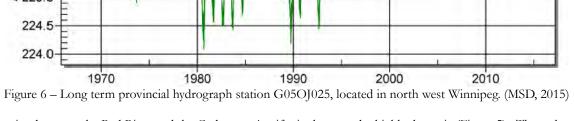



Figure 5 – Groundwater observation station (G05OJ159) plotted in blue with the Red River elevation at the James Ave pumping station (05OJ015) potted in orange. (source MSD, 2016; Environment Canada, 2017)

G05OJ025 WINNIPEG MO-14 35 ST JOHN

GROUND LEVEL ELEVATION 233.071 METRES (764.67 FEET) 229.0 228.5 228.5 227.5 226.0 226.5 225.0

The interconnection between the Red River and the Carbonate Aquifer is shown to be highly dynamic (Figure 5). Throughout most of the

Geological and Hydrogeological Setting (Cont'd)

year, the potentiometric surface of the aquifer is above the river level. However, during the mid/late summer months, groundwater levels in the aquifer are drawn down significantly to below the elevation of the river. In the fall, the aquifer levels begin to recover as the river drops down to its lowest annual level. The fluctuating gradient between the aquifer and the river has been shown to have significant implications for stability of the Red River banks in the Winnipeg area (Baracos, 1978; Tutkaluk et al., 1998). Due to the proximity of the Interceptor site to a major bridge and multi story apartment complexes, the potential impacts on slope stability that may arise from dewatering are an important consideration for the project. These considerations will not be addressed in this report.

Groundwater Use and Aquifer Levels in Winnipeg

The necessity for dewatering during construction projects in Winnipeg has an interesting history which is pertinent to the Interceptor project. Winnipeg's development of the carbonate aquifer has been dynamic, as illustrated below in Figure 7. From 1880 to 1919, the city utilized groundwater from wells along Pipeline Road. It was noted that before any groundwater pumping began, the potentiometric surface in the downtown area of Winnipeg was near and in some places above the ground surface (Render, 1965). At the peak of groundwater production for municipal purposes, the potentiometric surface was said to have declined to more than 12 meters below the surface.

In 1919, the city began using the Shoal Lake Aqueduct, which marked the beginning of a transition in the use of groundwater from the carbonate aquifer from municipal to industrial purposes. In 1920, two large meat packing plants began using about 7,500 m³/day for mechanical refrigeration. Annual groundwater use grew steadily in the years following as multiple expansion projects were undertaken. Much of this development was concentrated to a relatively small area in the east of Winnipeg along the main rail line.

In 1960, the Red River Floodway project began which involved the excavation of a major channel surrounding the city to relieve the Red River during flooding events. The channel construction encountered significant groundwater challenges and resulted in drawdown occurring in the eastern areas of the city.

In 1970, the meat packing plants were operating at maximum capacity, along with the Manitoba Cold Storage Company (Render, 2011). In addition to the development of the carbonate aquifer, a deep sandstone well was known to be located in the building. In fact, a number of deep industrial water wells in the downtown area were completed into the Winnipeg Formation sandstone.

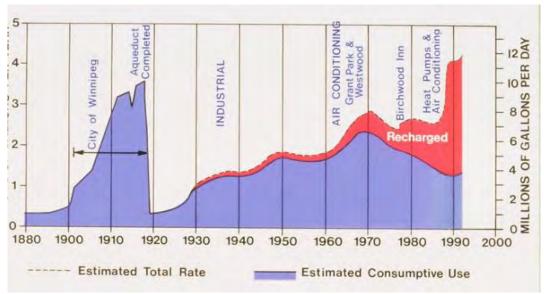


Figure 7 - Estimated groundwater use within the City of Winnipeg from 1880 to 1990. (source - Render, 2011)

The meat packing plants were completely shut down by 1991. It was the first time in Winnipeg's history since 1880 that the aquifer was not being significantly used for consumptive municipal or industrial purposes. As a result, static water levels in the carbonate aquifer began to recover.

Groundwater Use and Aquifer Levels in Winnipeg (Cont'd)

The recovery of water levels in the carbonate bedrock have been more pronounced in the eastern parts of the city. The change in the potentiometric surface elevation is illustrated below in Figures 8 and 9. Based on Figure 8, the area around the Interceptor site has experienced a rise of at least 6.6 to 9.8 feet (2.0 to 3.0 m) in groundwater levels from 1970 to 2009.

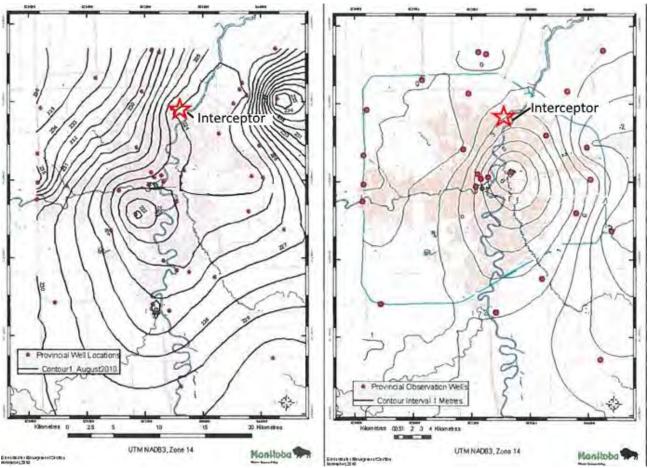


Figure 8 - Potentiometric surface, Interceptor site indicated by red star. (source – MSD, 2010)

Figure 9 - Potentiometric difference (1970-2009) – Interceptor site indicated by red star. (source – MSD, 2010)

The dynamic history of groundwater use within the city of Winnipeg has resulted in very different geotechnical conditions encountered during construction projects over the decades. In some cases, revisiting outfall chambers and other deep structures within the city, which originally were constructed without concern for groundwater, are now encountering significant challenges as a result of rising water levels (Bell and Neufeld, 2017).

Regional Groundwater Geochemistry

A major groundwater quality boundary in the carbonate aquifer runs through the city of Winnipeg, with relatively fresh water towards the east and increasingly saline water towards the west. In the area of the Interceptor site, the groundwater quality is expected to be relatively fresh, with typical Total Dissolved Solids (TDS) values ranging from 800 to 1,200 mg/L.

The groundwater in the underlying Winnipeg Formation is generally of poor quality (brackish to saline) in the area around the City of Winnipeg, so it has not been extensively developed. The groundwater quality in the Winnipeg Formation at the Interceptor site is saline.

The proximity of the Interceptor site to the Red River creates additional concerns with respect to groundwater quality and groundwater/surface water interactions. An hydraulic connection between the river and aquifer is likely to exist at the Interceptor site. These types of interactions can present significant challenges to pumping wells located adjacent to a surface water body. For example, one production well in the City of Selkirk's old water supply system was installed within a short distance from the banks of the Red River. After only a short period of groundwater pumping, the well began producing highly evaporitic water as a result of influx from the river.

Regional Groundwater Geochemistry (Cont'd)

In that case, the quality of the water was a serious complication for the treatment process. As a result, the well was taken off line (Render, 1986; Bell, 2016)

For the Interceptor project, the concerns regarding groundwater/surface water interactions include both groundwater quality and quantity. Large scale pumping adjacent to the river will likely induce flow from the river into the aquifer and impact groundwater quality. It should be noted that it is a violation of the "The Ground Water and Water Well Act" in the Province of Manitoba to permanently and intentionally damage water quality in the aquifer. This issue would require a significant monitoring effort, as the extent of the potential impacts to groundwater quality from large scale pumping are not understood at this time.

An hydraulic connection to the river is also likely to influence the quantity of water available for pumping at the Interceptor site. A drawdown cone generated at the site would be expected to encounter boundary conditions as a result of the river connection. These boundary conditions would likely result in higher required pumping rates due to the influx of river water. These challenges are discussed in detail in the Data Analysis section.

To aid in the assessment of groundwater/surface water interactions at the site, stable environmental isotopes of ¹⁸oxygen and deuterium were used. The results of these analyses are discussed in subsequent sections.

Investigations

Test Well Drilling

To complete an assessment of the aquifer parameters at the Interceptor site, at total of four test wells were installed at two sites. The locations of the test wells were selected based on discussions between staff from AECOM and Friesen Drillers. Underground services were cleared and marked prior to drilling. A summary of well construction details is given in Table 1, shown below.

	Table 1 Well Construction Details Interceptor Site, Winnipeg, Manitoba							
Well Name	Casing	Depth of Casing	Zone of Completion	Total Depth	Grout	Grout Placement	UTM X	UTM Y
TH-01 (east site)	5 inch PVC	60 ft. (18 m)	60-120 ft. (18-36 m)	120 ft. (36 m)	Bentonite	0-60 ft. (0-25 m)	636562.89	5534768.31
TH-02 (east site)	5 inch PVC	76 ft. (23 m)	76-197 ft. (23-60 m)	197 ft. (60 m)	Bentonite	0-76 ft. (0-23 m)	636568.72	5534792.94
TH-03 (west site)	5 inch PVC	62 ft. (19 m)	62-197 ft. (19-60 m)	197 ft. (60 m)	Bentonite	0-62 ft. (0-19 m)	636365.7	5534844.5
TH-04 (west site)	5 inch PVC	58 ft. (18 m)	58-197 ft. (18-60 m)	197 ft. (60 m)	Bentonite	0-58 ft. (0-18 m)	636380.6	5534879.3

Table 1 - Construction details of the four test wells - Interceptor site, Winnipeg.

All of the wells were constructed using five inch diameter PVC casing installed from grade down to the upper surface of the competent carbonate bedrock. The casing was set into a three tier, step down socket and was grouted in place with bentonite. The casing extended through the overburden and the lower portion of the borehole was drilled open hole in the carbonate bedrock to final depth. Upon completion, the well locations were marked with a hand held, portable GPS unit that is accurate to +/- 5 m. Copies of the driller's logs are attached.

To effectively dewater the surficial deposits at the site, the underlying upper carbonate aquifer would need to be depressurized. The test wells were completed into the upper carbonate bedrock aquifer to allow for an assessment of the hydraulic conditions within the upper carbonate bedrock aquifer. Based on the deeper casing and lower capacity, it is likely that TH-02 is installed in a karstic feature.

Pumping/Recovery Testing

To assess the local aquifer conditions and to determine how the wells respond to pumping, a short term pumping test was completed for each site. The pumping tests were conducted using a 5 HP submersible pump, with groundwater levels recorded at regular intervals automatically with pressure transducers in nearby monitoring wells and also manually with a depth sounder in the pumping well. The discharge rate was measured through the use of an orifice weir. Power was provided for the pumping test by means of a portable gasoline powered generator. Table 2, shown below, provides the specific parameters recorded during the pumping tests. The pumping test drawdown data from the east and west chamber sites is also attached.

	Table 2						
Water L	evel Drawdowns Ob	served During Testin	ng - NE Interceptor Site	, Winnipeg, Manito	ba		
Pumping Well	Static Water	Pumping Water	Pumping Rate (avg.)	Monitoring Well	Distance to		
	Level	Level			Monitoring Well		
TH-01 (East chamber)	15.29 ft. (4.66 m)	31.51 ft. (9.60 m)	110 U.S.G.P.M.	TH-02	100 ft. (30.5 m)		
			$(6.94 \times 10^{-3} \text{ m}^3/\text{s})$				
TH-03 (West chamber)	14.45 ft. (4.40 m)	17.78 ft. (5.42 m)	65 U.S.G.P.M.	TH-04	125 ft. (38.1 m)		
,	, ,		$(4.10 \times 10^{-3} \text{ m}^3/\text{s})$				

Table 2 - Pumping test parameters for each test site; Northeast Interceptor River Crossing.

Well Inventory

To fulfill the conditions set out in the GEP, an inventory of all private and commercial wells within a one mile radius of the Interceptor site was conducted. The inventory was conducted using the MSD GWDRILL database (2016). The results of the inventory are shown in Table 3, attached. In total, 70 private and commercial wells were identified within a one mile radius. It should be noted that the current status of the identified wells is not known and the locations of the wells were not verified. In addition, some well coordinates were documented as the location of multiple wells.

It should be noted that existing industrial cooling wells are located immediately to the east of the proposed site along Henderson Highway. This system is a major licensed user and would certainly be impacted by drawdown resulting from dewatering operations.

The wells range in depth from about 70 ft. (21.3 m) to 400 ft. (122 m), with an average depth of approximately 130 feet (39.6 m) below grade. The database contains records of wells dating back to the 1960s, with numerous logs containing incomplete information. As a result, many of these wells may no longer be in use and may have been abandoned.

It is important to note that it is standard practice to install the pump within the well casing, above the bedrock. As the proposed drawdown is below the top of the bedrock, it would very likely interrupt the service of many of the wells identified in the inventory. In addition, it is a requirement for impacted third parties to be accommodated during disruption. This would either lowering pumps or providing alternative water supplies.

Due to the conditions of the Water Rights Act, liability for negatively impacting nearby groundwater users rests with the well owner (City of Winnipeg) and cannot be transferred through contract agreements. Consequently, to mitigate the risks and liability to the City, it is recommended that a field inventory of nearby wells be undertaken prior to operation of an aquifer depressurization system. The field inventory should include an inspection of licensed users by a qualified hydrogeologist or engineer registered with Engineers Geoscientists Manitoba (EGM).

Data Analysis

Aquifer Testing Analysis

The Theis method (1935) is the most common method for analyzing the results from aquifer pumping tests. Some crucial assumptions of the method were noted during the development. They are detailed as follows:

Aguifer Testing Analysis (Cont'd)

- Darcy's law is valid
- The aquifer is horizontal and constant thickness
- The aquifer is infinite in areal extent
- The aquifer is bounded by impermeable strata above and below
- Uniform hydraulic conductivity
- Isotropic hydraulic conductivity
- Head always remains above the top of the pumped aquifer
- There are no water level changes that are not due to the pumping.

- Infinitesimal diameter of well
- Fully penetrating the aquifer formation
- Perfectly efficient well
- Single pumping well
- Constant pumping rate
- Constant storage properties through time
- The head is known everywhere prior to pumping.

Through a review of the assumptions, it can be seen that some of the conditions for the analysis of the pumping tests conducted at the on the Interceptor site are invalid for the Theis (1935) approach. The Theis (1935) approach is highly idealized to the assessment of the aquifer, and represents the state of the art for the determination of aquifer parameters. The conditions are also not being violated severely, so this approach will be used for the analysis.

The pumping test results were entered into Waterloo Hydrogeologic's Aquifer Test Professional v2016.1 for analysis of the aquifer parameters. The data was analyzed using the Cooper-Jacob (1946) and Theis (1935) methods. The hydraulic parameters determined from the pump tests are shown below in Table 4 and 5. During the pumping tests, the T_{critical} was considered to be 15 minutes for casing storage; consequently, only measurements taken after 15 minutes were used for the analysis of aquifer parameters.

Table 4 Confined Aquifer Parameters - East Chamber Site						
	North East Interceptor Project – Winnipe					
West chamber Site	Pump Well TH-01	Monitoring Well TH-02				
Static Water Level	15.29 feet (4.66 m)	15.72 feet (4.79 m)				
Pumping Water Level	31.51 feet (9.60 m)	20.10 feet (6.13 m)				
Drawdown	16.22 ft. @ 110 U.S.GPM – 195 minutes 4.38 feet (1.34 m)					
	$(6.94 \text{ m} \ @ \ 3.16 \text{ x} \ 10^{-3} \text{ m}^3/\text{s})$					
Method	Transmissivity	Storativity				
Theis Method ¹	10,000 U.S.G./day/ft. (1.44 x 10 ⁻³ m ² /s)	1.00×10^{-3}				
Cooper – Jacob Method ² 10,000 U.S.G./day/ft. (1.44 x 10 ⁻³ m ² /s) 1.00 x 10 ⁻³						
Notes ¹ Theis (1935) method using Waterloo Hydrogeologic Limited – AquiferTest Pro v2016.1						
² Cooper-Jacob (1946	6) method using Waterloo Hydrogeologic Limited – Ac	quiferTest Pro v2016.				

Table 4 - Aquifer parameters from the pumping test of TH-01, at the east chamber site.

Table 5						
	Confined Aquifer Parameters – West Chamb	per Site				
	North East Interceptor Project – Winnipeg	g, MB				
	Pump Well TH-03	Monitoring Well TH-04				
Static Water Level	14.50 feet (4.40 m)	11.50 feet (3.50 m)				
Pumping Water Level	17.78 feet (5.42 m)	14.13 feet (4.31 m)				
Drawdown	3.28 ft. @ 65 U.S.GPM – 300 minutes	2.63 feet (0.80 m)				
	$(1.00 \text{ m} @ 4.10 \text{ x} 10^{-3} \text{ m}^3/\text{s})$					
Method	Method Transmissivity Storativity					
Theis Method ¹	20,000 U.S.G./day/ft. (2.87 x 10 ⁻³ m ² /s)	1.00 x 10 ⁻⁵				
Cooper – Jacob Method ² 20,000 U.S.G./day/ft. (2.87 x 10 ⁻³ m ² /s) 1.00 x 10 ⁻⁵						
Notes ¹ Theis (1935) method using Waterloo Hydrogeologic Limited – AquiferTest Pro v2016.1						
² Cooper-Jacob (1946) method using Waterloo Hydrogeologic Limited – Aq	uiferTest Pro v2016.1				

Table 5 - Aquifer parameters from the pumping test of Well TH-03; west chamber site.

In reviewing the pumping test results, the Cooper-Jacob (1946) method was used primarily, since emphasis is not placed on early time measurements. By this method, transmissivity values at the east chamber site were inferred from the data to be approximately 10,000 U.S.G.P.D./ft. ($1.44 \times 10^{-3} \text{ m}^2/\text{s}$) and the value for storativity was estimated to be approximately 10^{-3} . The transmissivity values at the west

Aquifer Testing Analysis (Cont'd)

bank site were inferred from the data to be approximately 20,000 U.S.G.P.D./ft. (2.87 x 10⁻³ m²/s), with a value for storativity of approximately 10⁻⁵. These results are within the range of values expected for fractured, karstic limestone/dolomite formations and are congruent with previous studies of the carbonate aquifer in the Winnipeg region (Baracos et al., 1983). Figures 10, 11, 12 and 13, shown on subsequent pages, show the drawdown vs time and Theis analysis plots from both pumping tests.

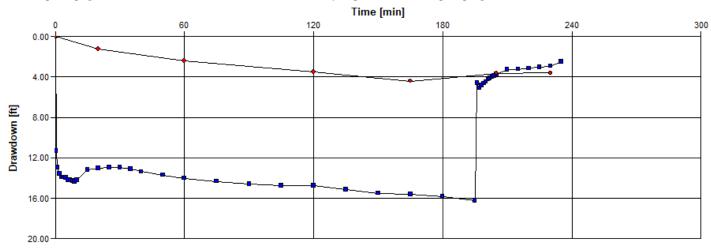


Figure 10 - Drawdown vs. time from the pump test of well TH-01; East chamber site; Pumping rate 110 U.S.GPM. (3.16 x 10⁻³ m³/s).

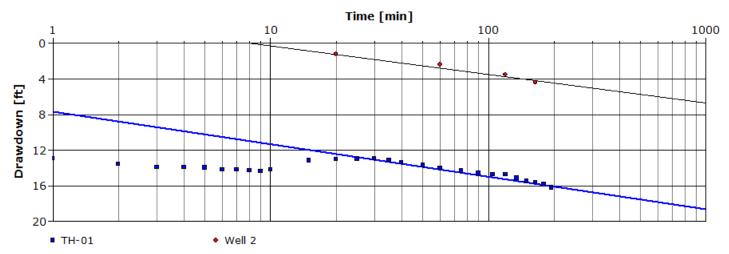


Figure 11 – Cooper Jacob method (1946) analysis of pump test data from well TH-01; East chamber site; Pumping rate is 110 U.S.GPM. (3.16 x 10⁻³ m³/s).

The results of the pumping test analysis indicate variable conditions across the east and west chamber sites. This variability reflects the high heterogeneity and anisotropic conditions in the upper carbonate aquifer. Effectively, the analysis indicates values for transmissivity from up to and greater than 20,000 U.S.G.P.D./ft. (2.87 x 10⁻³ m²/s) to less than 10,000 U.S.G.P.D./ft. (1.44 x 10⁻³ m²/s). This variability is also reflected in Render (1970) and Baracos et al. (1983). It is important to note that the upper range of values for transmissivity inferred from the testing are still significantly lower than those that have beem mapped for the area and encountered at nearby sites. According to Baracos et al. (1983), transmissive conditions could be in the range of 100,000 U.S.G.P.D./ft. or more (Figure 3). The large diameter and depth of the proposed chambers, and the anticipated duration of dewatering requirements increase the likelyhood that the higher range of transmissive conditions will be encountered. Consequently, drawdown predictions have been undertaken for a range of conditions. These values should provide a reasonable estimation of the upper ranges of discharge rates that would be required to depressurize the aquifer to the necessary elevation.

The late time data from the pumping test of TH-01 (Figure 11) appear to form a slight downward trend. This departure from a straight line suggests a potential negative boundary condition. Conversely, the late time data from the pumping test of TH-01 (Figure 13) appears to curve slightly upwards, which suggests a potential positive boundary condition. It should be noted that longer duration pumping tests would be required to confirm these conditions. Pumping for a longer duration is likely to result in an hydraulic connection with the Red River. This could cause the pumping water levels to flat line or even increase when pumping. A river connection would likely result in higher discharge rates required to achieve the necessary drawdown.

Aquifer Testing Analysis (Cont'd)

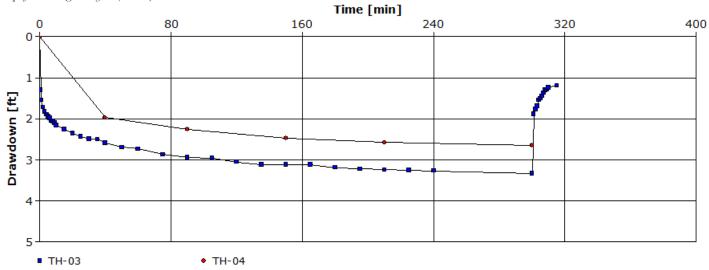


Figure 12 - Drawdown vs. time from the pump test of TH-03; West chamber site; Pumping rate is 65 U.S.GPM. (4.10 x 10⁻³ m³/s).

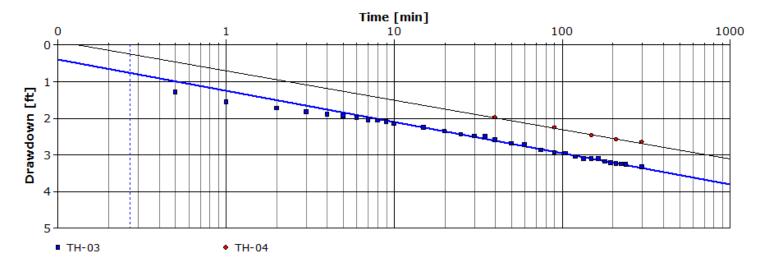


Figure 13 – Cooper Jacob method (1946) analysis of pump test data from well TH-03; West chamber site; Pumping rate is 65 U.S.GPM. (4.10 x 10⁻³ m³/s).

Figure 14, shown below, illustrates the changes to water levels that can result from aquifer boundary conditions. The implications of the different boundaries can yield both positive and negative results for a pumping well, depending on the intended use. For the purposes of dewatering, a negative boundary condition is desirable, as a lower pumping rate would be required to generate the same amount of drawdown. At the Interceptor site, the Red River is likely to impose a positive boundary during longer term pumping. The decreased drawdown results from river water influx to the aquifer. Under positive boundary conditions, higher pumping rates would be required to generate the same amount of drawdown as would be generated with unbounded conditions.

Aquifer Testing Analysis (Cont'd)

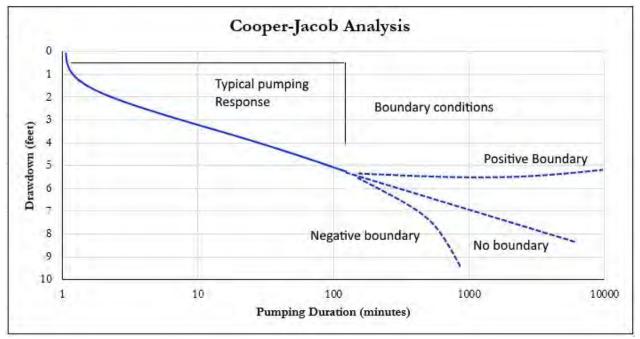


Figure 14 – Theoretical water level response to positive, neutral and negative aquifer boundary conditions on a Cooper-Jacob plot.

Groundwater Geochemistry Sampling

The analytical results for the groundwater samples collected during the study were provided by ALS Laboratories of Winnipeg for analysis of routine parameters.

In general, the results were consistent between the chamber sites and with other sampling that has been conducted in the area. The groundwater is considered to be of moderate quality and would likely be eligible for discharge into local drainage networks (pending approval). Baracos et. al. (1983) indicated that TDS for the area should be between 600-1,000 mg/L. Samples from the Interceptor site suggest that TDS values are about 1,000 mg/L. There was no significant change to groundwater quality observed during the testing, although longer pumping durations may result in changes to groundwater quality, particularly if surface water is captured by the wells.

Table 6, shown below, provides some highlights of the results from the analytical sampling of the pump wells during the aquifer testing at the east and west chamber sites. The complete results from ALS laboratories are attached (L2015597).

A piper plot of the well against a nearby provincial monitoring station (G05OJ159) is shown on the following page as Figure 15.

Table 6 Groundwater Analytical Results Northeast Interceptor Site – Kildonan Settlers Bridge City of Winnipeg, Manitoba			
Parameter	Result		
Total Dissolved Solids	964-1,060 mg/L		
Chloride Ion (Soluble)	211-250 mg/L		
Conductivity	1,450-1,590 umhos/cm		
Hardness (as CaCO ₃)	540-617 mg/L		
рН	7.6		
Calcium	95-109 mg/L		
Sodium	173-201 mg/L		

Table 6 -Groundwater analytical chemistry - Northeast Interceptor Site. (source - ALS L2015597)

The results compare well with the regional water quality in the area. The groundwater samples plot towards the center of the diagram with no significant distinction between the major ions.

Groundwater Quality (Cont'd)

In addition to the routine geochemistry, samples were also collected for the stable environmental isotope analysis. The purpose of this analysis is to determine the origin and provenance of groundwater at the site, and to assess the potential for influx from the river.

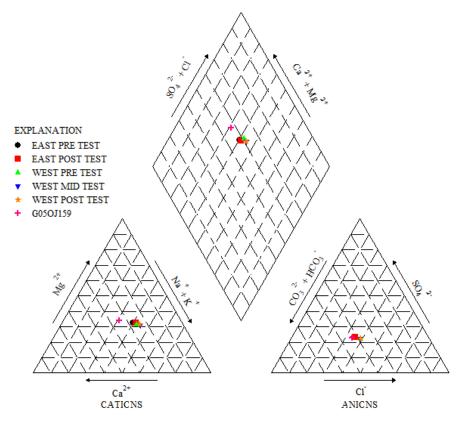


Figure 15 – Piper Plot; Interceptor Site (data source: ALS L2015597; MSD, 2016)

The ratios of the main isotopes that compose the water molecule (¹⁸O/¹⁶O) and ²H/¹H are important for hydrogeological investigations (Freeze and Cherry, 1979). The units are presented in delta (δ) units as parts per thousand or ‰ (Freeze and Cherry, 1979) relative to standard mean oceanic water (SMOW). The two isotopes of water have different freezing and vapour points, which leads to different concentrations as a result of freezing, condensation, melting, and evaporation (Freeze and Cherry, 1979). As water is evaporated from the ocean, there is a decline in the ¹⁸O concentration by a specific amount. As the vapor condenses, the precipitation has a higher ¹⁸O concentration. This process continues as the vapor moves inland, and undergoes many cycles of condensation and evaporation. This fact makes deuterium and ¹⁸oxygen very useful for hydrogeological investigations, as the origin and mixing of different waters can be determined. In order to determine the changes from local precipitation, deuterium and ¹⁸oxygen results are plotted to determine the local meteoric water line, which would be expected to be the typical concentrations in recent precipitation events in the area.

Within Manitoba, glacial water (~10,000 years ago), typically shows ¹⁸0xygen concentrations of -23 to -19 ‰. Groundwater that contains a mixture of more recent groundwater with older glacial waters typically has an isotopic composition between -19 and -17 ‰, and recent meteoric groundwater has a composition between -17 to -14 ‰ (Freeze and Cherry, 1979).

A plot of the results against the local meteoric water line (IAEA, 2012) is shown on the following page as Figure 16. At the Interceptor location, a distinction is apparent between the isotope results from the east and west chamber sites. The samples from both sites plot generally along the GMWL as recent meteoric groundwater. However, the samples collected from the west chamber site are depleted by nearly 2‰ relative to samples from the east chamber site. The relatively depleted composition indicates older meteoric groundwater and potential mixing with glacial waters. The difference in isotopic composition suggests different origins for groundwater at the two sites. This result is consistent with the interpretation of the Red River as the convergence of easterly and westerly regional flow systems. The results from the west chamber site indicate a mixture of glaciogenic and recent meteoric groundwater. It is further apparent from Figure 12 that the isotopic composition of the groundwater at the west chamber site changed with pumping. The groundwater sample collected at the end of the test appears to be more recent than the groundwater from the pre and midtest samples and plots slightly below the GMWL.

Groundwater Quality (cont'd)

The change in isotopic composition of the groundwater during the pumping test is characteristic of the bedrock aquifer conditions in the Winnipeg area. Drawdown induced in the carbonate bedrock allows for localized vertical drainage of the overlying clay and till deposits (Day, 1977). Groundwater in the overburden is expected to be enriched in ¹⁸oxygen relative to the older bedrock groundwater. The shift to more recent groundwater with pumping suggests an interconnection between the bedrock aquifer and the overlying till and clay material (Day, 1977). In addition, the shift to slightly below the GMWL suggests a potential evaporitic component to the water, which likely represents some influence from the river. It should be noted that the geochemical changes noted in this investigation occurred over a relatively short pumping duration. Longer term pumping to depressurize the aquifer would likely cause more significant shifts in the groundwater geochemistry. This result highlights the importance for regular monitoring of groundwater quality for the duration of the project, should dewatering be required.

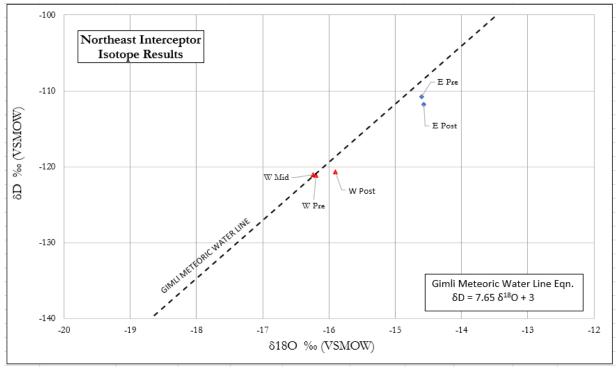


Figure 16 – Groundwater samples collected at the start, middle and end of the pumping tests conducted at the east and west chamber sites; plotted against the Gimli Meteoric Water Line. (source - ALS L2015597, 2017; IAEA, 2012)

Estimation of Discharge Requirements

Based on the Geotechnical Report prepared for the Interceptor site by AECOM (2017), uncertainty remains regarding the final installation method to be used. The options presented indicate chamber structures will require excavation to 202-204 m geodetic for micro-tunnelling installation, or to 216-218 m geodetic for Horizontal Directional Drilling (HDD) installation (AECOM, 2017). As both of these options would result in excavations below the local static water level (conservatively assumed to be 225 m geodetic, based on station G05OJ159), groundwater management will be required regardless of the installation method. Where dewatering is considered, less required drawdown is generally preferable. However, to establish an upper threshold to the potential dewatering efforts that may be required, for the purposes of this assessment a required drawdown to an elevation of 201 m will be conservatively assumed. This equates to a total drawdown of approximately 79 feet (24 m) at each chamber location.

It is important to note that the pumping test durations were relatively short and the pumping rates were relatively low. Although a slight shift in isotopic composition was observed during the testing, assessment of the river influence and the potential interconnection of the drawdown cones between the wo chamber sites required assumptions to be made regarding long term pumping requirements. If long term pumping causes drawdown interference effects between the west and east chamber sites, a lower overall pumping rate would be required.

If a significant hydraulic connection to the river is encountered, a higher overall pumping rate would be required. These considerations will be discussed further in the following sections.

Estimation of Discharge Requirements (Cont'd)

Due to the large amounts of drawdown required in the aquifer, the drawdown in the wells would be into bedrock. Consequently, the pumps would need to be set very deep in the well. This may cause some challenges for well operation. Due to the depths involved, backup pumps and wells will be required.

It should be noted that the calculations in the following sections do not take into account natural gradients and other unknown pumping wells that might be present. In addition, the calculations assume static conditions in both the river stage and the groundwater levels. It is known from the provincial monitoring stations that water levels fluctuate regularly, both in the aquifer and the river hydrographs. Consequently, the amount of drawdown and corresponding discharge requirements may be different at the time of construction. In addition, the construction project is assumed to take up to six months to complete, and the hydrogeological conditions are expected to fluctuate during the construction duration. Continuous monitoring would be very important to maintain the required drawdown.

Based on the aquifer conditions inferred from the pumping tests, the total combined pumping rate was calculated to be 1,200 U.S.G.P.M. $(7.57 \text{ x}10^{-2} \text{ m}^3/\text{s})$ to lower the groundwater level to 201 m geodetic at both the east and west chamber sites. It should be noted that the required discharge rates at the time of pumping may be greater or less than the estimate, based on the conditions at the time of pumping. The calculation was based on the Theis equation with the following assumed parameters:

- Static water level of 225 m geodetic (~8.2 ft. (2.5 m) below grade).
- Pumping water level 201 m geodetic (~86.9 ft. (26.5 m) below grade).
- Transmissivity value of 20,000 U.S.G.P.D./ft. $(2.87 \times 10^{-3} \text{ m}^2/\text{s})$.
- Storativity value of 1.0 x 10⁻⁴.
- Pumping duration of 180 days.

Following the above assumptions, the required drawdown could be generated by simultaneously pumping two wells at each chamber location at an approximate rate of 300 U.S.G.P.M. (1.89 x10⁻² m³/s) each. The predicted drawdown cone resulting from dewatering at the above rates is illustrated in Figure 17, shown below.

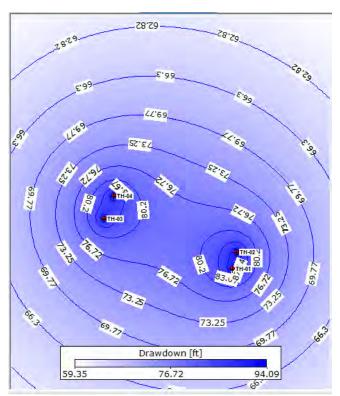


Figure 17 – Predicted Drawdown cone generated from pumping four wells at 300 U.S.G.P.M. each for 180 days; assumed transmissivity of 20,000 U.S.G.P.D./ft. and storativity of 1.0 x 10⁻⁴; modeled using AquiferTest v2016.1.

Expansion of the Drawdown Cone

Due to the relatively long pumping duration and high discharge rates that would be required to dewater the Interceptor site, the drawdown cone generated during the project would be extensive and would extend beyond the project site. Tables 7 and 8, shown below, contain the estimated drawdown that would be observed in a well during dewatering at increasing radial distance from the project site under different aquifer transmissivity conditions. Table 7 was calculated assuming the transmissive conditions inferred from the pumping test, while Table 8 was calculated using the higher transmissivity values mapped within the area.

The calculated drawdown at a radial distance of 2.0 miles was 19.8 feet (6.0 m) under lower transmissive conditions and 42.5 feet (13.0 m) under the higher transmissive conditions. The amount of drawdown generated could cause disruptions of service for nearby groundwater users. A detailed well inventory should be completed by a qualified engineer or hydrogeologist prior to major pumping operations. Due to the extensive drawdown, it is recommended that the radius of a field inventory be expanded to at least 2 miles.

	Table 7											
Drawdown Estimation at Distance - 180 days of Pumping												
Transmissivity of 20,000 US.G.P.D./ft. (2.87 x 10 ⁻³ m ² /s), Storage Coefficient of 1.0 x 10 ⁻⁴												
	Discharge Rate of 600 U.S.G.P.M. (3.79 x 10 ⁻² m ³ /s) from Each Site (1,200 U.S.G.P.M Total)											
Distance from	Pump well	75 feet	500 feet	1,000 feet	2,000 feet	5280 feet	10560 feet	21120 feet	42240 feet			
site	_					(1 mile)	(2 miles)	(4 miles)	(8 miles)			
Drawdown (ft.)	131.7	79.3	56.5	48.2	39.8	28.1	19.8	11.4	3.1			

Table 7 – Estimated Drawdown after 180 days of continuous pumping at a combined rate of 1,200 U.S.G.P.M. (2.87 x 10⁻² m³/s) from the east and west chamber sites (600 U.S.G.P.M per site) – Northeast Interceptor Project.

				T	able 8							
Drawdown Estimation at Distance - 180 days of Pumping												
Transmissivity of 100,000 US.G.P.D./ft. (1.44 x 10 ⁻² m ² /s), Storage Coefficient of 1.0 x 10 ⁻⁴												
Discharge Rate of 2,200 U.S.G.P.M. (1.39 x 10 ⁻¹ m ³ /s) from Each Site (4,400 U.S.G.P.M Total)												
Distance from	Pump well	75 feet	500 feet	1,000 feet	2,000 feet	5280 feet	10560 feet	21120 feet	42240 feet			
site												
Drawdown (ft.)	103.2	80.9	69.2	63.9	58.1	49.2	42.5	35.6	28.7			

Table 8 – Estimated Drawdown after 180 days of continuous pumping at a combined rate of 4,400 U.S.G.P.M. (2.78 x 10⁻¹ m³/s) from the east and west chamber sites (2,200 U.S.G.P.M per site) – Northeast Interceptor Project.

Influence of the Red River

Previous work in the region has established that the Red River and the Carbonate Aquifer are hydraulically connected, especially over its course from the north of the City of Winnipeg to Lake Winnipeg (Render, 1970). Flow between a hydraulically connected stream/aquifer system is shown to be a function of the head difference between the river stage and the aquifer potentiometric surface (Sophocleous, 2002). A common approach to estimate flow in these systems is to consider flow between the river and the aquifer to be controlled by leakage through a permeable layer in one dimension (Rushton and Tomlinson, 1979). The specific discharge between the river and the aquifer, based on Darcy's law where flow is a direct function of the hydraulic conductivity and head difference, can be expressed by the following equation:

• $q = k \Delta h$

Where q is flow between the river and the aquifer (positive for baseflow – for gaining streams; and negative for river recharge – for losing streams); $\Delta h = ha - hr$, (ha is aquifer head, and hr is river head); and k is a constant representing the streambed leakage coefficient (hydraulic conductivity of the semi-impervious streambed layer divided by its thickness).

Based on the log of geotechnical test hole TH16-03, a clay and till layer with a total thickness of 17.4 ft. (5.3 m) separates the river bottom and the top of the carbonate aquifer (AECOM, 2017). A hydraulic conductivity of 1.0 x 10⁶ m/s will be assumed for the clay and till, although typical ranges for these materials are between 10⁻¹² and 10⁻⁴ m/s (Freeze and Cherry, 1979).

The volume of river water contributed to the aquifer is estimated by applying the value of specific discharge across the flow area. It is important to note that these values are estimated from limited data. It is very likely that the material at the base of the river is complex and variable. Consequently, estimates of the streambed leakage coefficient and leakage volumes are only approximate and used in this assessment for comparison purposes between the conditions present in the natural state and during dewatering. For the Interceptor site, the area of flow is estimated based on a channel width of 510 ft. (155 m), to include an area of approximately 2.6 x 10⁵ ft.² (2.4 x 10⁴ m²).

Influence of the Red River (Cont'd)

An estimate of groundwater flow under natural conditions was undertaken assuming a groundwater elevation of 225 m geodetic (G05OJ159) and a river stage of 223.8 m geodetic (reported by AECOM for Sep 09, 2016). The resulting flow under these conditions was calculated to be positive 3.1 x 10⁻² m³/s (~450 U.S.G.P.M.), indicating an upward vertical gradient from the aquifer into the river. This result is consistent with the interpretation of the Red River as a point of groundwater discharge. If the level in the aquifer would be lowered to 201 m geodetic, the resulting flow is calculated to be -5.5 x 10⁻² m³/s (~850 U.S.G.P.M.). The negative result indicates a reversal of the hydraulic gradient by an order of magnitude from the river into the aquifer. The dewatering wells would create a gradient reversal to downward vertical gradient.

Interpretation of the gradient reversal calculation requires some important considerations. The above calculations imply that the mechanisms for flow into the river are the same as for flow out of the river into the aquifer. It has been shown in multiple studies that this may not be representative of real conditions (Sophocleous, 2002). In addition, extensive monitoring would be required to determine how the drawdown cone will develop under the river. The pumping test did not reveal a positive boundary condition which would indicate a strong connection to the river. However, pumping at higher discharge rates and for a longer duration would likely reveal a hydraulic connection between the two units. Overall, the hydraulic gradient between the aquifer and the river will likely be variable and is difficult to estimate.

To illustrate the water flux under natural state and dewatering conditions, a model was constructed using the SEEP/W module of GeoStudio 2018. A geologic model was constructed from data available from the geotechnical investigation (AECOM, 2017). The results of the modeling are shown below and on the following page in Figures 18, 19, and 20. The modeled results of pre and post pumping conditions are consistent with the above flow calculations. An interesting aspect illustrated by the model is the potential for increased flux across the west bank of the river channel. At this location, the confining material appears to be thinned out and allows for increased groundwater flow. This result is consistent with the higher transmissive conditions inferred for the west chamber site from the pumping tests.

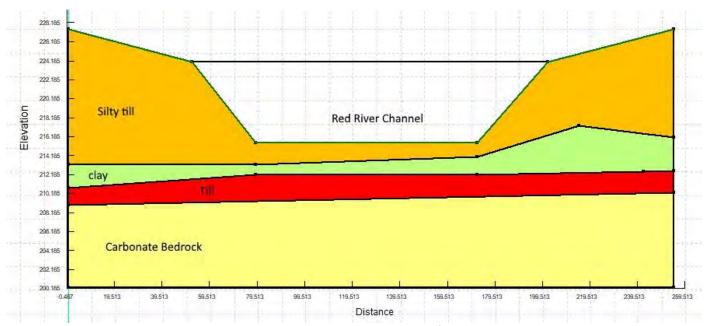


Figure 18 - Geological model of the Interceptor site for SEEP/W modeling. (AECOM, 2017)

The results from the seepage analysis suggest that the river will likely contribute water to the aquifer during dewatering operations. Preliminary calculations suggest the river contribution could increase the required discharge by as much as 70%. The pumping rate of the dewatering wells would likely need to be increased to accommodate the river water influx. It should be noted that the estimate of seepage is very sensitive to the hydraulic conductivity at the site and, to a lesser extent, to the area of flow. It is expected that leakage would be highly variable across the river channel.

The conditions at the Interceptor site encountered during the testing indicate the potential for river water discharge into the aquifer at potentially high rates. This could become a matter of worker safety and should be addressed carefully. An assessment of the geological/hydrogeological conditions across the entire river bank would be necessary to better quantify these risks. Back up wells and pumps should be included in the dewatering system to mitigate against these risks.

Influence of the Red River (Cont'd)

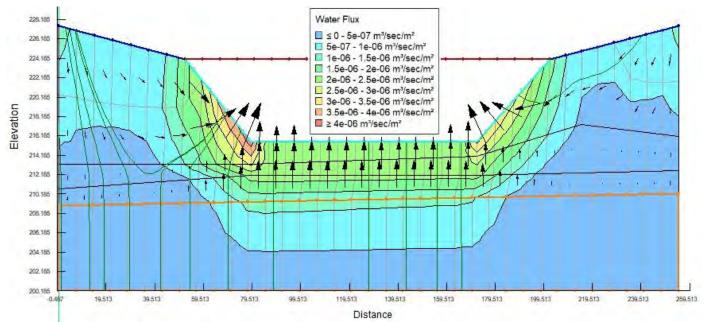


Figure 19 - Natural state conditions groundwater flux, Interceptor Site. (SEEP/W GeoStudio 2018).

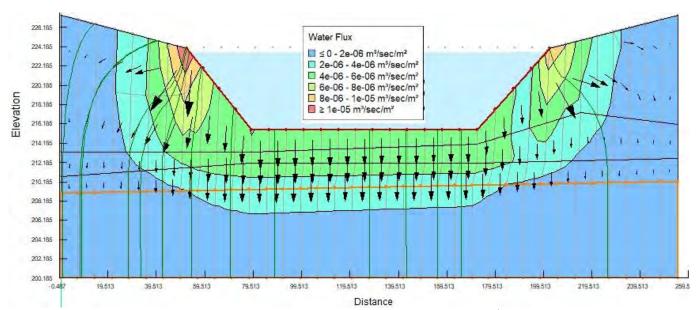


Figure 20 - Dewatering conditions groundwater flux, Interceptor Site. (SEEP/W GeoStudio 2018).

Discussion and Recommendations

The Interceptor site represents the typical transmissive variability of the carbonate aquifer in the Winnipeg area which has always made numerical simulations of groundwater difficult to assess. Lowering the potentiometric surface by up to 80 feet (~24 m) is a major undertaking and should be done with great care. Seepage control mechanisms that do not involve pumping should be investigated. Both a geotechnical engineer and a hydrogeological engineer should be involved in the design. The location of the site at a major river adds considerable challenges to the project. In addition, the generated drawdown cone will be significant and will extend a great distance from the site. This drawdown may disrupt nearby private and licensed groundwater users. It is important to note that liability for negatively impacting nearby groundwater users rests with the well owner, in this case the City of Winnipeg, and cannot be transferred through contract agreements. The potential for third party impacts is significant for this project due to the large amounts of drawdown that would likely be generated.

Discussion and Recommendations (Cont'd)

The proposed dewatering project also raises some significant geotechnical concerns which should be addressed in more detail by a geotechnical engineer. For example, reversal of the hydraulic gradient between the river and the aquifer is shown to impact slope stability of the river banks. In addition, drawdown in the aquifer would be expected to drain the overlying soils. The removal of a large volume of water from the aquifer and overburden for the duration of the project increases the potential for building and land settlement issues that could affect residents and businesses within the radius of influence of the pump wells. Water accounts for 15 to 25% volume of clays and till and creating significant drawdown could cause settlement issues as the porewater drains from the overlying clays and tills. This could potentially cause cracks and shifting foundations/settlement. As the site is located adjacent to a bridge structure and numerous large commercial and residential buildings, these considerations should be addressed by a geotechnical engineer.

Should geotechnical engineering dictate that dewatering is required, the following activities are recommended:

- The site will require a GEP from MSD. In addition, the volume of groundwater withdrawal would likely exceed 200 dam³, which would also subject the project to Class 2 Environment Act Licensing. Finally, issues related to groundwater discharge may also require additional permitting.
- From the hydrogeological testing, the aquifer at the Interceptor site is shown to be moderately transmissive, with an estimated bulk transmissivity of 20,000 U.S.G.P.D./ft. and a storativity of 1.0 x 10⁻⁴. Transmissivity maps of the region indicate values for transmissivity as high as 100,000 U.S.G.P.D./ft or more.
- To generate the necessary drawdown under the observed conditions, a dewatering system will likely need to sustain a total combined discharge rate of at least 1,200 U.S.G.P.M. (2.87 x 10⁻² m³/s). This estimate is based on conditions presented in the geotechnical report (AECOM, 2017) and on regional monitoring data (MSD, 2016). As a result, the conditions at the time of construction may be different which could require the pumping rate to be higher or lower.
- Influx from the Red River will likely result in higher required discharge rates at each chamber site. In addition, the upper ranges of transmissivity values mapped in the area indicate potential required discharge rates as high as 4,400 U.S.G.P.M. (2.78 x 10⁻¹ m³/s)
- The timing of the project should be carefully considered. Although the aquifer levels are typically lower during the summer months, the drawdown is generated by a greater number of wells brought online for cooling purposes. Completion of the project during the late fall/winter months would likely reduce the potential for third party impacts, as fewer users typically pump at that time. In addition, river levels would be at their seasonal low points in the late fall/winter months, which may reduce the potential seepage rates.
- An inventory of domestic private water wells and licensed systems should be undertaken. This would be needed to address any
 potential issues with respect to pumping. Sampling should be done to confirm this program. Pumps may need to be lowered and
 wells put out of service would need to be provided with an alternate water supply.
- The desktop well inventory conducted in this investigation identified 70 private and commercial wells within a one mile radius of the site. The inventory included a review of the general location and construction details of nearby groundwater users. It should be noted that this work did not involve a field assessment of the condition of the wells/hook up. In addition, the database may not contain a record of every well present in the area. Consequently, to mitigate the risks and liability to the City, it is recommended that a field inventory of nearby wells be undertaken prior to operation of an aquifer depressurization system. The field inventory should include an inspection of licensed users by a qualified hydrogeologist.
- The four, 5 inch diameter PVC test wells installed during the investigation have been maintained for future use. A typical 5 inch well is capable of sustaining flow rates up to a maximum of approximately 120 U.S.G.P.M. Consequently, the existing wells on the site are unlikely to generate sufficient drawdown when pumped at the maximum capacity.
- Based on the results of the investigation, it is suggested that a dewatering system should include at least two 12-inch diameter pumping
 wells at each chamber site in order to sustain the required flow rates. The wells should be designed by a Professional Engineer
 registered in the Province of Manitoba.
- In the event of a power supply failure, the chambers and tunnel could become flooded in a relatively short period of time as a result
 of the physical setting and transmissive conditions. It is recommended that a back up well should be installed and back up power
 supplies and an automatic transfer should be included.

Discussion and Recommendations (Cont'd)

- Groundwater quality will require extensive monitoring. The test results indicated little change to groundwater quality with pumping at the site. However, the isotopic results suggest a potential interconnection between the carbonate aquifer and the Red River is likely. The city would need to be sure the dewatering will not cause permanent water quality changes to the aquifer.
- In the event that large scale dewatering is needed, additional observation wells may be required
- The system should be designed, tested and monitored by a Professional Engineer or Geoscientist registered with EGM.

If the project is to proceed without dewatering, the importance of considerations related to groundwater remains, as construction activity will be below the water table and within the carbonate aquifer system. The potential for third party impacts will be present even if dewatering is not undertaken. Tunneling within the bedrock has the potential to change groundwater quality, which may include increased turbidity and the introduction of organic or other compounds to the aquifer. In addition to geochemical considerations, the potential to influence local groundwater levels still exists, as the conditions in the local bedrock and the connection between the aquifer and river may be altered. To mitigate against potential negative impacts which may arise from the Interceptor project, the following recommendations are provided for installations without dewatering.

- The GEP initiated for this investigation should be cancelled.
- A desktop well inventory should be undertaken which focusses on licensed groundwater users located within one mile from the site. Site visits and water sampling should be undertaken for the sites closest to the chamber locations.
- The test wells at each chamber site should be instrumented to monitor groundwater level fluctuations during the construction phases.
- The test wells should be sampled before, during and after project completion to establish baseline conditions and identify potential changes resulting from the project.

At the completion of the project, all production and test wells installed during this investigation should be sealed according to provincial guidelines by a licensed well driller.

We thank for the opportunity to work on this interesting project and to be of service to AECOM. Should you require anything further,

please call us at 204-326-2485.

Sincerely

Friesen Drillers Limited

J.E. (Justin) Neufeld, B.Sc. (G.Sc.), GIT

Groundwater Geologist

Reviewed by

Friesen Drillers Limited

Certificate of Author

Friesen Drillers Limited

(Jeff) Bell, B.Sc.(G.E.), P.Eng. Aydrogeological Engineer

Attachments

Groundwater Exploration Permit – City of Winnipeg.

Drillers Logs - TH-01/02/03/04 - Friesen Drillers Limited

Pumping Test Data - East and West Chamber Sites - Friesen Drillers Limited

Table 3 – Water Well Inventory.

References

AECOM Canada Ltd., 2017. City of Winnipeg Northeast Interceptor Sewer Red River Crossing Geotechnical Report. Unpublished report.

Baracos, A.G. Shields, D.H., and Kjartenson, B. 1983. Geological Engineering Report for Urban Development of Winnipeg; University of Manitoba – Department of Geological Engineering

Bell, J.J. and Neufeld, J.E., 2017. Recovery of the Carbonate Aquifer in the Downtown Winnipeg Area and the Impact on Geotechnical Projects; 12th Joint International Association of Hydrogeologists – Canadian National Chapter – 70th Canadian Geotechnical Society Conference Proceedings – Ottawa, Ontario.

Day, M.J., 1977. Analysis of Movement and Hydrochemistry of Groundwater in the Fractured Clay and Till Deposits of the Winnipeg Area, Manitoba. Unpublished Thesis – University of Waterloo.

Environment Canada, 2017. Historical Hydrometric Data, Station 05OJ015, James Ave. Pumping Station. https://wateroffice.ec.gc.ca/report/historical_e.html?stn=05OJ015 - Accessed December 13, 2017.

Freeze, R.A. and Cherry, J.A. (1979). Groundwater. Prentice Hall, Englewood Cliffs, New Jersey, U.S.A.

International Atomic Energy Association (2012): Meteoric Water Line - Manitoba.

Manitoba Sustainable Development, 2015. Water Level Hydrographs G05OJ159

Manitoba Sustainable Development, 2010. Potentiometric Surface Map of Winnipeg

Manitoba Sustainable Development, 2016. GWDRILL database - 2016 edition

Render, F. W. 1970. Geohydrology of the Metropolitan Winnipeg Area as Related to Groundwater Supply and Construction. *Canadian Geotechnical Journal*, Vol. 7 No. 3, pp 243-374.

Sophocleous, M., 2002. Interactions between groundwater and surface water: the state of the science; Hydrogeology Journal (2002) 10:52-67.

Theis, C.V., 1935. The Lowering of the Piezometer Surface and the rate and discharge of a well using ground-water storage. *Transactions, American Geophysical Union* 16:519-24.

Tutkaluk, J., Graham, J., and Kenyon, R., 1998. Effects of riverbank hydrogeology on riverbank stability; 51st Canadian Geotechnical Conference, Canadian Geotechnical Society, V. 1, p. 283-288.

Limitations

The scope of this report is limited to the matters expressly covered and is intended solely for the client to whom it is addressed. Friesen Drillers Limited makes no warranties, expressed or implied, including without limitation, as to the marketability of the site, or fitness to a particular use. The assessment was conducted using standard engineering and scientific judgment, principles, and practices, within a practical scope and budget. It is based partially on the observations of the assessor during the site visit in conjunction with archival information obtained from a number of sources, which is assumed to be correct. Except as provided, Friesen Drillers Limited has made no independent investigations to verify the accuracy or completeness of the information obtained from secondary sources or personal interviews. Generally, the findings, conclusions, and recommendations are based on a limited amount of data (e.g. number of boreholes drilled or water quality samples submitted for laboratory analysis) interpolated between sampling points and the actual conditions on the site may vary from that described above. Any findings regarding the site conditions different from those described above upon which this report was based will consequently change Friesen Drillers Limited's conclusions and recommendations.

Disclaimer

This Friesen Drillers Limited report has been prepared in response to the specific requests for services from the client to whom it is addressed. The content of this document is not intended to be relied upon by any person, firm, or corporation, other than the client of Friesen Drillers Limited, to who it is addressed. Friesen Drillers Limited denies any liability whatsoever to other parties who may obtain access to this document by them, without express prior written authority of Friesen Drillers Limited and the client who has commissioned this document.

Sustainable Development

Water Use Licensing Section
Box 16, 200 Saulteaux Crescent
Winnipeg, Manitoba, Canada R3J 3W3
T 204-945-6118 F 204-948-2357
Rob.Matthews@gov.mb.ca

November 15, 2016

File: Winnipeg, City of -41 (Northeast Interceptor Sewer River Crossing)

Stacy Cournoyer, P.Eng. Sr. Project Engineer City of Winnipeg 110-1199 Pacific Avenue Winnipeg, MB R3E 3S8

Dear Ms. Cournoyer:

Attached herewith is a **Groundwater Exploration Permit** issued in response to an application submitted by Friesen Drillers Ltd. on behalf of the City of Winnipeg and AECOM Canada Limited, registered on October 28, 2016, for a licence to construct well(s) and divert groundwater for dewatering purposes in connection with the installation of a deep sewage shaft on **River Lot 54, Parish of Kildonan, for Northeast Interceptor Sewer River Crossing Project.**

The Groundwater Exploration Permit authorizes the City of Winnipeg to undertake test well drilling, testing and aquifer assessment on the above mentioned site for dewatering purposes in connection with the installation of a deep sewage shaft. The purpose of the pump testing is to determine the aquifer conditions at the proposed site and to determine water level impacts on existing local wells and/or registered projects with earlier precedence dates than the proposed project. Please note that during testing, pumping must cease if any local water supplies are negatively impacted as a result of testing. The City of Winnipeg would further be responsible to correct any water supply problems or provide temporary water supply to anyone whose water supplies are negatively impacted as a result of testing. Please familiarize yourself with the terms and conditions of the Groundwater Exploration Permit.

A licensing decision on this project will be held pending submission of the required information. Please note that diversion of water without a Water Rights Licence or written authorization would constitute a violation of *The Water Rights Act* and may be subject to enforcement.

Please contact Ronaldo Miranda, directly at 204-945-6475 should you have any questions regarding the requirements outlined in this letter and the attached permit or the water rights licensing aspects of this project.

Yours truly,

Rob Matthews Manager

Water Use Licensing Section

cc: J. Paulynn Estrella – Legal, E.I.T., Friesen Drillers Ltd. Graham Phipps, SD Ronaldo Miranda, SD

FORM F

200 Saulteaux Crescent Winnipeg, Manitoba R3J 3W3

Groundwater Exploration Permit

Groundwater Exploration Perm

Pursuant to The Water Rights Act

Water Use Licensing Section

FILE – Winnipeg, The City of -41 (Northeast Interceptor Sewer River Crossing)

is hereby permitted to explore for and construct a groundwater well or wells on the following described lands, RL 54, Parish of Kildonan, for hydrogeologic site assessment and dewatering purposes, subject, however, to the following conditions:

- 1. The permittee must have legal access to the site where the exploration work and project wells are to be located.
- 2. This Authorization is not transferable or assignable to any other party.
- 3. Prior to undertaking any work or construction of any works authorized by this permit the permittee is required to retain the services of a **hydrogeologist** registered with Association of Professional Engineers and Geoscientists of Manitoba (APEGM), who would be required to:
 - Plan and supervise the drilling of boreholes, test wells, production wells, observation wells and well
 pump testing as authorized by this permit.
 - Conduct a constant rate pumping test on proposed dewatering well(s) in accordance with Form H
 (http://www.gov.mb.ca/conservation/waterstewardship/licensing/wlb/pdf/form_h_iuly_2013.pdf).
 - Carry out an inventory of private and commercial wells within a 1 mile radius of the project well site.
 The inventory may need to be expanded based on the assessment of the expected area of water level drawdown impact resulting from future pumping.
 - Prepare and submit to the Water Use Licensing Section a technical report on drilling of boreholes and wells, pump testing of well, well inventory and water quality sampling. The report would contain, but not limited to, such things as: well driller's reports for test wells, dewatering wells and observation wells; a plan showing the location of these wells on the property and/or GPS locations of the wells; an analysis of aquifer pumping tests; calculations of transmissivity; and a description of the amount of water level interference that would be expected to occur at existing local wells that are located within a 1 mile radius of the project well site. The report would also indicate if any local wells are expected to be adversely affected by the proposed use of water and where these wells are located. Two copies of the report shall be submitted, one hardcopy and one digital copy.
- During any pumping tests that may be conducted, pumping must cease immediately if any local water supplies are negatively impacted as a result of the tests. The permittee is also responsible to correct any water supply problems or provide temporary water supply to anyone whose water supplies are negatively impacted as a result of the tests.
- 5. This permit expires within twelve (12) months of the date of issuance.
- 6. Please note that diversion of water without a Water Rights Licence or written authorization would constitute a violation of *The Water Rights Act* and may be subject to enforcement.

Issued at the City of Winnipeg in the Province of Manitoba, this 15th day of November A.D. 2016

for The Honourable Minister of Sustainable Development

For PDF submission: Report must be printed on legal size paper (8.5 x 14 inches) and be signed in ink. Owner Name: City Of Winnipeg Well Location: (see note 3; attach sketch if necessary) First Civic Address Mailing Address_4th Floor, 510 Main Street (if different than mailing address) Town/City Winnipeg, MB Quarter _ Section____ Township____ Range___ □E □W Postal Code R3B 1B9 Phone ____ Type & Lot No.___ GPS: (see note 4), Accuracy +/-28 ■ feet □ metres Well Name: (if applicable)_TH-04 Latitude (decimal degrees) 59.95068 Well Identification Tag Number 692 Longitude (decimal degrees) 97.09891 Location of Tag ■ Attached to casing stick-up Rockwood Sensitive Area: Tyes - Permit No. ■ No □ Other (specify) **Method of Construction:** Water Use: (Check all that apply) **Test Hole** (see note 5) - Sealed □ Yes □ No <u>or</u> □ auger □ bored □ backhoe/dug ■ domestic □ public/semi-public □ irrigation Well Use:

test well - Sealed □ Yes

No ■ rotary (mud) □ rotary (air) □ commercial/industrial □ livestock/poultry □ production/source □ recharge/return □ dual rotary □ driven □ jetted □ earth energy (heating/cooling) □ monitoring □ dewatering □ geotechnical □ other (specify)_ ☐ other (specify)_ □ other (specify) Lithologic Description: (see notes 6 and 7) - Measure From/To depths from ground surface. Attach another sheet if needed. From Material Description (use recommended names on guide) Colour Observations 0 15 Brown Till 31 15 Grey Silt 31 52 Grey Clay 52 Brown Till 56 197 Brown 197 Bottom of Hole Well Construction: (see note 8) - Measure From/To depths from ground surface. Attach another sheet if needed Type of Material Method of Well Screen Surface Seal 듄 Open Hole Filter Pack (ex: casing and screen material, screen type and slot size, Placement From To Annular Casing Liner (ft) use of shale traps, packers, screen blanks or tail pipes, and (ex: poured, 8 type and size of surface seal/annular fill/filter pack material) tremie) 58 7 7/8 58 51/2 Insert Glued PVC 58 197 43/4 Envirogrout Poured Well Completion: Day 17 Month October Year 20 17 Source of Drilling Water: ■ Groundwater □ Surface water Top of casing 18 inches ■ags □ bgs; Well vented: ■ Yes □ No Water contains a minimum of 10 mg/L free chlorine:

✓ Yes □ No Well disinfected:

Yes □ No; Well cover installed:

Yes □ No Name/Location of water source Friesen Drillers Ltd. Pitless adapter/unit installed at feet bgs; ⊠Not installed Drilling Additives Used: Yes (list type & quantity) 6 Bags Wyo-Ben Extra High Yield Bentonite □ No Well Yield Test (see note 9). Well Development:

air lifting □ surging □ pumping □ jetting Date of Test: Day 17 Month October Year 20 17 □ bailing □ hydrofracturing □ other (specify) ■ Same as date of well completion Static Water Level Before Test 14.2 feet ■ bgs □ ags □ sediment □ odour (specify) Method of Test: **⊠**pumping □air lift □bailing □recovery Flowing Artesian Well ■ No □ Yes - If yes, estimated rate of artesian □ other (specify) __ □IGPM □ USGPM Annular space cemented: □ Yes □ No Water level at end of test_____18.5 ___ feet **■** bgs □ ags Flow control device installed: ☐ Yes ☐ No Length of test 1 hours _ ___ minutes Does water leak from around the outside of the casing: ☐ Yes ■ No Estimated rate of discharge___ **■**IGPM □ USGPM Recommended Pumping Rate: ■IGPM □ USGPM with pump intake at ____ Will your company be installing a pump?: ☐ Yes 🗷 No Remarks (see note 10) Well Drilling Contractor: Company Name Friesen Drillers Ltd Licence No. 607-17 Well Driller: Print Name Chris Loeppky Signature

For PDF submission: Report must be printed on legal size paper (8.5 x 14 inches) and be signed in ink. Owner Name: City Of Winnipeg Well Location: (see note 3; attach sketch if necessary) First Civic Address Mailing Address_4th Floor, 510 Main Street (if different than mailing address) Town/City Winnipeg, MB Quarter _ Section____ Township____ Range___ □E □W Postal Code R3B 1B9 Phone ____ Type & Lot No.___ GPS: (see note 4), Accuracy +/-_ ■ feet □ metres Well Name: (if applicable)_TH-01 Latitude (decimal degrees) 49.94964 Well Identification Tag Number 689 Longitude (decimal degrees) 97.09641 Location of Tag ■ Attached to casing stick-up Rockwood Sensitive Area: Tyes - Permit No. ■ No □ Other (specify) **Method of Construction:** Water Use: (Check all that apply) **Test Hole** (see note 5) - Sealed □ Yes □ No <u>or</u> □ auger □ bored □ backhoe/dug ■ domestic □ public/semi-public □ irrigation Well Use:

test well - Sealed □ Yes

No ■ rotary (mud) □ rotary (air) □ commercial/industrial □ livestock/poultry □ production/source □ recharge/return □ dual rotary □ driven □ jetted □ earth energy (heating/cooling) □ monitoring □ dewatering □ geotechnical □ other (specify)_ ☐ other (specify)_ □ other (specify) Lithologic Description: (see notes 6 and 7) - Measure From/To depths from ground surface. Attach another sheet if needed. From Material Description (use recommended names on guide) Colour Observations 0 12 Brown Till 31 12 Grey Silt 31 45 Grey Clay Brown Till 58 120 Brown Bottom of Hole 120 Well Construction: (see note 8) - Measure From/To depths from ground surface. Attach another sheet if needed Type of Material Method of Well Screen Surface Seal 듄 Open Hole Filter Pack (ex: casing and screen material, screen type and slot size, Placement From To Annular Casing Liner (ft) use of shale traps, packers, screen blanks or tail pipes, and (ex: poured, 8 type and size of surface seal/annular fill/filter pack material) tremie) 60 7 7/8 60 51/2 Insert Glued PVC 60 120 43/4 Envirogrout Poured Well Completion: Day 12 Month October Year 20 17 Source of Drilling Water: ■ Groundwater □ Surface water Top of casing 18 inches ■ags □ bgs; Well vented: ■ Yes □ No Water contains a minimum of 10 mg/L free chlorine:

✓ Yes □ No Well disinfected:

Yes □ No; Well cover installed:

Yes □ No Name/Location of water source Friesen Drillers Ltd. Pitless adapter/unit installed at feet bgs; ⊠Not installed 6 Bags Wyo-Ben Extra High Yield Bentonite Drilling Additives Used: ▼ Yes (list type & quantity) □ No Well Yield Test (see note 9). Well Development:

air lifting □ surging □ pumping □ jetting October Year 20 17 Date of Test: Day 12 Month_ □ bailing □ hydrofracturing □ other (specify) ■ Same as date of well completion Static Water Level Before Test 16.7 feet ■ bgs □ ags □ sediment □ odour (specify) Method of Test: **⊠**pumping □air lift □bailing □recovery Flowing Artesian Well ■ No □ Yes - If yes, estimated rate of artesian □ other (specify) __ □IGPM □ USGPM Annular space cemented: □ Yes □ No Water level at end of test_____28 ___ feet 🗷 bgs 🗆 ags Flow control device installed: ☐ Yes ☐ No ___ minutes Length of test hours Does water leak from around the outside of the casing: ☐ Yes ■ No Estimated rate of discharge__ **■**IGPM □ USGPM Recommended Pumping Rate: ■IGPM □ USGPM with pump intake at ____ Will your company be installing a pump?: ☐ Yes 🗷 No Remarks (see note 10) Well Drilling Contractor: Company Name Friesen Drillers Ltd Licence No. 607-17 Well Driller: Print Name Chris Loeppky Signature

For PDF submission: Report must be printed on legal size paper (8.5 x 14 inches) and be signed in ink. Owner Name: City Of Winnipeg Well Location: (see note 3; attach sketch if necessary) First Civic Address Mailing Address_4th Floor, 510 Main Street (if different than mailing address) Town/City Winnipeg, MB Quarter _ Section____ Township____ Range___ □E □W Postal Code R3B 1B9 Phone _____ Type & Lot No.___ GPS: (see note 4), Accuracy +/- 28

■ feet □ metres Well Name: (if applicable)_TH-03 Latitude (decimal degrees) 59.95037 Well Identification Tag Number 691 Longitude (decimal degrees) 97.09913 Location of Tag ■ Attached to casing stick-up Rockwood Sensitive Area: Tyes - Permit No. ■ No □ Other (specify) **Method of Construction:** Water Use: (Check all that apply) **Test Hole** (see note 5) - Sealed □ Yes □ No <u>or</u> □ auger □ bored □ backhoe/dug ■ domestic □ public/semi-public □ irrigation Well Use:

test well - Sealed □ Yes

No ■ rotary (mud) □ rotary (air) □ commercial/industrial □ livestock/poultry □ production/source □ recharge/return □ dual rotary □ driven □ jetted □ earth energy (heating/cooling) □ monitoring □ dewatering □ geotechnical □ other (specify)_ ☐ other (specify)_ □ other (specify) Lithologic Description: (see notes 6 and 7) - Measure From/To depths from ground surface. Attach another sheet if needed. From Material Description (use recommended names on guide) Colour Observations 0 12 Brown Till 12 28 Grey 28 57 Grey Clay 57 Brown Chunky Limestone 60 197 Brown Limestone 197 Bottom of Hole Well Construction: (see note 8) - Measure From/To depths from ground surface. Attach another sheet if needed Type of Material Method of Well Screen Surface Seal Annular Fill Open Hole Filter Pack (ex: casing and screen material, screen type and slot size, Placement From To Casing Liner (ft) use of shale traps, packers, screen blanks or tail pipes, and (ex: poured, 8 type and size of surface seal/annular fill/filter pack material) tremie) 62 7 7/8 62 51/2 Insert Glued PVC 62 197 43/4 Envirogrout Poured Well Completion: Day 16 Month October Year 20 17 Source of Drilling Water: ■ Groundwater □ Surface water Top of casing 18 inches ■ags □ bgs; Well vented: ■ Yes □ No Water contains a minimum of 10 mg/L free chlorine:

✓ Yes □ No Well disinfected:

Yes □ No; Well cover installed:

Yes □ No Name/Location of water source Friesen Drillers Ltd. Pitless adapter/unit installed at feet bgs; ⊠Not installed Drilling Additives Used: Yes (list type & quantity) 6 Bags Wyo-Ben Extra High Yield Bentonite □ No Well Yield Test (see note 9). Well Development:

air lifting □ surging □ pumping □ jetting Date of Test: Day 16 Month October Year 20 17 □ bailing □ hydrofracturing □ other (specify) ■ Same as date of well completion Static Water Level Before Test 16.1 feet ■ bgs □ ags □ sediment □ odour (specify) Method of Test: **⊠**pumping □air lift □bailing □recovery Flowing Artesian Well ■ No □ Yes - If yes, estimated rate of artesian □ other (specify) __ □IGPM □ USGPM Annular space cemented: □ Yes □ No Water level at end of test_____feet **■** bgs □ ags Flow control device installed: ☐ Yes ☐ No Length of test 1 hours _ ___ minutes Does water leak from around the outside of the casing: ☐ Yes ■ No Estimated rate of discharge___ **■**IGPM □ USGPM Recommended Pumping Rate: ■IGPM □ USGPM with pump intake at ____ Will your company be installing a pump?: □ Yes 🗷 No Remarks (see note 10) Well Drilling Contractor: Company Name Friesen Drillers Ltd Licence No. 607-17 Well Driller: Print Name Chris Loeppky Signature

For PDF submission: Report must be printed on legal size paper (8.5 x 14 inches) and be signed in ink. Owner Name: City Of Winnipeg Well Location: (see note 3; attach sketch if necessary) First Civic Address Mailing Address_4th Floor, 510 Main Street (if different than mailing address) Town/City Winnipeg, MB Quarter _ Section____ Township____ Range___ □E □W Postal Code R3B 1B9 Phone _____ Type & Lot No.___ Well Name: (if applicable)_TH-02 Latitude (decimal degrees) 49.94986 Well Identification Tag Number 690 Longitude (decimal degrees) 97.09632 Location of Tag ■ Attached to casing stick-up Rockwood Sensitive Area: Tyes - Permit No. ■ No □ Other (specify) **Method of Construction:** Water Use: (Check all that apply) **Test Hole** (see note 5) - Sealed □ Yes □ No <u>or</u> □ auger □ bored □ backhoe/dug ■ domestic □ public/semi-public □ irrigation Well Use:

★ test well - Sealed

Yes

No ■ rotary (mud) □ rotary (air) □ commercial/industrial □ livestock/poultry □ production/source □ recharge/return □ dual rotary □ driven □ jetted □ earth energy (heating/cooling) □ monitoring □ dewatering □ geotechnical □ other (specify)_ □ other (specify)_ □ other (specify) Lithologic Description: (see notes 6 and 7) - Measure From/To depths from ground surface. Attach another sheet if needed. From Material Description (use recommended names on guide) Colour Observations 0 14 Brown Till 34 14 Grey Silt 34 52 Grey Clay 52 73 Brown Till 73 78 Brown Brown Limestone 78 Bottom of Hole Well Construction: (see note 8) - Measure From/To depths from ground surface. Attach another sheet if needed Type of Material Method of Well Screen Surface Seal Open Hole Filter Pack (ex: casing and screen material, screen type and slot size, Placement From To Annular Casing Liner use of shale traps, packers, screen blanks or tail pipes, and (ex: poured, 8 type and size of surface seal/annular fill/filter pack material) tremie) 76 83/4 76 51/2 Insert Glued PVC 76 197 43/4 Envirogrout 76 Poured Well Completion: Day 13 Month October Year 20 17 Source of Drilling Water: ■ Groundwater □ Surface water Top of casing 18 inches ■ags □ bgs; Well vented: ■ Yes □ No Water contains a minimum of 10 mg/L free chlorine:

✓ Yes □ No Well disinfected:

Yes □ No; Well cover installed:

Yes □ No Name/Location of water source Friesen Drillers Ltd. Pitless adapter/unit installed at feet bgs; ⊠Not installed Drilling Additives Used: Yes (list type & quantity) 6 Bags Wyo-Ben Extra High Yield Bentonite □ No Well Yield Test (see note 9). Well Development:

air lifting □ surging □ pumping □ jetting Date of Test: Day 13 Month October Year 20 17 □ bailing □ hydrofracturing □ other (specify) ■ Same as date of well completion Static Water Level Before Test 16 feet ■ bgs □ ags □ sediment □ odour (specify) Method of Test: **⊠**pumping □air lift □bailing □recovery Flowing Artesian Well ■ No □ Yes - If yes, estimated rate of artesian □ other (specify) __ □IGPM □ USGPM Annular space cemented: □ Yes □ No Water level at end of test______feet **■** bgs □ ags Flow control device installed: ☐ Yes ☐ No Length of test_____ hours ___ ___ minutes Does water leak from around the outside of the casing: ☐ Yes ■ No Estimated rate of discharge 5 **⊠**IGPM □ USGPM Recommended Pumping Rate: ■IGPM □ USGPM with pump intake at ____ Will your company be installing a pump?: □ Yes 🗷 No Remarks (see note 10) Well Drilling Contractor: Company Name Friesen Drillers Ltd Licence No. 607-17 Well Driller: Print Name Chris Loeppky Signature

Pumping Test - Water Level Data

Page 1 of 1

Project: Northeast Interceptor River Crossing West

Number: AECOM2017-NEINT

Client: AECOM - Adam Braun

Location: Kildonan Settlers Bridge - Winnipeg Pumping Test: West Bank Pumping Well: TH-03

Test Conducted by: FDL Test Date: 2017-10-20 Discharge: variable, average rate 65 [U.S. gal/min]

Observation Well: TH-03 Static Water Level [ft]: 14.45 Radial Distance to PW [m]: -

00001	valion vvoii: 111 00		Ciado Water Edver [itj: 1				
	Time [min]	Water Level [ft]	Drawdown [ft]				
1	0	14.45	0.00				
2	0.5	15.75	1.30				
3	1	16.00	1.55				
4	2	16.17	1.72				
5	3	16.28	1.83				
6	4	16.35	1.90				
7	5	16.39	1.94				
8	6	16.43	1.98				
9	7	16.50	2.05				
10	8	16.52	2.07				
11	9	16.55	2.10				
12	10	16.61	2.16				
13	15	16.71	2.26				
14	20	16.80	2.35				
15	25	16.89	2.44				
16	30	16.94	2.49				
17	35	16.95	2.50				
18	40	17.04	2.59				
19	50	17.14	2.69				
20	60	17.18	2.73				
21	75	17.32	2.87				
22	90	17.39	2.94				
23	105	17.41	2.96				
24	120	17.50	3.05				
25	135	17.56	3.11				
26	150	17.56	3.11				
27	165	17.56	3.11				
28	180	17.64	3.19				
29	195	17.67	3.22				
30	210	17.69	3.24				
31	225	17.70	3.25				
32	240	17.72	3.27				
33	300	17.78	3.33				
34	301	16.34	1.89				
35	302	16.22	1.77				
36	303	16.14	1.69				
37	304	16.00	1.55				
38	305	15.95	1.50				
39	306	15.90	1.45				
40	307	15.82	1.37				
41	308	15.75	1.30				
42	309	15.74	1.29				
43	310	15.70	1.25				
44	315	15.64	1.19				
	, 0.0						

Pumping Test - Water Level Data

Project: Northeast Interceptor River Crossing West

Page 1 of 1

Number: AECOM2017-NEINT

Client: AECOM - Adam Braun

Location: Kildonan Settlers Bridge - Winnipeg Pumping Test: West Bank Pumping Well: TH-03

Test Conducted by: FDL Test Date: 2017-10-20 Discharge: variable, average rate 65 [U.S. gal/min]

Observation Well: TH-04 | Static Water Level [ft]: 11.48 | Radial Distance to PW [m]: 209.46

	Time [min]	Water Level [ft]	Drawdown [ft]
1	0	11.48	0.00
2	40	13.45	1.97
3	90	13.74	2.26
4	150	13.95	2.47
5	210	14.06	2.58
6	300	14.13	2.65

Pumping Test - Water Level Data

Project: Northeast Interceptor River Crossing East

Page 1 of 1

Number: AECOM2017-NEINT

Client: AECOM - Adam Braun

Location: Kildonan Settlers Bridge - Winniped Pumping Test: EastBank Pumping Well: TH-01

Test Conducted by: FDL Test Date: 2017-10-17 Discharge: variable, average rate 110 [U.S. gal/min]

Observation Well: TH-01 Static Water Level [ft]: 15.29 Radial Distance to PW [m]: -

Time [min] Water Level [ft] Drawdown [ft] 1 0 15.29 0.00 2 0.5 26.60 11.31 3 1 28.21 12.92 4 2 28.85 13.56 5 3 29.19 13.90 6 4 29.19 13.90 7 5 29.24 13.95 8 6 29.49 14.20 9 7 29.49 14.20 9 7 29.49 14.26 11 9 29.64 14.35 12 10 29.49 14.20 13 15 28.45 13.16 14 20 28.30 13.01 15 25 28.23 12.94 16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 2	Observa	ation Well: 1H-01		Static water Level [tt]: 1				
2 0.5 26.60 11.31 3 1 28.21 12.92 4 2 28.85 13.56 5 3 29.19 13.90 6 4 29.19 13.90 7 5 29.24 13.95 8 6 29.49 14.20 9 7 29.49 14.20 10 8 29.55 14.26 11 9 29.64 14.35 12 10 29.49 14.20 13 15 28.45 13.16 14 20 28.30 13.01 15 25 28.23 12.94 16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.6								
3 1 28.21 12.92 4 2 28.85 13.56 5 3 29.19 13.90 6 4 29.19 13.90 7 5 29.24 13.95 8 6 29.49 14.20 9 7 29.49 14.20 10 8 29.55 14.26 11 9 29.64 14.35 12 10 29.49 14.20 13 15 28.45 13.16 14 20 28.30 13.01 15 25 28.23 12.94 16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.8	1	0	15.29	0.00				
4 2 28.85 13.56 5 3 29.19 13.90 6 4 29.19 13.90 7 5 29.24 13.95 8 6 29.49 14.20 9 7 29.49 14.20 10 8 29.55 14.26 11 9 29.64 14.35 12 10 29.49 14.20 13 15 28.45 13.16 14 20 28.30 13.01 15 25 28.23 12.94 16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 3	2	0.5	26.60	11.31				
5 3 29.19 13.90 6 4 29.19 13.90 7 5 29.24 13.95 8 6 29.49 14.20 9 7 29.49 14.20 10 8 29.55 14.26 11 9 29.64 14.35 12 10 29.49 14.20 13 15 28.45 13.16 14 20 28.30 13.01 15 25 28.23 12.94 16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 <t< td=""><td>3</td><td>1</td><td>28.21</td><td>12.92</td></t<>	3	1	28.21	12.92				
6 4 29.19 13.90 7 5 29.24 13.95 8 6 29.49 14.20 9 7 29.49 14.20 10 8 29.55 14.26 11 9 29.64 14.35 12 10 29.49 14.20 13 15 28.45 13.16 14 20 28.30 13.01 15 25 28.23 12.94 16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135	4	2	28.85	13.56				
7 5 29.24 13.95 8 6 29.49 14.20 9 7 29.49 14.20 10 8 29.55 14.26 11 9 29.64 14.35 12 10 29.49 14.20 13 15 28.45 13.16 14 20 28.30 13.01 15 25 28.23 12.94 16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150	5	3	29.19	13.90				
8 6 29.49 14.20 9 7 29.49 14.20 10 8 29.55 14.26 11 9 29.64 14.35 12 10 29.49 14.20 13 15 28.45 13.16 14 20 28.30 13.01 15 25 28.23 12.94 16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165	6	4	29.19	13.90				
9 7 29.49 14.20 10 8 29.55 14.26 11 9 29.64 14.35 12 10 29.49 14.20 13 15 28.45 13.16 14 20 28.30 13.01 15 25 28.23 12.94 16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 <td>7</td> <td>5</td> <td>29.24</td> <td>13.95</td>	7	5	29.24	13.95				
10 8 29.55 14.26 11 9 29.64 14.35 12 10 29.49 14.20 13 15 28.45 13.16 14 20 28.30 13.01 15 25 28.23 12.94 16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195<	8	6	29.49	14.20				
11 9 29.64 14.35 12 10 29.49 14.20 13 15 28.45 13.16 14 20 28.30 13.01 15 25 28.23 12.94 16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 19	9	7	29.49	14.20				
12 10 29.49 14.20 13 15 28.45 13.16 14 20 28.30 13.01 15 25 28.23 12.94 16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 1	10	8	29.55	14.26				
13 15 28.45 13.16 14 20 28.30 13.01 15 25 28.23 12.94 16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 1	11	9	29.64	14.35				
14 20 28.30 13.01 15 25 28.23 12.94 16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 1	12	10	29.49	14.20				
15 25 28.23 12.94 16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 2	13	15	28.45	13.16				
16 30 28.20 12.91 17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 2	14	20	28.30	13.01				
17 35 28.36 13.07 18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 2	15	25	28.23	12.94				
18 40 28.65 13.36 19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 2	16	30	28.20	12.91				
19 50 28.99 13.70 20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75	17	35	28.36	13.07				
20 60 29.30 14.01 21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 2	18	40	28.65	13.36				
21 75 29.60 14.31 22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20	19	50	28.99	13.70				
22 90 29.87 14.58 23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13	20	60	29.30	14.01				
23 105 30.02 14.73 24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04	21	75	29.60	14.31				
24 120 30.00 14.71 25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	22	90	29.87	14.58				
25 135 30.41 15.12 26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	23	105	30.02	14.73				
26 150 30.77 15.48 27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	24	120	30.00	14.71				
27 165 30.89 15.60 28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	25	135	30.41	15.12				
28 180 31.12 15.83 29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	26	150	30.77	15.48				
29 195 31.51 16.22 30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	27	165	30.89	15.60				
30 196 19.85 4.56 31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	28	180	31.12	15.83				
31 197 20.35 5.06 32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	29	195	31.51	16.22				
32 198 20.12 4.83 33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	30	196	19.85	4.56				
33 199 19.89 4.60 34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	31	197	20.35	5.06				
34 200 19.73 4.44 35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	32	198	20.12	4.83				
35 201 19.54 4.25 36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	33	199		4.60				
36 202 19.39 4.10 37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	34	200	19.73	4.44				
37 203 19.24 3.95 38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	35	201	19.54	4.25				
38 204 19.16 3.87 39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	36	202	19.39	4.10				
39 205 19.04 3.75 40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	37	203	19.24	3.95				
40 210 18.54 3.25 41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	38	204	19.16	3.87				
41 215 18.49 3.20 42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	39	205	19.04	3.75				
42 220 18.42 3.13 43 225 18.33 3.04 44 230 18.19 2.90	40	210	18.54	3.25				
43 225 18.33 3.04 44 230 18.19 2.90		215		3.20				
44 230 18.19 2.90	42	220	18.42	3.13				
	43	225		3.04				
45 005	44	230	18.19	2.90				
45 235 17.76 2.47	45	235	17.76	2.47				

Pumping Test - Water Level Data

Page 1 of 1

Project: Northeast Interceptor River Crossing East

Number: AECOM2017-NEINT

Client: AECOM - Adam Braun

Location: Kildonan Settlers Bridge - Winniped Pumping Test: EastBank Pumping Well: TH-01

Test Conducted by: FDL Test Date: 2017-10-17 Discharge: variable, average rate 110 [U.S. gal/min]

Observation Well: Well 2 Static Water Level [ft]: 15.72 Radial Distance to PW [m]: 25.31

	Time [min]	Water Level [ft]	Drawdown [ft]
1	0	15.72	0.00
2	20	16.95	1.23
3	60	18.13	2.41
4	120	19.22	3.50
5	165	20.10	4.38
6	205	19.34	3.62
7	230	19.32	3.60

Table 3

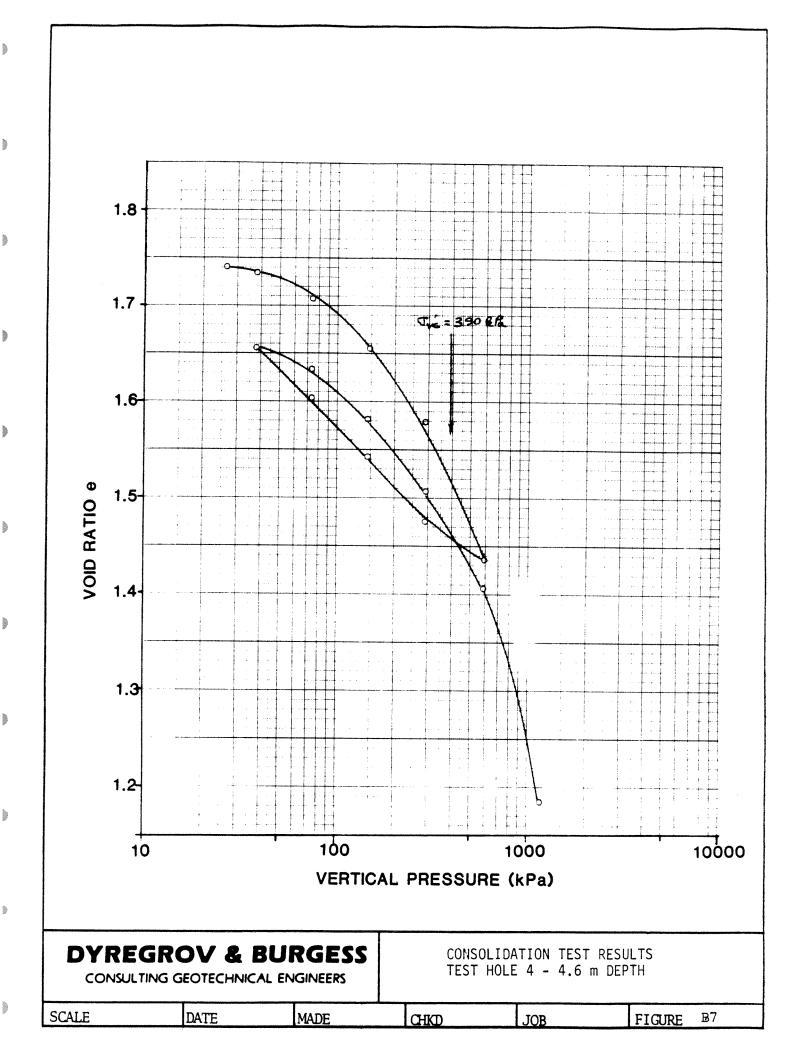
Well Inventory – 1,600 meter radius (1 mile)

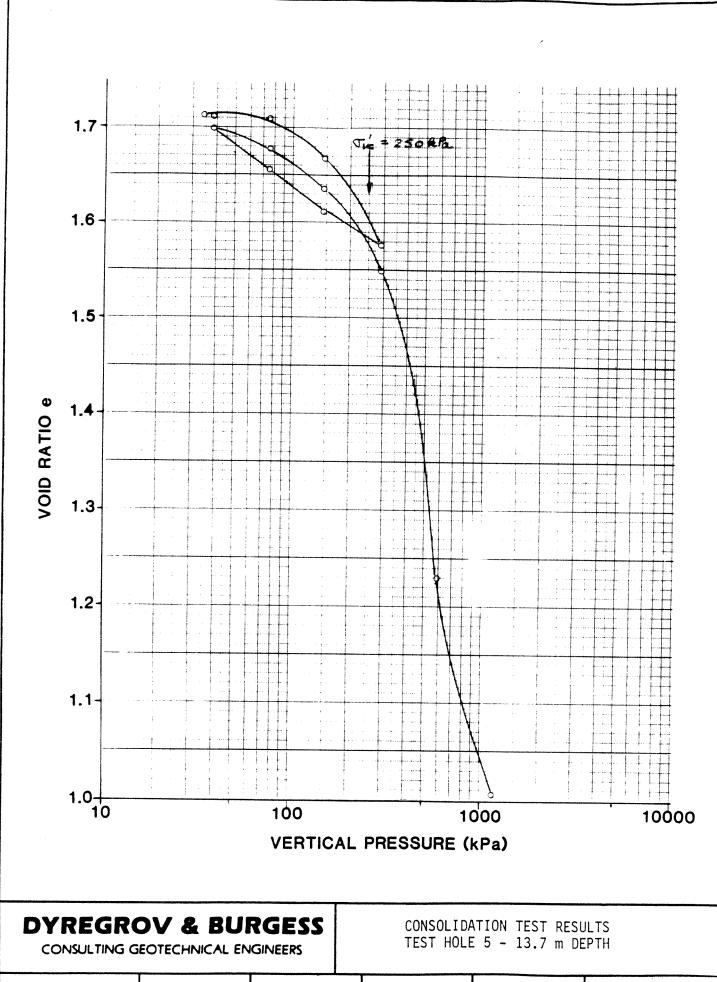
Northeast Interceptor

Kildonan Settlers Bridge - Winnipeg, Manitoba

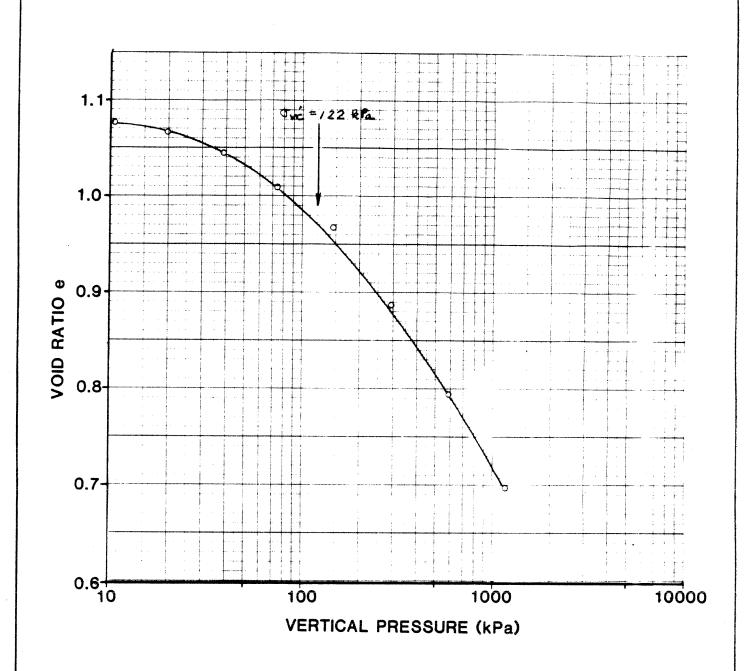
No.	Location	Owner	Driller	Well Use	Date	Depth (ft.)	S.W.L. (ft.)	P.W.L. (ft.)	Rate igpm
1	RL 25	CITY OF WINNIPEG	UNKNOWN	P	1900	N/A	N/A	N/A	N/A
2	RL 25	CITY OF WINNIPEG	UNKNOWN	P	1900	N/A	N/A	N/A	N/A
3	RL 25	CITY OF WINNIPEG	UNKNOWN	P	1900	N/A	N/A	N/A	N/A
4	RL 25	CITY OF WINNIPEG	UNKNOWN	P	1900	N/A	N/A	N/A	N/A
5	RL 25	CITY OF WINNIPEG	UNKNOWN	P	1900	N/A	N/A	N/A	N/A
6	RL 25	CITY OF WINNIPEG	UNKNOWN	P	1900	N/A	N/A	N/A	N/A
7	RL 25	CITY OF WINNIPEG	UNKNOWN	P	1900	N/A	N/A	N/A	N/A
8	RL 25	CITY OF WINNIPEG	UNKNOWN	P	1900	N/A	N/A	N/A	N/A
9	RL 25	CITY OF WINNIPEG	UNKNOWN	P	1900	N/A	N/A	N/A	N/A
10	RL 25	CITY OF WINNIPEG	UNKNOWN	P	1900	N/A	N/A	N/A	N/A
11	RL 25	CITY OF WINNIPEG	UNKNOWN	P	1900	N/A	N/A	N/A	N/A
12	RL 31	VALLEY STEEL	UNKNOWN	P	1900	N/A	N/A	N/A	N/A
		BUILDERS				·	·		·
13	RL 25	CITY OF WINNIPEG	UNKNOWN	P	1900	N/A	N/A	N/A	N/A
14	RL 18	KGS GROUP/ JOHN BURNS	Friesen Drillers Ltd.	P	2014	140	16.9	23.3	90
15	RL 64	DERKSEN CONSTRUCTION	Paul Slusarchuk Well Drilling LTd.	P	1973	133.9	35	48	7.493
16	RL 23	WRB	Friesen Drillers Ltd.	О	2001	N/A	27	N/A	100
17	RL 30	SIKH SOCIETY	Stonewall Drilling	Р	1990	70	16	25	29.987
18	RL 30	VALLEY BUILDERS	Maple Leaf Enterprises LTd.	Р	2002	85	26	27	16.003
19	RL 30	R MEHNEL	Paul Slusarchuk Well Drilling LTd.	P	1966	85.9	28	29	19.987
20	RL 30	J SHOOMSKI	Paul Slusarchuk Well Drilling LTd.	Р	1967	122.9	31	32	11.992
21	RL 30	G KOSTYNIUK	AQUARIUS WELL DRILLING	Р	1972	96.9	26	36	3.997
22	RL 30	ST LUKE'S CHURCH	Paul Slusarchuk Well Drilling LTd.	P	1978	144.9	26	N/A	29.987
23	RL 30	J HNATUIK	Paul Slusarchuk Well Drilling LTd.	Р	1963	80.9	25	26	25.989
24	RL 30	G SINCLAIR	Paul Slusarchuk Well Drilling LTd.	P	1968	101.9	26	28	29.987
25	RL 30	P BOYKO	Ford Drilling Ltd.	Р	1968	119.9	28	N/A	39.987
26	RL 30	G KAPELUS	Paul Slusarchuk Well Drilling LTd.	P	1966	328.8	27	60	5
27	RL 30	SIKH SOCIETY	Friesen Drillers Ltd.	P	1983	84.9	15	N/A	15
28	RL 30	HINES	Paul Slusarchuk Well Drilling LTd.	Р	1968	103.9	29	30	24.987
29	RL 31	CONNALLY	AQUARIUS WELL DRILLING	Р	1972	106.9	25	35	3.997
30	RL 31	D MOSS	Stonewall Drilling	P	1998	73	32	N/A	50
31	RL 31	TONY NGUYEN	Paul Slusarchuk Well Drilling LTd.	P	1990	164.9	14	N/A	24.987
32	RL 31	V NOCITA	ROTARY DRILLING CO.	Р	1964	79.9	15	26	6.003
33	RL 31	VENTURA CUSTOM HOMES LTD	Stonewall Drilling	Р	2005	108	6	10	60
34	RL 31	D MALTHOUSE	Echo Drilling Ltd.	P	1995	89.9	30	60	49.974

35	RL 31	M GOODMAN	Paul Slusarchuk Well Drilling LTd.	Р	1968	99.9	15	30	10
36	RL 31	PARKCITY ELECTRIC	Perimeter Drilling Ltd.	P	1995	299.8	3	N/A	6.992
37	RL 31	W OSTASH	PRUDEN DRILLING CO. LTD.	Р	1966	117.9	22	22	10
38	RL 31	E PRYSTANSKI	Paul Slusarchuk Well Drilling LTd.	Р	1967	86.9	9	19	29.987
39	RL 31	A WOLFRAN	AQUARIUS WELL DRILLING	Р	1973	105.9	20	N/A	11.992
40	RL 31	A WORMIAK	Friesen Drillers Ltd.	P	1973	104.9	10	25	3.496
41	RL 31	S GLOWA	Ford Drilling Ltd.	P	1973	116.9	30	N/A	6.003
42	RL 31	R ANDJILIE	Friesen Drillers Ltd.	P	1974	114.9	26	35	7.995
43	RL 31	A WOLFRAM	Paul Slusarchuk Well Drilling LTd.	Р	1981	226.9	28	N/A	7.995
44	RL 31	D BERNHARDT	Paul Slusarchuk Well Drilling LTd.	Р	1986	144.9	12	N/A	15
45	RL 31	A GUFFEI	Paul Slusarchuk Well Drilling LTd.	Р	1988	93.9	13	38	19.987
46	RL 31	A GUFFEI	Paul Slusarchuk Well Drilling LTd.	Р	1988	108.9	18	N/A	19.987
47	RL 31	J SANTOS	Stonewall Drilling	Р	1988	174.9	21	N/A	6.992
48	RL 31	J SOARS	Paul Slusarchuk Well Drilling LTd.	Р	1989	89.9	12	N/A	29.987
49	RL 31	G BAKER	ROTARY DRILLING CO.	Р	1963	87.9	24	N/A	6.491
50	RL 31	G BAKER	ROTARY DRILLING CO.	Р	1963	82.9	24	40	6.003
51	RL 31	C L ARNEL	ROTARY DRILLING CO.	Р	1964	75	17	39	3.997
52	RL 31	ELAINE ST.GEORGE	Paul Slusarchuk Well Drilling LTd.	Р	1968	109.9	15	45	7.493
53	RL 31	BALBON	Paul Slusarchuk Well Drilling LTd.	Р	1968	111.9	32	34	10
54	RL 31	W LISOWSKI	SONIC DRILLING CO. LTD	Р	1966	134.9	N/A	N/A	N/A
55	RL 31	RAGAN	Paul Slusarchuk Well Drilling LTd.	Р	1967	71	9	12	34.987
56	RL 31	P MGOLAS	SCIENTIFIC DRILLING CO.	Р	1966	80.9	25	30	6.491
57	RL 31	F GREENING	Paul Slusarchuk Well Drilling LTd.	Р	1966	110.9	29	30	8.997
58	RL 31	P MEDEIROS	Paul Slusarchuk Well Drilling LTd.	Р	1988	134.9	15	N/A	29.987
59	RL 32	J WHITEWAY	HYGAARD'S WELL DRILLING	Р	1988	99.9	31	N/A	15
60	RL 32	G SHUPENIA	Paul Slusarchuk Well Drilling LTd.	Р	1990	183.9	30	70	7.995
61	RL 32	W SMITH	Paul Slusarchuk Well Drilling LTd.	P	1972	82.9	26	30	10
62	RL 32	G S KAUFMAN	Paul Slusarchuk Well Drilling LTd.	P	1968	274.8	28	N/A	49.974
63	RL 29	P DUMES	ROHNE, FRANK	P	1963	76	28	28	19.987
64	RL 29	R SHYMANSKI	Paul Slusarchuk Well Drilling LTd.	Р	1972	103.9	22	28	10
65	RL 29	BUBBLE BATH CAR WASH	Stonewall Drilling	Р	1992	129.9	30	N/A	99.96
66	RL 33	JOHN MARINIC	Perimeter Drilling Ltd.	P	1997	400	14	N/A	40
67	RL 33	MIKE MATRICIAN	Selkirk Drillers	Р	1998	105	34	N/A	15


68	RL 33	WILLART HOLDINGS	Paul Slusarchuk Well	P	1970	103.9	34	45	7.995		
		LTD	Drilling LTd.								
69	RL 33	HELEN MATRICIAN	UNKNOWN	P	1900	N/A	N/A	N/A	N/A		
70	RL 28	T SKULASON	PRUDEN DRILLING	P	1970	95.9	26	26	10		
			CO. LTD.								
		ion sourced from Manitoba Susta									
		lers Limited has not verified or fie							reported		
Notes	and have not been verified by Friesen Drillers Limited. Current well use or operations are unknown for all wells listed.										
	RL – River I	Lot in the Parish of Kildonan; S.V	W.L. – Static water level; P.W	7.L. – Pumj	ping water l	evel; N.A	 Not prov. 	ided or not	available;		
	P – Product	ion;									



Appendix G


Consolidation Test Results (Dyregrov and Burgess 1988)

G-1: Consolidation Test Results (Dyregrov and Burgess 1988)

SCALE DATE MADE CHKD JOB FIGURE B8

DYREGROV & BURGESS

CONSULTING GEOTECHNICAL ENGINEERS

CONSOLIDATION TEST RESULTS TEST HOLE 6 - 3 m DEPTH

SCALE DATE MADE CHKD JOB FIGURE B9

Appendix —

Dilatometer Test Results (Dyregrov and Burgess 1988)

H-1: Dilatometer Test Results (Dyregrov and Burgess 1988)

DILATOMETER TEST RESULTS

Explanation of Abbreviations

Z - Test Depth, Metres

A,B - Pressure Readings, Bar

ED - Young's Modulus, Bar

ID - Material Index

KD - Horizontal Stress Index

UO - Groundwater Porepressure, Bar

PC - Preconsolidation Pressure, Bar

NCR - Overconsolidation Ratio

KO - Ratio of Horizontal to Vertical Earth Pressures

CU - Undrained Shear Strength, Cohesive Soils, Bar

PHI - Angle of Shearing Resistance, Cohesionless Soils, Degrees

M - Constrained Modulus, Bar

Note: Bar X 100 = kPa

kPa X 20.9 = Pounds per square foot

TEST NO. OMI 1

OYREGROV AND BURGESS
FILE NAME: KILDONAN CORRIDOR EAST APPROACH
FILE NUMBER: JOB NO. 87422

RECORD OF DILATOMETER TEST NO. DMT 1
USING DATA REDUCTION PROCEDURES IN MARCHETTI (ASCE, J-GED, MARCH 80)
KO IN SANDS DETERMINED USING SCHMERTMANN METHOD (1983)
MODIFIED MAYNE AND KULHAWY FORMULA USED FOR OCR IN SANDS (ASCE, J-GED, JUNE 82)

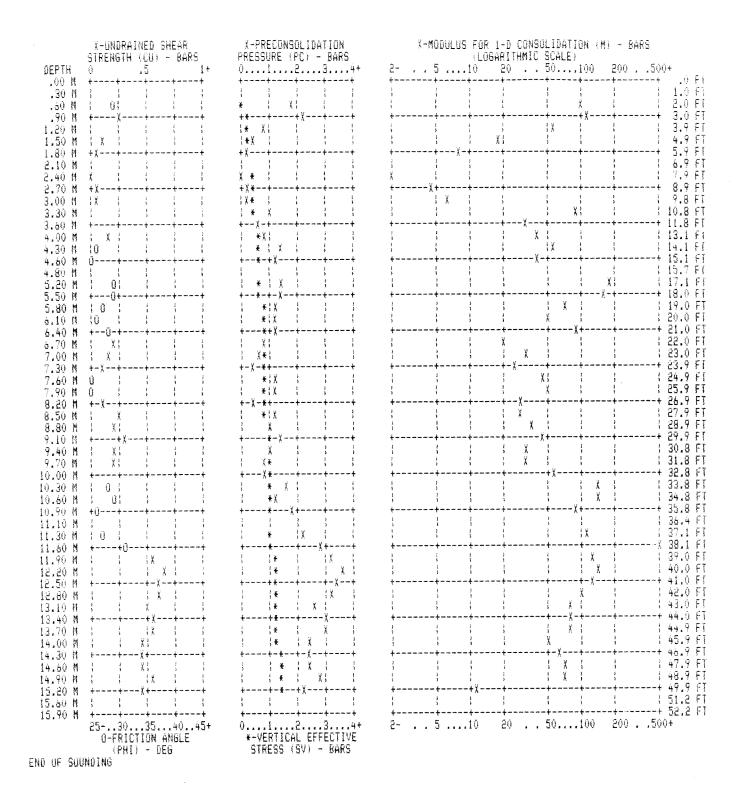
LOCATION: TEST HOLE 6

PERFORMED - DATE: AUGUST 28, 1987 BY: BURGESS & GILCHRIST PADDOCK DRILLING LTD.

CALIBRATION INFORMATION:

DELTA A = .12 BARS DELTA B = .73 BARS GAGE 0 = .70 BARS GNT DEPTH= 4.00 M

1 BAR = 1.019 KG/CM2 = 1.044 TSF = 14.51 PSI ANALYSIS USES H20 UNIT WEIGHT = 1.000 T/M3


Z THRUST (N) (KG)	A (BAR)	B (BAR)	ED (BAR)	ID	KD	UO (BAR)	GAMMA (T/M3)	SV (BAR)	PC (BAR)	OCR	K0		PHI (DEG)	M (BAR)	SUIL TYPE
.50 .90 1.20 1.50 1.80 2.10	1.50 2.20 1.50 1.30 1.10 1.10	3.40 4.20 3.20 2.50 2.20 1.80	**** 99.1.199.52		***** 11.27 12.59 5.13 3.22 1.92	000. 000. 000. 000. 000. 000.	1.600 1.600 1.600 1.600 1.500 P01 =	****** .077 .124 .171 .218 .264 .53	1.79 2.19 .74 .46 .25 P0 =	23.18 17.64 4.34 2.10 .94 .52	1.75 2.12 1.18 .83 .52 P1 = .06	.272 .087 .055 .37	29.4	100.0 113.9 56.8 17.1 7.7	SANDY SILT CLAYEY SILT SILT SILTY CLAY MUD QUESTIONABLE MUD
2.40 2.70 3.00 3.30 3.60	1.00 1.00 2.20 1.70	2.00 2.05 4.80 3.50	5. 7. 64. 35.	.38 .51 1.20 .93	1.04 .93 3.14 2.00	000. 000. 000. 000.	1.500 1.500 1.700 1.600	.396 .441 .488 .536	.14 .13 .99	.30 .00 .00 .00	.24 .20 .82 .54	.039		4.6 6.2 86.6 30.6	MUD MUD SILT SILT
4.00 4.30 4.60	00.5 00.5 08.1	3.90 4.40 4.00	38. 56. 49.	.81 1.24 1.30	2.28 2.13 1.72	.000 .029 .059	1.600 1.600 1.600	.599 .617 .634	.74 1.34 1.16	1.23 2.17 1.82	.62 .74 .71	.155	25.7 25.1	38.5 55.3 41.8	CLAYEY SILT SANDY SILT SANDY SILT
5.20 5.50 5.80 6.40 6.70 7.00 7.30 7.80 7.90 8.20 8.20 8.30 9.10 9.40 9.70 10.00 10.30	2.40 2.00 2.00 2.50 2.30 2.20 2.30 2.30 3.00 3.00 3.00 3.20 3.2	7.40 7.20 5.50 4.50 4.00 4.20 4.70 4.70 4.70 4.70 4.70 5.50 6.80	151. 144. 86. 60. 107. 24. 38. 31. 53. 60. 35. 27. 38. 38. 38.	921930202020 921930202020 93990 9390 930 93	211-6333829715888912	.118 .147 .206 .265 .264 .353 .383 .412 .471 .500 .559 .618 .648 .677	1.800 1.800 1.700 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.700 1.800 1.700 1.800 1.700	.676 .899 .721 .740 .761 .782 .779 .817 .835 .852 .870 .888 .902 .924 .944 .941 .980 1.002 1.002 1.048	1.31 1.31 1.11 1.19 1.18 .83 .41 1.23 1.27 .46 1.28 .97 1.45 .97 1.45 .97 1.45	1.94 1.54 1.55 1.06 79 1.49 1.49 1.57 1.68 1.74	.66636365587133114468	.180 .145 .104 .115 .261 .211 .292 .201 .196	29.5 29.2 27.4 25.9 28.0 25.5 28.3 29.4	8.58.18.05.39.1.4.8.4.8.55.2.4.0.2. 176.2.1.2.6.4.1.9.9.4.3.2.2.4.2.4.5. 2.2.2.2.4.5.2.2.3.4.2.4.5. 14.4.5. 14.4.5. 14.4.5.	SILTY SAND SILTY SAND SILTY SAND SILTY SAND SANDY SILT SILTY CLAY CLAYEY SILT SANDY SILT SANDY SILT CLAYEY SILT CLAYEY SILT SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY SILTY SILT SILTY SAND SAND
11.30 11.60 11.90 12.20 12.50 12.80 13.10 13.40 13.70 14.00 14.30	3.70 5.00 5.80 6.30 6.20 5.50 5.70 6.40 5.50	7.80 15.50 8.80 9.50 9.20 8.80 7.90 8.20 7.40 7.80	118. 352. 78. 86. 78. 553. 564. 53.	1.52 3.17 .52 .51 .48 .43 .41 .35 .37	2.08 2.90 3.84 4.18 3.99 3.82 3.50 3.95 2.95	.716 .746 .775 .805 .834 .864 .922 .952 .981	1.700 1.900 1.800 1.800 1.800 1.700 1.700 1.700 1.700	1.076 1.079 1.124 1.148 1.175 1.217 1.237 1.238 1.302	2.72 3.13 3.45 3.45 3.29 2.00 3.33	2.06 2.48 2.79 3.164 2.74 2.38 2.38 1.83	.72 .71 .96 1.02 .98 .95 .84 .89 .89	.562 .635 .612 .590 .490 .547 .555 .458	26.6 30.7	116.8 501.4 119.4 137.5 122.2 102.0 76.1 75.2 80.2 52.3 65.9	SANDY SILT SILTY SAND SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY

PAGE 1 (CONTINUED) TEST NO. DMT 1

Z (附) *****	THRUST (KG) *****	A (BAR) ****	B (BAR) ****	ED (BAR) ****	IŪ ****	KŪ *****	UÓ (BAR) *****	GAMMA (T/M3) *****	5V (BAR) *****	PC (BAR) ****	0CR ****	K0		PHI (DEG) ****	Ħ (BAR) *****	SOIL TYPE
14.60 14.90 15.20 END UF	- SOUNDI	5.60 6.00 5.40 NG	8.00 8.40 6.50	56. 50.	.38	2.95 3.18 2.72	1.040 1.070 1.099		1.343	2.43 2.77 2.20		.77 .82 .72	.473 .528 .441		70.5 74.9 10.6	SILTY CLAY SILTY CLAY MUD

IEST NU. DMT 1

(CONTINUED)

)

DIREGROV AND BURGESS FILE NAME: KILDONAN CORRIDOR WEST APPROACH FILE NUMBER: JOB NO.87422

RECORD OF DILATOMETER TEST NO. DAT 2
USING DATA REDUCTION PROCEDURES IN MARCHETTI (ASCE, J-GED, MARCH 80)
KO IN SANDS DETERMINED USING SCHMERTMANN METHOD (1983)
MODIFIED MAYNE AND KULHANY FORMULA USED FOR OCR IN SANDS (ASCE, J-GED, JUNE 82)

LOCATION: NEAR TEST HOLE 5
PERFORMED - DATE: AUGUST 28, 1987
BY: BURGESS & GILCHRIST PADDOCK ORILLING LTD.

CALIBRATION INFORMATION:
DELTA A = .12 BARS DELTA B = .73 BARS GAGE 0 = .70 BARS GAT DEPTH= 4.00 M

1 BAR = 1.019 KG/CM2 = 1.044 TSF = 14.51 PSI ANALYSIS USES H20 UNIT WEIGHT = 1.000 T/M3

- Z THRUST (M) (KG)	A (BAR) ****	B (BAR) ****	ED (BAR) ****	ID KD	U0 (BAR) *****	GAMMA (T/M3) *****		PC OCR (BAR) ****	K0 ****	CU (BAR) ****	PHI (DEG) ****	(† (BAR) *****	SUIL (7FE
.60 .90 1.20 1.50 1.80 2.10 2.40 2.70 3.00 3.30	2.50 2.50 4.40 2.80 2.80 2.60 4.40 5.60	4.40 5.40 8.20 6.80 5.20 5.20 6.40 7.70 9.80	49. 75. 115. 60. 140. 67. 693. 42. 46.	.91 20.16 1.18 14.47 .96 19.55 1.00 7.60 3.05 6.41 .91 6.41 .93 6.70 .32 7.81 .26 9.30 .28 11.14	000. 000. 000. 000. 000. 000. 000.	1.700 1.800 1.700 1.800 1.700 1.700 1.700 1.800	.077 .126 .177 .280 .382 .382 .482 .533 .586	2.83 36.77 2.75 21.92 6.21 35.05 1.83 8.03 1.204 6.16 1.77 4.62 2.85 6.59 4.03 8.37 5.86 10.99 8.55 14.58	2.79 2.774 1.549 1.427 1.77	.286 .582 .801 1.104	32.2	15199.887 15199.887 15199.887 15199.887 15199.487 16199.87 16199.87 161	SILT SILT SILT SILT SILT SILT SILT SILT
4.00 4.30 4.50 4.50 5.50 5.80 6.40 6.70 7.30 6.40 7.30 7.80 8.80 9.10 9.40 9.40 9.40 10.30 11.50 11.50 11.50 11.30	7.30 9.260 9	10.10 11.20 11.70 11.00 10.30 10.30 10.30 10.70 10.70 9.40 9.40 9.40 9.20 9.20 9.80 9.80 9.80 9.80 9.80 9.80 9.80 9.8	75. 75. 76. 77. 82. 100. 64. 60. 64. 60. 64. 64. 65. 66. 66. 66. 66. 66. 66. 66	9.55.49 9.11.97.00 11.97	.00098887.06654.4706654.470665.32583.33583.44700099.3583.3357676767676767676767676767676767676767	1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800	714815882579360370471558857757888877593608071558824774604714881 11111111111111111111111111111111	7.99 11.43 16.69 20 11.63 19.93 16.65 20 11.63 19.93 16.65 20 11.63 19.93 16.65 20 11.63 19.93 16.65 20 11.63 19.93 16.65 20 11.63 19.93 1	1.87 2.95 1.87 2.92 1.69 1.55 1.55 1.44 1.25 1.21 1.10 1.01 1.03 1.03 1.03 1.03 1.03 1.0	1.070 1.283 1.446 1.3043 1.043 1.0226		14.602.97.61.98539.69211.60.5581.252.44.69.9852.894.60.66681.5353.437.95832.0845.495867.1989.699.03	CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY

iEST NO. OMT 2

(CONTINUED)

(有)	THRUST (kg/	(BAR)	B (BAR) ****	(BAR)	ID	(BAR)	(T/M3)		PC (BAR) ****	***** K0	CU PHI (BAR) (DEG) **** ****		EGIL TYPE
14.80 15.10 ENO OF	SOUNDI	7.30	9.70 9.30	56. 60.				1.505 1.528			.717 .708	83.8 87.9	CLA7 CLAY

TEST NO. DHT 2 (CONTINUED)

) M	0	* * * * * * +	3 = = = = : 		- `	PRESSI 0	+	₩ {	+	÷	2	+	 ;		 	+	200 . - †	نين به . محمد .
) M) M	1	i i	i :	ř	i f	i Ž	1 1 ¥ 3 Å	1	ì i	1	1	1 2 3	i i	1	i i	i X	1	
) M) M	+	+ -	+	 	1 !	¥	+ X !	+ ! ¥	+ !	ŧ	<u>+</u>			+	+	+ !	-+X X	
0 M	1 1	1	:	1	; ; ;	* 1	i 1	1	1	1	3		5 1	1	1	i X	1	
) K) H	+	+-() :	 		†	+*-X-	+ !	t :	+	†	+	†:	t !	†	}	†	· +- \	
) Ħ	X				E 1	* X		1	1	1	3	i 5	; ;	1	! !	}	; ;	
) M) M	+	+ ¦ X	t		† }	+*	+x 	+ -		† 1		+	† !	†	Υ X	(5	
) H	1	; X	} . V	: :	1	¦# +#	! }	} X		1		¦ 4	! ! !	: 	} +	{	<u> </u>	
) M () M	ţ	τ· !	7 A T T T	1	Ť	i t	; }	! !	1 %	1	I 1	1	1	1	1)	Ġ	
) M 0 M	+	; +	Х ; +Y:	£	∔	 	¦ +	¦ ∔	¦ .+	X X	i +	{ +	; +	; +	; +	; +	-+}	
) #	1	i i	X I		ž Š	, ž	i	1	í ì	¥ A	1	1	1 1	i b	i 5	1	¥ A	
K C		; +	X +-X+		i t	- (* - +-+	; +	; +	X +X-	i t	i +	i +	i +	i +	; +	; +}	i A - † -	
) M	1	1	ļ X	í ì	\$?	} *	5 9 1) 1	i X	1	1	1	† }	} 1	i i	1 %	1 1	
H (i +	i +	((†	; * +- *	; +	i ^ +}	; +	: †	+	1 +	1 †	! †	+	+Х-	: : - †	
) M) M	1	1 1	() }	1 1	1	i X))	!))	i i	1	!	1	: X : X	1	
) M	; +	+	() 	+-*	; +	X-	·	; †	<u>+</u>	; ;	, [, +	÷	+X-	· -	, -mm
M (!	}	1	5		; *	! ! ¥	1 X	1		1	!	i i	1	1	i A	1	
) H	÷	+X-			†	+-*	+	+X	+	+ +	+	+	+	+	+	+X	-+	
) M) M		l X			; ; ;	; *	1 1	i X I X	1	1	7 2 3	1 1	\$ f	1))	i A I X	k 9 3	
) M) M	+	+X	+		l	+-#	+ i	¥ ¥	+	t i	+	+ !	 	+	+	+ X Y	·+	
) M	1 1	i A	1		1 1	1 *	i	A K	i i	1 -	} } \$; ; }) }	i i	1	X.	1	
) M) M	+	+X-: ! ¥	(ť Į	+-# *	+X ! X	+ !	+ !	† {	+	+: !	+ !	+	+	X X	· +	
) M	;	i X	: :		; ; ;	*	l X	1	3	1		1	1	;	5	X	1	
) M) M	÷	+-1 } X			†	+-* ; *	+-x X	t ¦	1	1	;	;	;	;	X .			
) M	P 9	[X			i 1	; ∦	X	i i 1		t l		 	: 	<u> </u>	! +¥			
M		τ-Α !			î }	*	I X	F I	I I	1 1	1				[X "	:	;	
) M) M	+	X +-X			<u> </u>	; * +¥	X +\-	! +	; +	† †	; +	; +	; +	i +	i +X	ίΧ +	; - {	
) #	1	1 X			1	*	1 1	:	1	1	} }	1) }	1	I X	1	1	
) M	; +	! X +-Y			i (; * +#-	i X +X-	í +	i +	; +	i +	i +	; +	i +	(¥	+	
M	1	1 X		ı	f 1	i #	1	1	í 1	1 1	\$ \$	1	\$ \$))	\ \ X	X 1	1 1 2	
) M) M	; +	1 X +-X	-		; }	-	i X +∦-:	i +	i +	i f	i +	۱ +	1 †	; {	+X	· +	+	
) 1	f !	I X		!	ž š	1 #	i X))	1 1	1	1	1	! !	6 1	1 X	:	1	
) M) M	; +	1 A +	+	·	t .	, .	1 A +	1 +	+	; †	; †	; +	, +	: +	†		· -+	
) M) M			.		; ;	; +	¦ +	: +	. 	¦ +		{	; +		† +	¦ +	; -+	
J 19	25	30	354 JN ANG	04	5+	Ó		5	i1 VITOJ		è	j	tó i	20	50	100	200 .	.5

TEST NO. DAT 2 (FINISHED)

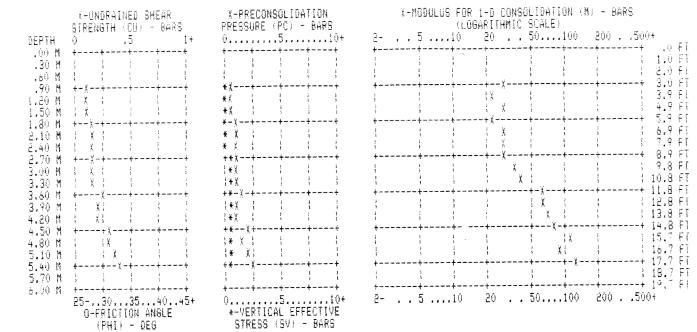
TEST NU. 3

ARRIVA N

CITY OF WINNIPEG FILE NAME: KILDONAN CORRIDOR FILE NUMBER: 87422

RECORD OF DILATOMETER TEST NO. 3
USING DATA REDUCTION PROCEDURES IN MARCHETTI (ASCE, J-GED, MARCH 80)
KO IN SANDS DETERMINED USING SCHMERTMANN METHOD (1983)
MODIFIED MAYNE AND KULHAWY FORMULA USED FOR OCR IN SANDS (ASCE, J-GED, JUNE 82)

LOCATION: BETWEEN HOLES 22 & 23
PERFORMED - DATE: 22 SEPTEMBER 1997
BY: BURGESS


CALIBRATION INFORMATION:
DELTA A = .55 BARS DELTA B = .10 BARS GAGE 0 = .60 BARS GWT DEPTH=-2.00 M

1 BAR = 1.019 KG/CM2 = 1.044 TSF = 14.51 PSI

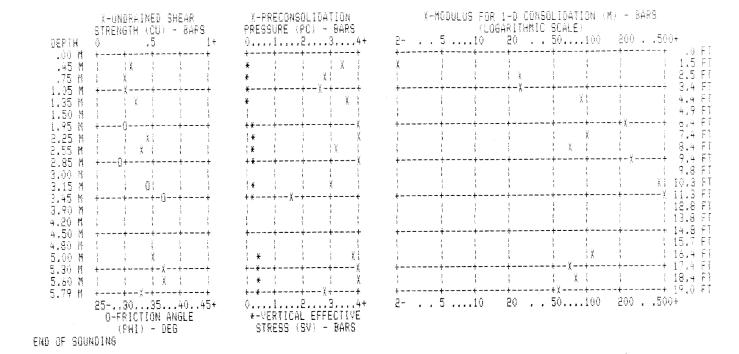
ANALYSIS USES H20 UNIT WEIGHT = 1.000 T/M3

Z THRUST	A (BAR)	B (BAR)	ED (BAR)	ID	ΚĐ	UO (BAR)	GAMMA (T/M3)	SV (BAR)	PC (BAR)	OCR	K0	CU (BAR)	PHI (DEG)	M (BAR)	SUIL LYPE
***** *****	*****	****	****	*****	****	*****	*****	*****	****	****	****	****	****	*****	********
.90 1.20 1.50 1.80 2.10 2.40 2.70 3.30 3.30 3.40 4.50 4.50 4.50 5.40 END OF SOUNDI	1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 2.50 2.20 2.20 2.30 3.20 3.50	2.20 2.40 2.40 2.70 2.70 3.00 3.10 4.00 3.80 4.60 5.10 5.10	16. 13. 16. 16. 16. 20. 24. 315. 46. 60. 46.	.64538643117785147785147756	4.87735066 4.87735066 4.55011166144.55 5.2711	.285 .314 .343 .373 .402 .432 .461 .520 .579 .638 .647 .726	1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.700 1.700 1.700	.150 .168 .1853 .221 .238 .254 .274 .291 .307 .343 .405 .405	.62 .67 .72 .78 .87 .97 .90 1.72 1.24 1.99 1.71 2.19	4.08832.66158751751762.661583333333355354526	1.15 1.14 1.12 1.10 1.09 1.09 1.01 1.32 1.10 1.30 1.31 1.20 1.30 1.35	.103 .113 .121 .131 .138 .158 .168 .269 .207 .198 .312 .279 .345		25.5611.987.63.61.283.1 22.83.22.23.77.37.1.9.5.7.659.1.891.1 821.23.1.23.1.23.1.23.1.23.1.23.1.23.1.2	CLAYEY SILT SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY SILTY CLAY CLAYEY SILT CLAYEY SILT CLAYEY SILT CLAYEY SILT CLAYEY SILT CLAYEY SILT CLAYEY SILT CLAYEY SILT

PAGE L

END OF SOUNDING

OVREGROV AND BURGESS FILE NAME: KILDOMAN CORRIDOR FILE NUMBER: 87422


RECORD OF DILATOMETER TEST NO. 4
USING DATA REDUCTION PROCEDURES IN MARCHETTI (ASCE,J-GED,MARCH 80)
KO IN SANDS DETERMINED USING SCHMERTMANN METHOD (1983)
MODIFIED MAYNE AND KULHAMY FORMULA USED FOR OCR IN SANDS (ASCE,J-GED,JUNE 82)

LOCATION: BETWEEN HOLES 20 AND 21 PERFORMED - DATE: 30 SEPTEMBER 1987 BY: N.C.BURGESS

CALIBRATION INFORMATION:
DELTA A = 1.00 BARS DELTA B = .10 BARS GAGE 0 = .70 BARS GWT DEPTH=-1.67 M

1 BAR = 1.019 KG/CM2 = 1.044 TSF = 14.51 PSI ANALYSIS USES H20 UNIT WEIGHT = 1.000 T/M3

Z THRUST (M) (KG)	A (BAR)	B (BAR)	ED (BAR)	ID ****	KD	UO (BAR)	GAMMA (T/M3)	SV (BAR)	PC (BAR)	0CR	¥****	CU (BAR) ****	PHI (DEG)	M (BAR) *****	901L TYPE
,45 ,75 1,05	1.10	2.20 2.50 2.50	0. 7. 7.	.00 .17 .16	44.15 30.02 23.44	.208 .237 .267	1.500 1.500 1.500	.027 .042 .056	3.37 2.85 2.63	***** 68.42 46.51	4.30 3.49 3.04	.284 .271 .269		.0 25.8 24.1	MUD MUD MUD
1.35 1.95 2.25	1.80 1.90 2.50	3.60 5.10 4.50	26. 77. 33.		24.35 15.69 18.02	.296 .355 .385	1.500 1.700 1.700	.073 .111 .132	4.78 4.06	49.36 43.07 30.87	3.11 2.26 2.62	.363	30.2	85.3 223.9 100.3	SILTY CLAY SANDY SILT SILTY CLAY
2,55 2,85 3,15 3,45	2.30 2.40 2.40 2.10	4.10 6.00 8.50 9.50	26. 91. 182. 230.	.34 1.23 2.64 4.18	14.28 12.55 10.30 7.35	.414 ,444 .473 .502	1.600 1.700 1.800 1.800	.151 .170 .192 .215	3.23 4.85 2,99 1.58		2.28 1.90 1.51 1.04	.387	29.5 33.8 36.6	72.4 247.3 460.6 512.4	CLAY SANDY SILT SILTY SAND SAND
5,00 5,30 5,40 5,79	3.60 4.00 4.00 3.20	6.00 5.90 6.00 5.00	47. 29. 33. 26.	.4337.7	9.85 10.21 9.55 7.12	.655 .684 .713 .732	1.700	.330 .350 .371 .384			1.80 1.86 1.79 1.48	.519 .591 .576 .413		116.7 73.5 80.4 54.9	SILTY CLAY CLAY CLAY CLAY
5.79 END OF SOUND!		5.00	26.	.27	7.12	.732	1.700	.384	c./8	7. C 3	1.40	.413		49.7	WMM I

F46E 2

TEST WW. ONES

OTREGROY AND BURGESS
FILE NAME: KILDONAH COFRIDOR
FILE MUMBES: 80482

RECORD OF SILATOMETER TEST NO. DNTS
1-SING DATA RESUCTION PROCEDURES IN MARCHETTI (ASCE, J-BED.MARCH 80)
40 IN SANDS DETERMINED USING SCHWERTMANN METHOD (1983)
MODIFIED NAIME AND KULHANY FORMULA USED FOR DOR IN SANDS (ASCE, J-GED. JUNE 52)

COCHIJON: BETWEEN HOLES 14 & 19 PERFORMED - D-TE: 30 SERTEMBER 1987 3Y: BURGESS

CALIBRATION (MEOPHATION: CELTA A = 1.00 BARS DELTA B = .10 BARS GAGE 0 = .70 BARS GAG GEPTH=-7.80 B

1 BAR = 1,019 KG/CM2 = 1,044 TSF = 14.51 PSI ANALYSIS USES H20 UNIT WEIGHT = 1,000 T-03

1	THFUST (KG)	# : BAK 1 ## 4 ##	8 (848) ****	ED (BAF) ++**	[0 ****	KD	90 (BAR) *****	GAMMA (T/M3)	. =	PC (BAR) ****	OCR *****	}`(} #####	. +	PHI (DEG) *****	5 (BAR) *****	905. I 65 *******
.30 .e1 .q. 640 OF	' 900,001!	1.56 2.00 2.20	3,20 3,20 8,70	25. 197.	.50	49,74 38,77 23,95	.775 .895 .834	1.500	,020 ,038 .0 58	3.84	**** **** \$7.70	4,58 4,61 2,87	, 244 ,337	37.6	87,5 87,5 454,6	CLAYEY SILT SILT: CLA. SAMD

N-UNDRAINED SHEAR SIRENGIH OU: - BARS 44. E. E. 1. 0 HTGD	X-PRECONSOLIDATION PRESSURE (PC) - BARS 0	X-MOSULUS FOR 1-0 CONSOLIDATION (K) - BARS LOGARITHMIC SCALE) 2510
.00 % ++++ .30 % () () () () .60 % () () () ()	*	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25-,.30354045+ 0-FRICTION ANGLE /PHI - DEG EMD OF SOLEDING	02+ +-VERTICAL EFFECTIVE STRESS (SV) - BARS	2 510

TEST NO. OHTB

DYREGROV AND BURGESS FILE NAME: MILDONAN CORFIDOR FILE MUMBER: 87422

RECORD OF DILATOMETER TEST NO. DMT8
USING DATA REDUCTION PROCEDURES IN MARCHETTI (ASCE.J-GED.MARCH 80)
KO IN SANDS DETERMINED USING SCHMERTMANN METHOD (1983)
MODIFIED MAYNE AND KULHAWY FORMULA USED FOR OCR IN SANDS (ASCE.J-GED.JUNE 82)

LOCATION: TEST HOLE 7
PERFORMED - DATE:
BY: N.BURGESS

CALIBRATION INFORMATION:
DELTA A = .25 BARS DELTA B = 1.00 BARS GAGE 0 = .50 BARS GUT DEPTH= 3.00 M

1 BAR = 1.019 KG/CM2 = 1.044 TSF = 14.51 PSI ANALYSIS USES H20 UNIT WEIGHT = 1.000 T/M3

Z THRUST (M) (kG) ***** ******	A (BAR) ⊁***	8 (BAR) ****	ED (BAR) ****	[D	¥0	U0 (BAR) *****	GAMMA (T/M3)	SV (BAR) *****	PC (BAR) ****	0CR *****	K() *****	CU (BAR) ****	PHI (DEG) ****	# (BAR) *****	SUIL 1:FE
2.30	2.50	5.50	64.	.85	5.38	.000	1.700	.402	1.88	4.68	1.22	,305		119.5	CLAYEY SILT
2.90	08.1	4.40	49,	.06	2.97	, ()()·()	1.800	.499	.92	1.85	.78			53.2	SILT
3,50 3,80 4,10 4,40 4,70 4,85	1.80 1.80 1.40 1.70 2.00	4.000 4.000 4.000 4.000 4.000	4. 9.3. 20. 21.	0 40 - 40 0 0.049 - 40 1.049 - 40	8878554 5245544 6346544	.049 .079 .108 .137 .167	1.500 1.600 1.600	.547 .565 .581 .599 .616	1.42 .80 .43 .89	2.60 1.18 1.37 1.03 1.36	.78 .60 .64 .55 .66	.142 .145 .103 .176	25.4		SANDY SILT NUD CLAY SILT: CLA: SILTY CLAY SILT: CLA:
5.30 5.490 5.490 5.490 6.800 7.700 8.400 8.400 8.400 9.800 10.10 EXD OF SOUND!	2.4000000000000000000000000000000000000	4,00 5,60 7,80 4,40 9,40 9,40 12,50 10,00 5,50 12,80 12,80 14,80	10.00.00.00.00.00.00.00.00.00.00.00.00.0	194 145 145 145 145 145 145 145 145 145 14	389789784490857044 9.600380048059	.2255.4337.322.437.322.437.322.437.322.437.557.577.6357.6357.6357.6357.6357.6357	1.700 1.800 1.500 1.500 1.700 1.700 1.700 1.800 1.800 1.700 1.700	.552 .671 .673 .714 .730 .749 .770 .789 .812 .838 .858 .879 .721 .945	1.18 1.025 1.25 1.59 1.44 1.46 2.00 3.79 1.08 1.78 1.78	1818980034401307818 858119974843007818 8581199748431007818	7714405447824732450025	.231 .179 .300 .283 .370	29.7 30.5 25.7 31.0 27.3 29.4 32.0 31.2 30.3		CLAY SILTY SANG CLAYE: STLT MUD BAND CLAY SANDY SILT SILTY SAND CLAY SANDY SILT CLAY SANDY SILT CLAY SILTY SAND SILTY SAND SILTY SAND SILTY SAND SAND SILTY SAND

M M		*			[]	t	+ -	+ !	3 	} {	2 	+	+		+	+	1	
Ħ	1	1 1				1				1	: : :		+	} £	· · · · · · · · · · · · · · · · · · ·	i +		
M					τ :	1		1	\$ 1	* {	· •	i	1	1	1	1	1	1
M	; +	ţ			+	i +	i +	i +	i +	i !	<u> </u>	· 	; +	; +	†	; +	+	
Ħ	1 7	1 1				} *	 V	1	1 1 2	2 8 9	1	÷ ÷	:	i k F	\$ 2 3	¥	1	1
M	+	÷			+	÷	+ -	† ! !	+	†	+	- +	+ 	+ ;	+	÷	+	
Ħ	: +0		! !		!		; +-¥	! +	‡	 	; +	; - + -	; +	; 		 	+	
M	1 2 2	1		<i>}</i> 1	1	1 ×	1	1	3 1	; }	1		i X	5 1 1	1 1 1	1	1	
補	+X) 	: •	; ;	1 1 1	+-X*-	: +	, +	; +	* *	÷	- 	+X	+ !	. !	+		~
Ħ	i A	1	1	! } }	7 7 9		1	3	3	!	1		; "	, X 				
Ħ	+ 1	·+	; ;	; ;	!	**-		!		T 	!		1 1	1 1	X			
M	+¥	0 -+		; ;	÷ •	! ¥ +	+	i - 	+	; t	i +	· - 	†	: +X	+	: A	() - (. 100
Ħ Ħ	i i	0		9 9 9	÷ • •	*	{	1		1	1 X	3	i i	1	ž 2	\$ 9	i i X	
M M	+ X	· + +		} :	+	+# -} +	+-⅓ -	*	+	(1 1	‡	-+	+	+-	+	†	-+	
ř.		10	} } #	: +	i i	+	+	X - X	¦ .+	ŧ ŧ	<u>+</u>	- +		¦ +X	; .+	+	; - + -	Ä
Ħ	(0 (Y		i i		E E				Į X		1	\$ 5	1		1	} :	i V	
# H	+0-		: 	; :	÷ f	+*		+	÷	+	+	-+	+	ŧ	+	+X	(+ ;	
苦	1						^ +					-		} } 		·		¥ (
Ħ		0	†		†	;	*	, T =	; ;	1	1	1	3 3	, ; ;	1 1	1	1	ź
Ħ	; ; 	; . 	: 	: +	{ +	<u>.</u>	i •		+	i Í	; +	- +	÷	; 	, 	t	· 	
Ħ	+	30	+ 35 .	1 ыг. ц	+ 5+		+	.+ 2	+ 3	÷ 4÷	2	5	10	* 20	50	100	200 .	.5

FIG. D14

ALGE 3

APPENDIX B

2021 Geotechnical Investigation Test Hole Logs

HOLE NO. **TEST HOLE LOG**

CLIENT PROJECT

LOCATION

DESCRIPTION

METHOD(S)

DRILL RIG / HAMMER

CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT

Acker Renegade Track Mounted Drill Rig with Auto-Hammer

Newton Force Main Red River Crossing Replacement

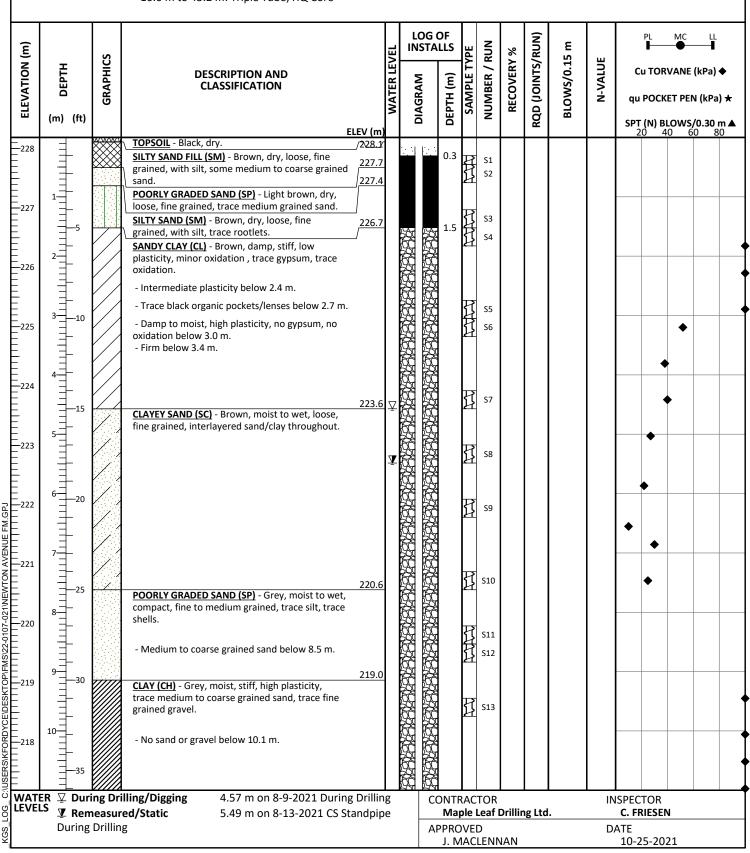
TH21-01

PROJECT NO.

21-3913-001 228.19 m

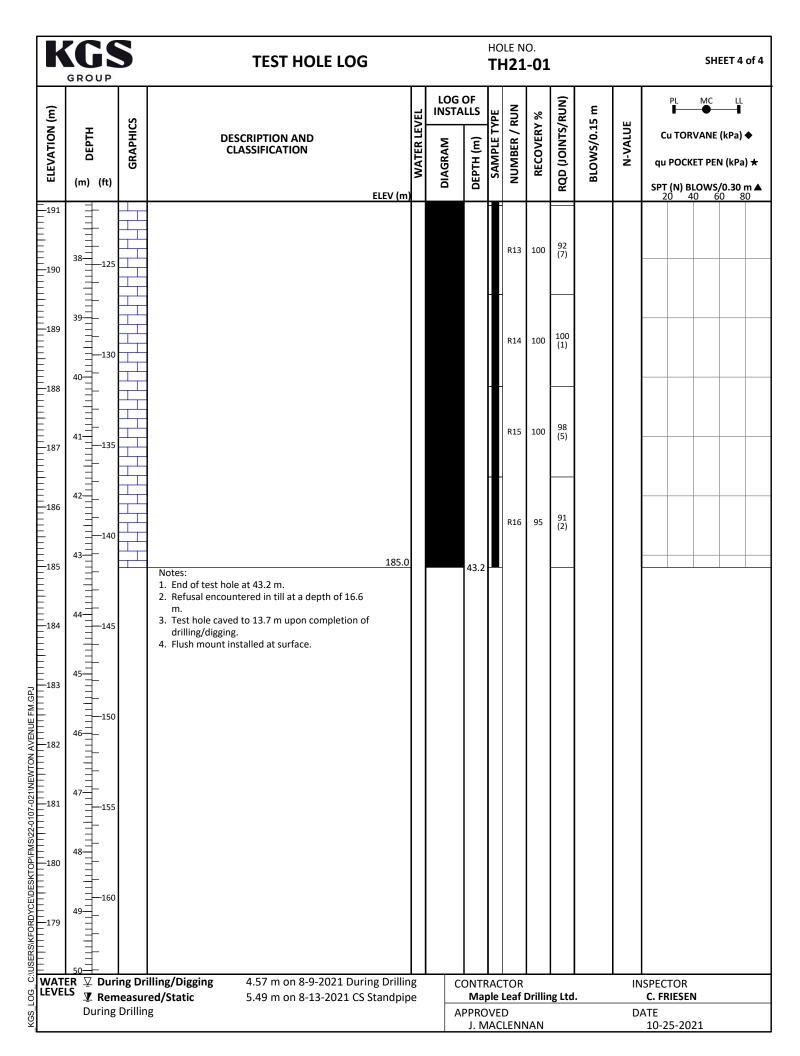
SURFACE ELEV. TOC STICK-UP / ELEV. -0.10 m / 228.09 m (Standpipe)

SHEET 1 of 4

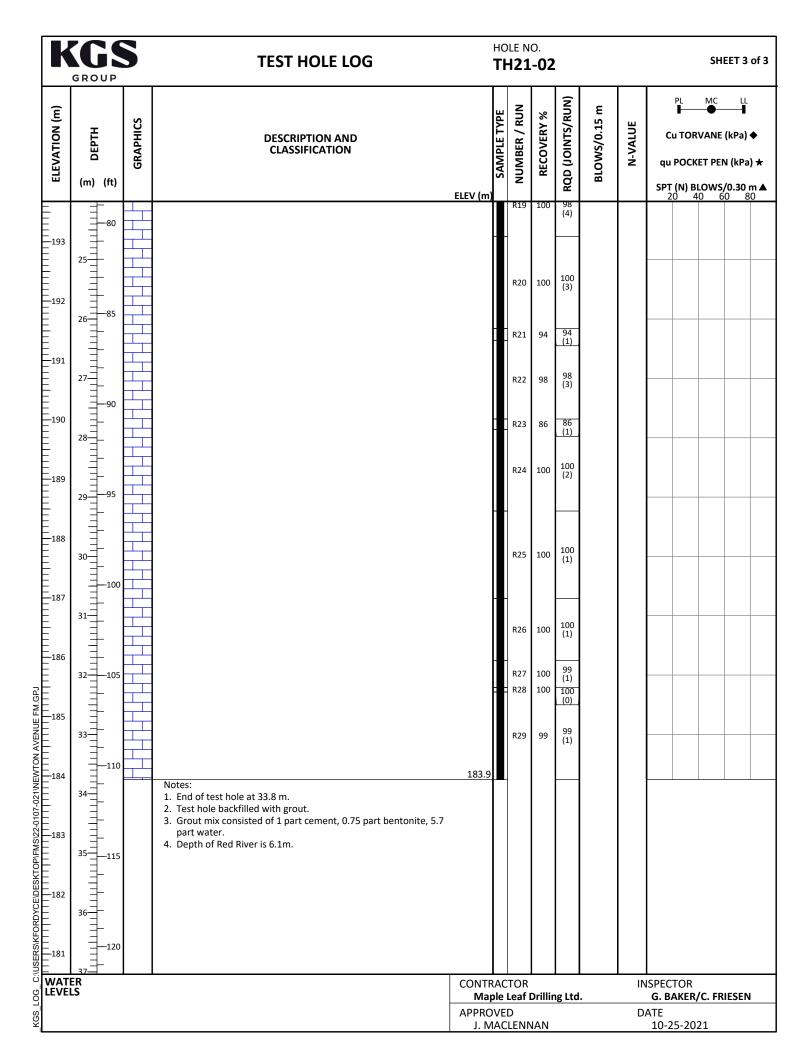

START DATE 8-9-2021 N 5,533,809 UTM (m)

E 636,141 Zone 14 0.0 m to 16.6 m: 100 mm ø SSA - switched due to encountering dense till

16.6 m to 43.2 m: Triple Tube, HQ Core


Scotia Street at Rainbow Drive (Kildonan Park)

Winnipeg, MB


	GROUP	5	TEST HOLE LOG					OLE N H21	_	-			SHEET 2
		IICS			EVEL	LOG OF NSTALLS	┨╊	/ RUN	RY %	rs/RUN)).15 m	UE	PL MC LL Cu TORVANE (kPa)
ELEVATION (m)	(m) (ft)	GRAPHICS	DESCRIPTION AND CLASSIFICATION ELEV		WATER LEVEL	DIAGRAM DEPTH (m)	SAMPLE TYPE	NUMBER / RUN	RECOVERY %	RQD (JOINTS/RUN)	BLOWS/0.15 m	N-VALUE	qu POCKET PEN (kPa
- -217 -	‡		ELEV	(m)	Ž		+	>					20 40 60 8
-	1						Į	S14					
- - - -216	12—40												
- 210			 Trace black streaking, trace medium to coarse grained sand below 12.2 m. 					₹					
- - -	13-						Į	S15					
- -215 -													
-	45		- Trace silt pockets, trace fine to medium grained		A COX		E	S 16					• •
- - 214	14=		sand, no coarse grained gravel, no black streaking below 13.6 m. - Firm below 13.7 m.		88	14.0	0						 •
-			- Fifth below 15.7 III.		897		1	S 17					•
	15—		- Trace medium to coarse grained sand, trace fine	13.1	0,0	14.	8 7	? S18					+
- 213	50		grained gravel, soft below 14.8 m. SILT TILL (TILL) - Light brown, damp to moist,										
- - -			compact, some medium to coarse grained sand, trace to some fine to coarse grained gravel.					5					
- -212	16-		- Moist, some fine to coarse grained sand, trace fine grained gravel, no coarse grained gravel		: ::	16.0		S 19					
-216 215 214 213 212	‡		below 15.8 m.			目 16.	6						
-	17——55		- Dense below 16.8 m.		jč	16.	8 4	S20	31		11 14 17	31	
- 211 - -	1					6000 6000 6000 6000 6000 6000 6000 600	Į	}			17		
- - -					2000 2000			S21 S22	44		1 6	40	
	18					18.0		322	44		34	40	
	‡		DOLOMITE - brown, fine-grained.	09.7		10		ď					
- - - - -209	19		- Weak fractured rock from 18.5 m to 18.8 m.		1900 1900 1900	18.	ă						
- 209			- Broken core zone along vertical fracture from			500 500 500 500 500 500 500 500 500 500		R1	82	62 (10)			
-	65		19.5 m to 19.7 m.		2000								
	1"#		<u>LIMESTONE</u> - strong, white to tan,	0.80	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	20.	4						
-			medium-grained.			20.							
- - - -207	21=	H	- 50 mm soft clay seam at 21.1 m.					R2	106	88 (9)			
	70												
	22——	曲	- Broken core zone, multiple breaks / close				H	H					
-206 -			spacing bedding joints. from 22.0 m to 22.4 m.										
-	75		- Multiple close spaced breaks along bedding					R3	83	21 (25)			
- - 205	23 7		planes.										
	‡						H	Ħ					
		ing Dri	Iling/Digging 4.57 m on 8-9-2021 During Dr	- منالة	_	00::-		CTC-				<u> </u>	ICDECTOR
LEVE	LS 🛂 Rem	neasur	ed/Static 5.49 m on 8-13-2021 CS Stand		_		ple	Leaf		ng Ltd		IN	NSPECTOR C. FRIESEN
	During	Drilling	g			APPR J. I		ED CLENI	NAN			D	ATE 10-25-2021

	GROUP	5	TEST HOLE LOG					LE N 121	o. -01						SHE	ET 3 of
ELEVATION (m)	(m) (ft)	GRAPHICS	DESCRIPTION AND CLASSIFICATION ELEV (m)	WATER LEVEL	DIAGRAM		SAMPLE TYPE	NUMBER / RUN	RECOVERY %	RQD (JOINTS/RUN)	BLOWS/0.15 m	N-VALUE	qu	РОСК	ET PEN	LL (kPa) ◆ I (kPa) ★ 0.30 m
- - 204 -	80		203.7					R4	98	67 (18)				0 4	0 00	3 80
	25——85		MOTTLED LIMESTONE - strong, mottled brown, white and grey, medium-grained trace nodules from 24.5 m to 25.2 m 25 mm open joint at 24.8 m Compressive strength is 14.4 MPa, Young's Modulus is 12.0 GPa and Poisson's ratio is 0.13 at 25.2 m.					R5	93	88 (8)						
- - - -201	27—							R6	95	95 (11)						
- - - - -200 - - - - -	28—		- Compressive strength is 28.4 MPa, Young's Modulus is 19.3 GPa and Poisson's ratio is 0.16 at 27.6 m.					R7	100	93 (10)						
-199 -199 	30—		- 50 mm soft clay seam at 29.5 m.							90						
-196 - - - - - - -197	31—		- 7 mm clay seam at 31.1 m.					R8	100	89 (6)						
-196	32—105		- Moderate to wide space joints, trace vugs below 31.2 m.					R9	100	92 (7)						
-195 -195 -195 -194 -193 -193 -193 -193 -192 -192 -192 -192 -192 -192 -193 -1	33—							R10	100	100 (6)						
-194 -194 	34—							R11	98	98 (2)						
-193 	36—															
-192 - - - - - - - -	37	ng Cz	lling/Digging 4.57 m on 9.0.2024 During Delling	<u> </u>		\\ \ \		R12	100	89 (11)			ICRES	TO 5		
LEVEL		easur	Iling/Digging 4.57 m on 8-9-2021 During Drillin ed/Static 5.49 m on 8-13-2021 CS Standpip g		AP	Ma _l PRC	ple I			g Ltd	•		ATE	TOR R IESEN 5-202		

HOLE NO. **TEST HOLE LOG** SHEET 1 of 3 TH21-02 **CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT** PROJECT NO. 21-3913-001 **CLIENT PROJECT Newton Force Main Red River Crossing Replacement SURFACE ELEV.** 217.70 m LOCATION Winnipeg, MB **START DATE** 8-4-2021 Center of Red River **DESCRIPTION** UTM (m) N 5,533,672 DRILL RIG / HAMMER E 636,201 B20 Portable Drill Rig with Winch Drop Hammer Zone 14 METHOD(S) 0.0 m to 8.6 m: Water Rotary - switched due to encountering bedrock 8.6 m to 33.8 m: Triple Tube, NQ Core RQD (JOINTS/RUN) **NUMBER / RUN** ELEVATION (m) **RECOVERY % BLOWS/0.15** GRAPHICS DEPTH Cu TORVANE (kPa) ◆ **DESCRIPTION AND CLASSIFICATION** qu POCKET PEN (kPa) ★ (m) (ft) **SPT (N) BLOWS/0.30 m** ▲ 20 40 60 80 ELEV (m SILT (ML) - Dark grey, wet, very loose, non-plastic, with fine **S1** 33 grained gravel, trace organic odour. -217 216.6 CLAY (CI) - Grey, wet, very soft, intermediate plasticity, trace silt, 22 S2 0 trace shells. 0 0 1 -214 213.6 10 6 11 SILT TILL (TILL) - Light brown, wet, compact, trace fine to coarse S3 44 17 grained sand, trace fine to coarse grained gravel. - Harder drilling below 5.5 m. _212 - Dense below 5.7 m. 22 26 19 **S4** 6 45 C:\USERS\KFORDYCE\DESKTOP\FMS\22-0107-021\NEWTON AVENUE FM.GP. __211 - Fine to coarse grained gravel in SPT sampler at 7.2 m. 11 **S**5 53 26 27 - Very dense below 7.2 m. 60/ 209.1 100 +100 S6 >> **LIMESTONE** - strong, white to grey, massive. Weak altered zone from 8.6 m to 9.4 m. 67 R1 (2) R2 77 - Close spaced fractures from 9.4 m to 10.3 m. R3 95 -208 (1) 64 (2) 100 R4 R5 100 (1) 72 (10) - Close to moderate spaced joints, three open joints observed from R6 100 10.3 m to 12.5 m. __207 WATER CONTRACTOR **INSPECTOR LEVELS** Maple Leaf Drilling Ltd. G. BAKER/C. FRIESEN **APPROVED** DATE J. MACLENNAN 10-25-2021

	GROUP	5	TEST HOLE LOG			LE N		1					SHEE	Т 2 о	of 3
ELEVATION (m)	(tt)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	ELEV (m	SAMPLE TYPE	NUMBER / RUN	RECOVERY %	RQD (JOINTS/RUN)	BLOWS/0.15 m	N-VALUE	qu P	TORVA	MC ANE (ki PEN (l	kPa)	*
_						R7	100	72 (8)							
206 	12—40		- Weak fracture at 12.2 m.			R8 R9	100 100	91 (2) 46 (6)							
205 205 	13-1		MOTTLED LIMESTONE - strong, mottled white to grey, moderate to wide spaced joints, trace vugs Occasional nodules from 12.5 m to 14.5 m.	205.2		R10	100	88 (8)							
—204 — — — — —203	14——45					R11	100	93 (6)							
206 205 205 204 204 203 201 201	16—1—50					R12	100	100 (4)							_
=	17————————————————————————————————————					R13	100	100 (2)							_
 199 	60					R14	100	88 (2)							
	19					R15	100	92 (7)							_
198 197 196 195 195	21——70					R16	93	93 (5)							
	22—					R17	100	100 (3)							_
						R18	83	83 (1)							_
WATI	ER LS			CONTI Ma	RAC ple	TOR Leaf I	<u> </u>	l ng Ltd		IN	ISPECT G. BA		. FRIES	SEN	_
				APPRO	VE					D	ATE 10-25				

KGS

TEST HOLE LOG

HOLE NO. **TH21-03**

SHEET 1 of 4

CLIENT
PROJECT
LOCATION
DESCRIPTION
DRILL RIG / HAMMEN
METHOD(S)

CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT Newton Force Main Red River Crossing Replacement

Winnipeg, MB

DESCRIPTIONKildonan Drive at Larchdale Crescent (Fraser's Grove Park)DRILL RIG / HAMMERAcker Renegade Track Mounted Drill Rig with Auto-HammerMETHOD(S)0.0 m to 18.3 m: 125 mm ø SSA - switched due to sloughing

18.3 m to 41.7 m: Triple Tube, HQ Core

PROJECT NO. 21-3913-001 **SURFACE ELEV.** 227.14 m

TOC STICK-UP / ELEV. -0.10 m / 227.04 m (Standpipe)

START DATE 8-12-2021 **UTM (m)** N 5,533,496

E 636,194 Zone 14

						1004	٥.							<u> </u>			
(m)		s			/EL	LOG (INSTA		JE I	3UN	%	RQD (JOINTS/RUN)	2 m	 		PL 	MC	LL - ∄
ELEVATION (m)	DEPTH	GRAPHICS	DESCRIPTION AND		WATER LEVEL	Σ	m)	SAMPLE TYPE	NUMBER / RUN	RECOVERY %	NTS/	BLOWS/0.15 m	N-VALUE	Cu	TORV	ANE (kF	'a) ◆
EVAT	DE	GRA	CLASSIFICATION		/ATE	DIAGRAM	ДЕРТН (m)	AMP	IMBI	ECO	Or)	O.	Ż	qu P	OCKE.	T PEN (k	Pa) ★
EL	(m) (ft)			ELEX ()	-	DIA	DEP	Š	N	~	RQD	BI		SPT (N) BLO	DWS/0. :	30 m ▲
- 227	-	iyi iyi iyi	↑ <u>TOPSOIL</u> - Black, dry.	/227.1	H			13						20	40	60	80
_	1		SILTY SAND (SM) - Brown, dry, loose, fine					뫔	S1								
E			grained, some silt, trace medium grained sand.				0.6										
E			- Trace silt below 0.7 m.														
226	<u> </u>			225.8				昪	S2								
E	5		SANDY CLAY (CI) - Brown, damp, stiff,					摆	S3							•	
E	1		intermediate to high plasticity, some silt Firm below 1.5 m.														
E	2							昪	S4								
= 225		V///		224.7											•		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/	CLAYEY SAND (SC) - Brown, moist, loose, fine		1												
E	📑	/ /	grained, some clay. - Moist to wet below 2.7 m.					昪	S5								
_ 224	3—10																
E	主																
F	<u>+</u>	/ /															
E	4				∇			Į.	cc.								
223	}							昪	S6								
E	15		SAND (SP) - Brown, moist to wet, compact, fine	222.6													
Εl			to medium grained, trace clay.					昪	S7								
_ 	5—		- Grey, trace clay below 5.1 m.	221.0													
F	1		- Trace wood at 5.2 m.	221.8 				Ц									
F	5———20		CLAYEY SAND (SC) - Grey, moist to wet, loose,					昪	S8								
E	6—20		fine grained, some to with clay Interlayered sand and clay below 5.9 m.														
221	= 20																
P.M.	#	/ /						昪	S9								
														◆			
₩ —220	7=	/												•			
ēE	上土							昪	S10								
	25		- Trace clay below 7.6 m.	219.3				И									
24 			CLAY (CL) - Grey, moist, soft, low plasticity.											•			
219	8																
22-01 			- Intermediate plasticity, trace fine grained sand					L7									
MS/	1 7 1		from 8.5 m to 8.8 m.					昪	S11								
E 218	930		CLAVEY CAND (CC). Cress are int. Inc. of the	218.0	1									\vdash^{lack}			
SKT			<u>CLAYEY SAND (SC)</u> - Grey, moist, loose, fine grained, trace to some clay.					Ц									
	1		- Trace clay below 9.4 m.					昪	S12								
žE	10		CANDY CLAY (CI) Grove maint soft law	217.2													
[<u>-</u> 217			SANDY CLAY (CI) - Grey, moist, soft, low plasticity, some to with fine grained sand.											 			
SS/KI	#	/// /	- Low to intermediate plasticity, some fine					3	S13					•			
C.USERSIKFORDYCEUDESKTOPIFMS92-0107-021/MEMTON AVENUE FM.GPJ	35		grained sand below 10.4 m.					1	S14								
	 ER ∑ Duri	ng Dri	illing/Digging 3.96 m on 8-12-2021 Dur	ring Drilli	ing	CC	ONTF	RAC	TOR			<u> </u>	IN	ISPECT	OR		I
ဖ ျိုLEVE I	LS During			-	Ŭ					Drillir	g Ltd			C. FRI			
KGS_L						AF	PPRO						D	ATE		_	
ス							J. N	IACI	ENN	IAN				10-25	-202	1	

	GROUP	5	TEST HOLE LOG						NO 21 -). • 03					SHEET 2
(m) N	Ŧ	ıcs				OG OF		TPE.	NON I	۲۷ %	S/RUN)	.15 m	JE J		MC LL
ELEVATION (m)	(#)	GRAPHICS	DESCRIPTION AND CLASSIFICATION		WATER LEVEL	DIAGRAINI PERTU (m)	CANADIC:	SAMPLE I TPE	NUMBER / KUN	RECOVERY %	RQD (JOINTS/RUN)	BLOWS/0.15 m	N-VALUE	qu POCKET	
-216	=	///	- Intermediate to high plasticity, firm below 11.0	m)			+		+		_			20 40	60 80
.	12—		m Trace to some fine grained sand below 11.3 m.				P	4	15					*	
-215	40		CLAYEY SAND (SC) - Grey, moist, loose, fine to medium grained, some clay.	1.9	350 S		^{2.2} }	3 s	16						
214	13		CLAY (CH) - Greyish brown, moist, firm, high plasticity, trace silt nodules, some fine to medium	3.9				₹ s	17					•	•
213	14 = 13		grained sand. - Trace coarse grained sand, trace fine grained gravel below 13.9 m.	3.2	05505		K	? s	18						
212	15—		SILT TILL (TILL) - Light brown, moist, compact, some fine to coarse grained sand, trace fine to coarse grained gravel With coarse grained sand below 14.6 m.				}	3 s	19						
212								s	20	72		8 10 13	23	A	
	55		- Broken gravel in SPT sampler at 16.8 m.		2000 2000 2000 2000 2000 2000 2000 200		}	1	21			44			
210	17—		- Some fine to coarse grained gravel below 16.8 m.							42		29 12	41		
209	18				000	18	3.1	1	23			14 13			
208	19—		207	7.8				S	24	42		13 13	26		
	= = 65		MOTTLED LIMESTONE - grey to light yellow brown, Moderate to wide spaced joints Highly fractured limestone from 19.3 m to 19.9					F	R1	48	0				
207	20		m.				-	F	R2	100	78 (3)				
207 206 205 204	21——70					21).8 l.1 l.4	F	₹3	97	82 (11)				
205	22					22	2.6	 	R4	100	100 (4)				
-204	2375		- Vugs from 22.9 m to 23.8 m.								(**)				
-			- Softer to 23.4 m. - Softer at 23.8 m.												
VATE EVEL	ER ∑ Duri LS During		Iling/Digging 3.96 m on 8-12-2021 During Dr	rillir	ng	CON				rill:-	له ۱۰ م		IN	ISPECTOR C. FRIESEN	
	During	ווווווט (5			APP	ROV				g Ltd	•	D	ATE 10-25-2021	

	GROUP	5	TEST HOLE LOG					LE N 121	o. . -03						SHE	ET 3 of
ELEVATION (m)	3 DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	WATER LEVEL	DIAGRAM SON	DEPTH (m)	SAMPLE TYPE	NUMBER / RUN	RECOVERY %	RQD (JOINTS/RUN)	BLOWS/0.15 m	N-VALUE	qu	РОСК	ET PEN	LL (kPa) ◆ I (kPa) 7 0.30 m
203 	80		ELEV (n	י)				R5	100	98 (4)			2	0 4	0 60) 80
	25							R6	100	99 (7)						
	27—							R7	97	97 (0)						
	29 95							R8	100	95 (5)						
197 197 	30							R9	100	99 (3)						
- - - -	32—105		- Grey to white, moderate to wide spaced joints. from 31.5 m to 41.7 m. - Mottled grey to brown below 32.4 m.					R10	99	99 (3)						
- - - - - 194 - - - - - - -	33— 33— ——————————————————————————————							R11	100	100 (1)						
	35——115		- Trace vugs from 34.1 m to 36.3 m.					R12	99	97 (3)						
	36—- 36—- 36—- 36—- 37—- 37—-							R13	100	99 (3)						
WATE LEVEL	ER ∑ Duri LS During		lling/Digging 3.96 m on 8-12-2021 During Dri g	ling		Ma _l PPRC	ple I			ıg Ltd			ATE	TOR Rieser 5-20		

	GROUP	5	TEST HOLE LOG						LE NO 1 21	o. -03				-	SHE	ET 4 of
		IICS	DESCRIPTION AND	į	EVEL	LOG OF	s -	TYPE	/ RUN	RY %	rs/RUN)).15 m	.UE	PL •	MC RVANE (LL ■ [kPa] ♠
ELEVATION (m)	(#) (ft)	GRAPHICS	DESCRIPTION AND CLASSIFICATION ELEV		WATER LEVEL	DIAGRAM	DEPTH (M)	SAMIPLE TYPE	NUMBER / RUN	RECOVERY %	RQD (JOINTS/RUN)	BLOWS/0.15 m	N-VALUE	qu POCI SPT (N) E	KET PEN	(kPa) ז
—190 — — — — — —189	38125			,,_					R14	100	100 (3)				+0 00	3
— — —188 — — — — —	39—— ——————————————————————————————————								R15	100	100 (1)					
	41——135		18:	5.4		41	1.7		R16	100	100 (3)					
- - -185 - - - - - - - -	42		 End of test hole at 41.7 m. Test hole caved to 12.2 m upon completion of drilling/digging. Flush mount installed at surface. 													
-184 - - - - - - - - - -183	44—															
- - - - - - - - - - - - - - -	45—															
	46—— ——————————————————————————————————															
- 100 																
	49— ——160															
WATE LEVEL	50 → ER ♀ Duri S During		illing/Digging 3.96 m on 8-12-2021 During Digg	rillin	l ng	APP	/lapl ROV	l e L /ED	eaf [g Ltd			ISPECTOR C. FRIESE ATE 10-25-20		

HOLE NO. **TEST HOLE LOG** SHEET 1 of 4 TH21-04 **CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT** PROJECT NO. 21-3913-001 **CLIENT PROJECT Newton Force Main Red River Crossing Replacement** SURFACE ELEV. 227.14 m LOCATION **START DATE** 8-11-2021 Winnipeg, MB **DESCRIPTION** Kildonan Drive at Rowandale Crescent (Fraser's Grove Park) UTM (m) N 5,533,587 DRILL RIG / HAMMER Acker Renegade Track Mounted Drill Rig with Auto-Hammer E 636,371 Zone 14 METHOD(S) 0.0 m to 18.3 m: 125 mm ø SSA - switched due to sloughing 18.3 m to 44.7 m: Triple Tube, HQ Core RQD (JOINTS/RUN) **NUMBER / RUN** BLOWS/0.15 m ELEVATION (m) **RECOVERY % WATER LEVE**I GRAPHICS DEPTH Cu TORVANE (kPa) ◆ **DESCRIPTION AND CLASSIFICATION** qu POCKET PEN (kPa) ★ (m) (ft) **SPT (N) BLOWS/0.30 m** ▲ 20 40 60 80 ELEV (m TOPSOIL - Black, dry. /227.1 -227 SILTY SAND (SM) - Brown, dry, loose, fine grained. **S1** 226.4 SANDY SILT (MH) - Brown, damp, stiff, low plasticity, some fine grained sand lenses. S2 ____226 225.7 SANDY CLAY (CI) - Brown, moist, firm, intermediate plasticity, S3 with fine grained sand. - Increased fine grained sand content below 2.0 m. -225 **S4** - Moist to wet, soft below 2.1 m. - Some fine grained sand below 3.0 m. S5 223.7 CLAYEY SAND (SC) - Brown, moist to wet, loose, fine to medium grained, trace to some clay. S6 - Trace wood from 3.6 m to 3.9 m. - Grey, some clay below 4.0 m. **S7** 222.2 SANDY CLAY (CI) - Grey, moist, soft, intermediate to high plasticity, some fine grained sand. S8 __221 C:\USERS\KFORDYCE\DESKTOP\FMS\22-0107-021\NEWTON AVENUE FM.GPJ 220 S9 219 S10 218.9 CLAYEY SAND (SC) - Grey, moist to wet, loose, fine grained, trace to some clay. S11 218.2 SANDY CLAY (CI) - Grey, moist, soft, low to intermediate Þ S12 _218 plasticity. 占 S13 뫋 S14 216.5 CLAY (CI) - Grey, moist, firm, intermediate plasticity, trace fine □ During Drilling/Digging 2.67 m on 8-11-2021 During Drilling CONTRACTOR **INSPECTOR** LEVELS **During Drilling** Maple Leaf Drilling Ltd. C. FRIESEN

APPROVED

J. MACLENNAN

DATE

10-25-2021

	GROUP	S	TEST HOLE LOG			_	E NO 21	o. -04						SHI	EET 2 (
ELEVATION (m)	(m) (ft)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	LEV (m)		SAMPLE I YPE	NUMBER / RUN	RECOVERY %	RQD (JOINTS/RUN)	BLOWS/0.15 m	N-VALUE	qu	РОСК	ET PEN	LL (kPa) ∢ N (kPa) /0.30 n
-216	=		grained sand.	()		3	S15						<u> </u>		
-	12—		- Trace wood from 11.3 m to 11.4 m. - Soft, some to with fine grained sand from 11.4 m to 11.6 m.			?	S16						*	•	
-215 - -214	40		CLAYEY SAND (SC) - Grey, moist, compact, medium grained, trace shells Some clay, trace fine to coarse grained gravel below 12.5 m.	214.9	}	}	S17								
-214	13		- Medium to coarse grained sand, some fine grained sand, trace clay below 13.1 m.		Ш	?	S18								
-213	14		- Trace coarse grained sand from 13.3 m to 13.4 m. POORLY GRADED SAND WITH GRAVEL (SP) - Grey, moist to wet, dense, medium to coarse grained, some fine grained sand, some fine to coarse grained gravel, trace shells.	213.4	}	7	S19								
-213 -212	15——50		- Trace cobbles at 15.2 m. - With clay, trace silt pockets below 15.2 m.	211.6		7	S20								
	16		SILT TILL (TILL) - Light brown, moist, compact, some medium to coarse grained sand, some fine to coarse grained gravel.	_====		1	S21								
-211 - -210 -	17—				}]	S22								
-209	60		- Dense below 18.6 m.			4	S23	25		25 17 14	31		•		
-208 -	65		MOTTLED LIMESTONE - strong, mottled white to grey, very few joints Trace of rusty oxidation from 19.3 m to 19.4 m.	207.9			R1	100	75 (7)						
-207	20-														
-206	21—————————————————————————————————————						R2	100	92 (7)						
-207 207 206 205	22		- Some vugs from 22.6 m to 23.5 m.				R3	100	89 (10)						
-204	23		- Broken core zone, likely from drilling from 23.5 m to 23.6 m.												
VATE	l ₂₄	ring Dr	illing/Digging 2.67 m on 8-11-2021 During Drilling	COI	NTR <i>A</i>	\CT	OR				I IN	ISPEC	TOR		
EVEL		g Drillir		r	Иapl	e Le	eaf C	Prillir	g Ltd	•		C. FR	IESE	1	
				APP J	'ROV . MA			AN			ט	ATE 10-2	5-20	21	

	GROUP	5	TEST HOLE LOG			DLE N H21		,					SHEE	T 3 of
ELEVATION (m)	(#) DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	.EV (m)	WATER LEVEL SAMPLE TYPE	NUMBER / RUN	RECOVERY %	RQD (JOINTS/RUN)	BLOWS/0.15 m	N-VALUE	Cı qu	РОСК	MC VANE (ki ET PEN (i OWS/0.	kPa) ★
203 	80					R4	100	88 (3)						
	25				-	R5	99	99 (5)						
	27— 27— ———————————————————————————————					R6	99	99 (4)						
199 	29——95					R7	100	100 (4)						
- - - - - - - - - - - - - - - - - - -	30		- Finer grained section from 29.6 m to 31.7 m.			R8	100	99 (5)						
	31—————————————————————————————————————		- Mottled brown, medium grained, trace of vugs with no alterations associated in the vuggy areas from 31.7 m to 44.7 m.		-	R9	99	98 (6)						
	33——110					R10	100	93 (7)						
195 194 195 197 197 197 197 197 197 197 197 197 197	35——115					R11	99	99 (2)						
	36— 					R12	100	100 (1)						
WATI LEVE	ER ☑ Duri LS During		lling/Digging 2.67 m on 8-11-2021 During Drilling	APP	ITRA(/laple ROVE . MA(Leaf D	Drillir	ng Ltd			ATE	TOR I IESEN 5-202		

KGS			TEST HOLE LOG	HOLE NO. TH21-04								9	SHEET 4 of	
ELEVATION (m)	(#) (ft)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	LEV (m)	WATER LEVEL SAMPLE TYPE	NUMBER / RUN	RECOVERY %	RQD (JOINTS/RUN)	BLOWS/0.15 m	N-VALUE	qu P	TORVAI	C LL NE (kPa) ◆ PEN (kPa) ₹ VS/0.30 m 60 80	
-190 - - -	+			-LV (III)							20	40	00 80	
- - - - -189 -	38125					R13	100	100 (2)						
-188	39——130		- Large piece of coral at 39.1 m.		-	R14	99	99 (2)						
-189 -188 -187 -187 186 185	41—				-	R15	100	100 (2)						
- - - -185 - - - - -	42				-	R16	100	100 (1)						
-184 	44——145				-	R17	100	93 (4)						
-182181180179178178	45		Notes: 1. End of test hole at 44.7 m. 2. Test hole backfilled with grout. 3. Grout mix consisted of 1 part cement, 0.4 part bentonite, 3.3 part water. 4. Backfilled testhole with bentonite grout mixture to 1.8m. 5. Grout level dropped to 2.9m overnight. Topped up hole with bentonite chips to grade.	182.4										
-180	47— 47— 1—155													
- -179 - - - - - - -	48													
- -178 - - - - - - -	50													
WATER ✓ During Drilling/Digging LEVELS During Drilling 2.67 m on 8-11-2021 During Drilling					CONTRACTOR Maple Leaf Drilling Ltd. APPROVED J. MACLENNAN						INSPECTOR C. FRIESEN DATE 10-25-2021			

APPENDIX C

2021 Bedrock Core Photos

Photo 1: TH21-01, Depth: 60'9" to 71'4.5"

Photo 2: TH21-01, Depth: 71'4.5" to 81'9"

Photo 3: TH21-01, Depth: 81'9" to 91'9"

Photo 4: TH21-01, Depth: 91'9" to 101'9"

Photo 5: TH21-01, Depth: 101'9" to 116'9"

Photo 6: TH21-01, Depth: 111'6.5" to 126'8"

Photo 7: TH21-01, Depth: 120'2.5" to 136'9"

Photo 8: TH21-01, Depth: 129'1" to 141'9" (End of Hole)

Photo 1: TH21-02, Depth: 28'2" to 40'10"

Photo 2: TH21-02, Depth: 40'10" to 55'9"

Photo 3: TH21-02, Depth: 55'9" to 70'9"

Photo 4: TH21-02, Depth: 70'9" to 82'2"

Photo 5: TH21-02, Depth: 82'2" to 95'11"

Photo 6: TH21-02, Depth: 95'11" to 110'9" (End of Hole)

Photo 1: TH21-03, Depth: 63'4" to 81'11"

Photo 2: TH21-03, Depth: 73'10.75" to 96'10"

Photo 3: TH21-03, Depth: 92'10.5" to 111'11"

Photo 4: TH21-03, Depth: 111'11" to 121'10"

Photo 5: TH21-03, Depth: 121'10" to 131'8"

Photo 6: TH21-03, Depth: 131'8" to 136'10" (End of Hole)

Photo 1: TH21-04, Depth: 63'2" to 81'10"

Photo 2: TH21-04, Depth: 72'9" to 91'10"

Photo 3: TH21-04, Depth: 91'10" to 106'11"

Photo 4: TH21-04, Depth: 101'6.25" to 116'11"

Photo 5: TH21-04, Depth: 110'11" to 126'11"

Photo 6: TH21-04, Depth: 120'9.5" to 136'9"

Photo 7: TH21-04, Depth: 130'0.5" to 146'9" (End of Hole)

APPENDIX D

Geophysical Seismic Refraction Survey Report (Frontier Geoscience 2021)

FRONTIER GEOSCIENCES INC.

SEISMIC REFRACTION
SURVEY REPORT
NEWTON FORCE MAIN RED RIVER CROSSING
WINNIPEG, MB

Submitted to:

KGS Group

October 26, 2021

Authors:

Sean Henry, B.Sc. Caitlin Gugins, P.Geo.

Project: FGI-1743

FRONTIER GEOSCIENCES INC.

CHANGE LOG

<u>Version</u>	Date of Issue	<u>Changes</u>
----------------	---------------	----------------

Draft Sept. 6, 2021 Draft Report for Review

Final Oct. 26, 2021 Final Report – updated Figures 3 and 4, discussion updated

August, 2021 Project No. 1743

FRONTIER GEOSCIENCES INC.

Figure 4

	Table of Contents	
1. Introduction		1
2. Seismic	Refraction Survey	2
2.1 Teri	restrial Refraction Survey	2
2.1.	l Survey Equipment	2
2.1.2 Survey Procedure		2
2.2 Ove	erwater Refraction Survey	3
2.2.1 Survey Equipment		3
2.2.2	2 Survey Procedure	3
2.3 Seismic Refraction Interpretive Method		3
3. Geophy	sical Results	4
3.1 Ger	neral	4
3.2 Disc	cussion	5
4. Limitatio	ons	6
	Illustrations	
		Location
Figure 1	Survey Location Plan	Appendix
Figure 2	Site Plan	Appendix
Figure 3	Interpreted Seismic Refraction Depth Section SL21-01	Appendix

Appendix

Interpreted Seismic Refraction Depth Section SL21-02

 August, 2021
 i
 Project No. 1743

1. Introduction

During the period of August 10 and 11, 2021, Frontier Geosciences Inc. carried out a seismic refraction investigation for KGS Group, in Winnipeg, MB. The survey area is located across the Red River, near Newton Ave. A Survey Location Plan of the area is shown at a scale of 1:50,0000 in Figure 1 in the Appendix.

The purpose of the geophysical survey was to obtain overburden and bedrock compressional wave velocity information, in support of the Newton Force Main Red River Crossing Replacement project. A total of 705 metres of seismic refraction data was collected along two separate seismic lines. A Site Plan showing the locations of the lines is presented at a 1:2,000 scale in Figure 2, in the Appendix.

Example of Survey Setup at the River's Edge

2. Seismic Refraction Survey

2.1 Terrestrial Refraction Survey

2.1.1 Survey Equipment

The seismic refraction investigation was carried out using a Geometric Geode, 24 channel, signal enhancement seismograph and Oyo Geospace 10 Hz geophones. Geophone intervals along the multicored seismic cable were maintained at 5 metres, in order to ensure high resolution data of subsurface layering. Seismic energy was provided from a Buffalo gun, shotgun source firing 8 gauge, blank, shotgun shells into hand-excavated shotholes. Shot initiation or zero time was established by metal to metal contact of a striking hammer contacting the firing pin of the shotgun.

2.1.2 Survey Procedure

For each spread, the seismic cable was stretched out in a straight line and the geophones implanted in the soil. Up to seven separate 'shots' were then initiated: one at either end of the geophone array, up to three at intermediate locations along the seismic cable, and two off each end of the line, to ensure adequate coverage of the subsurface. The shots were triggered individually and arrival times for each geophone were recorded digitally in the seismograph. For quality assurance, field inspection of raw data after each shot was carried out, with additional shots recorded if first arrivals were unclear.

Throughout the survey, notes were recorded regarding seismic line positions in relation to topographic and geological features. Relative elevations along the seismic lines were recorded by chain and inclinometer and referenced to handheld GPS measurements.

2.2 Overwater Refraction Survey

2.2.1 Survey Equipment

The overwater seismic refraction surveying was carried out with two, land-based, Geode seismographs and up to twenty-four geophones, together with a waterborne airgun energy source. A small Bolt airgun was used which released 10 cubic inches of compressed air into the river. A Gisco seismic radio trigger in the survey boat was used to initiate recordings at the two, shore-based seismographs.

2.2.2 Survey Procedure

In operation, the 'shooting' boat was manoeuvred in-line with the recording stations and the seismic source was lowered to just above the river bottom then initiated. The recording stations were automatically triggered by a radio link between the shooting vessel and recording seismographs. Accurate positioning of the shooting vessel was determined with a handheld GPS receiver. With numerous shot locations spanning the breadth of the lake, detailed travel time data was established similar to land-based operations. Water depths were recorded at each 'shooting' station.

2.3 Seismic Refraction Interpretive Method

The final interpretation of the seismic data was arrived at using the method of differences technique. This method utilizes the time taken to travel to a geophone from shotpoints located to either side of the geophone. Velocities are calculated as the slope of first break pick times and geophone distances. When there is a significant change in slope a new velocity is calculated and assigned to the new layer. Basal velocities are calculated by the arrivals of off-end shots, where picked arrivals are refracted from the basal layer. Each geophone is assigned a velocity and time for each layer. Using the total time, a small vertical time is computed which represents the time taken to travel from the refractor up to the ground surface. This time is then multiplied by the velocity of each overburden layer to obtain the thickness of each layer at that point. The thicknesses are splined along the seismic line to create a continuous boundary between layers.

3. Geophysical Results

3.1 General

The interpreted results of the seismic refraction lines are illustrated in profile in Figures 3 and 4, at a scale of 1:500, in the Appendix. The seismic velocity layer interfaces are marked on the seismic profiles in blue, purple and red. The interface line colours are not a specific velocity contour, but rather the interpreted discrete boundary above which velocities are defined within a certain range and below which velocities are within a significantly increased velocity range.

Seismic Shotgun Operation on Terrestrial Lines

3.2 Discussion

The results of the seismic refraction survey indicate the area is underlain by up to four distinct velocity layers. The two seismic profiles display a surficial layer with a range of compressional wave velocities between 360 m/s and 450 m/s. This velocity range is indicative of unconsolidated materials such as loose, dry to damp sands, silts and clays. This layer averages approximately 3.8 metres in thickness and reaches a maximum of approximately 6.2 metres along line SL21-02 near station 338N. This surficial layer is absent across the river.

Underlying the surficial layer is an upper intermediate layer with an interpreted compressional wave velocity range between 1000 m/s and 1400 m/s, consistent with drillhole intersections of moist to wet, sands and clays. Layer thicknesses vary significantly across the survey lines, from a minimum of around 2.7 metres surrounding station 188N on line SL21-02, while reaching a maximum of over 15 metres near station 90NW on line SL21-01.

Underlying the upper intermediate layer is a lower intermediate velocity layer with a narrow compressional wave velocity range of 1600 m/s to 1750 m/s. These velocities are consistent with a more compact material, such as the silt till layer encountered in the drillholes. The greatest calculated thicknesses for this layer is approximately 11 m occurring at the beginning of line SL21-02, and thinning to 1.5 metres near station 264N on line SL21-02. While identifiable over the terrestrial portions this layer was not as apparent over the coarser cross river portions of the lines, likely due to it's thickness relative to depth. As a result, the depth for this layer was interpolated along the river bottom, and therefore it's thickness has a higher level of uncertainty underneath the river.

The basal layer with compressional wave velocities of 3250 m/s to 4100 m/s is the interpreted competent bedrock surface. These high velocities are consistent with nearby borehole logs encountering limestone, with higher velocities in this range indicative of a lesser degree of weathering and/or fracturing. Depths to the interpreted bedrock surface range from around 5.5 metres underlying the river near station 240N on line SL21-02 to a maximum of 26 metres at station 100NW on line SL21-01.

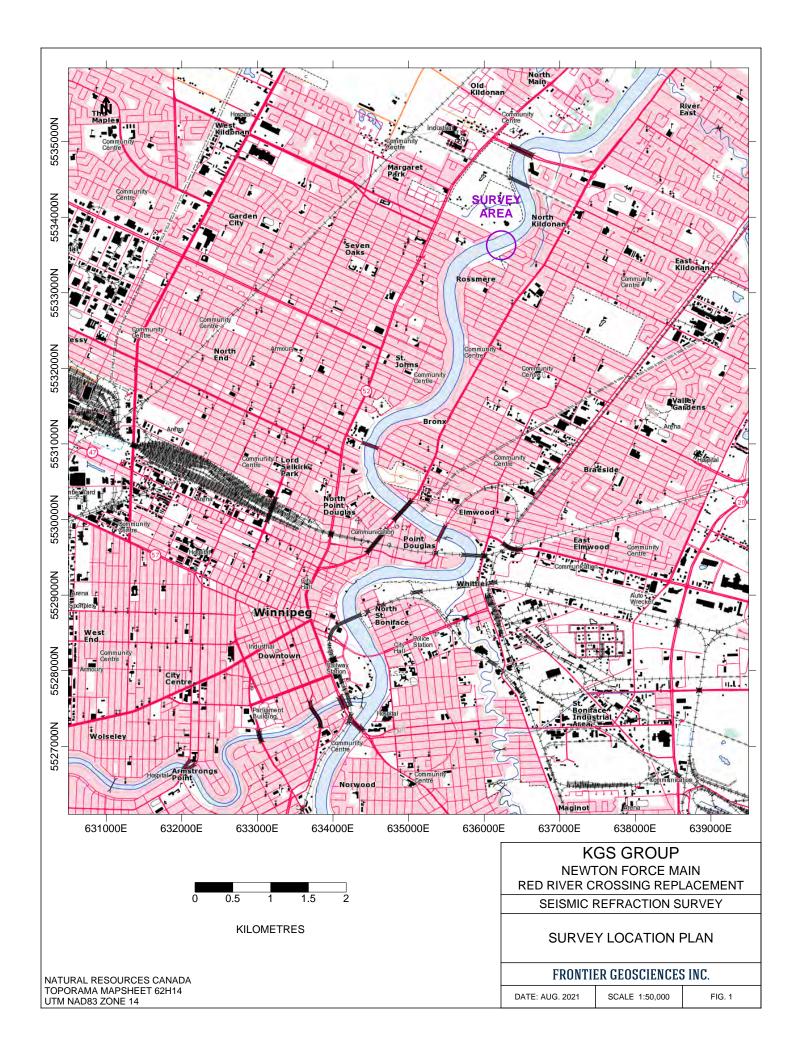
4. Limitations

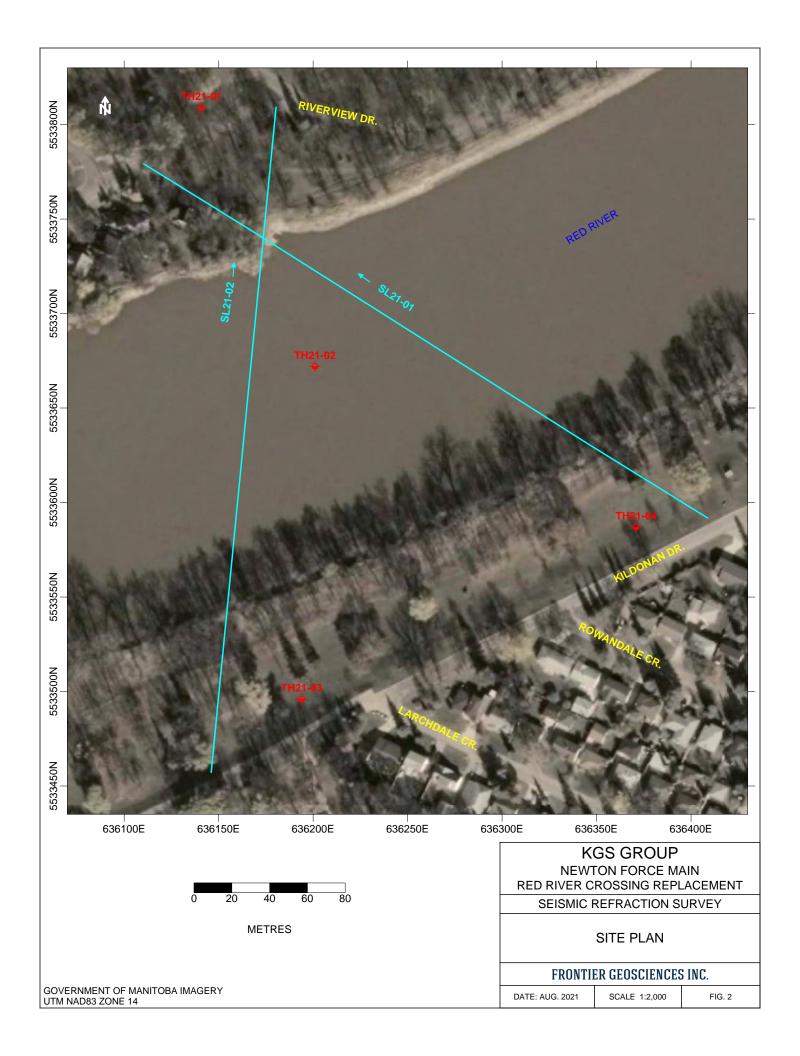
The depths to subsurface boundaries derived from seismic refraction surveys are generally accepted as accurate to within ten percent of the true depths to the boundaries, below 10 metres. Above 10 metres, the accuracy of seismic refraction data is approximately +/- 1.5 metres due mainly to the greater statistical error in determining the upper velocity layers from fewer data points. In some cases, unusual geological conditions may produce false or misleading data points with the result that computed depths to subsurface boundaries may be less accurate. In seismic refraction surveying difficulties with a 'hidden layer' or a velocity inversion may produce erroneous depths. The first condition is caused by the inability to detect the existence of a layer because of insufficient velocity contrasts or layer thicknesses. A velocity inversion exists when an underlying layer has a lower velocity than the layer directly above it. The interpreted depths shown on drawings are to the closest interface location, which may not be vertically below the measurement point if the refractor dip direction departs significantly from the survey line location. Structural discontinuities occurring on a scale less than the geophone spacing or isolated boulders would go undetected in the interpretation of the data. The seismic refraction method may not detect a narrow canyon-like feature incised into bedrock, if the canyon width is narrow relative to the depth of burial of the feature.

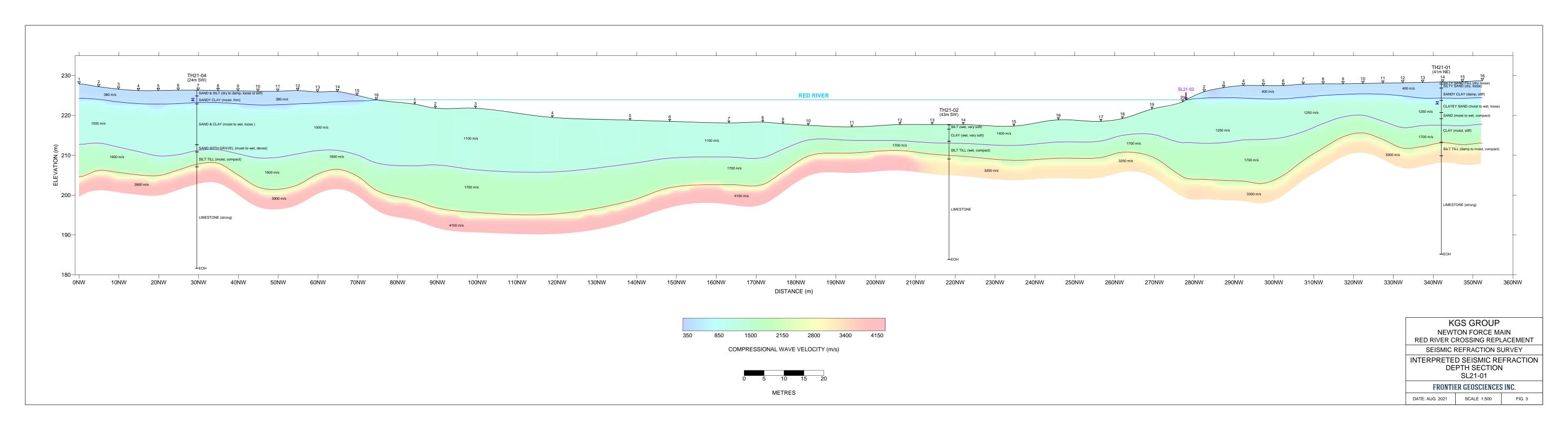
Due to the method constraints of the overwater seismic refraction surveying, there is limited data on the velocities and depths of the overburden materials on the overwater profile. As a result, overburden velocities and bedrock depth errors may be greater than fifteen percent on the overwater segments of refraction lines.

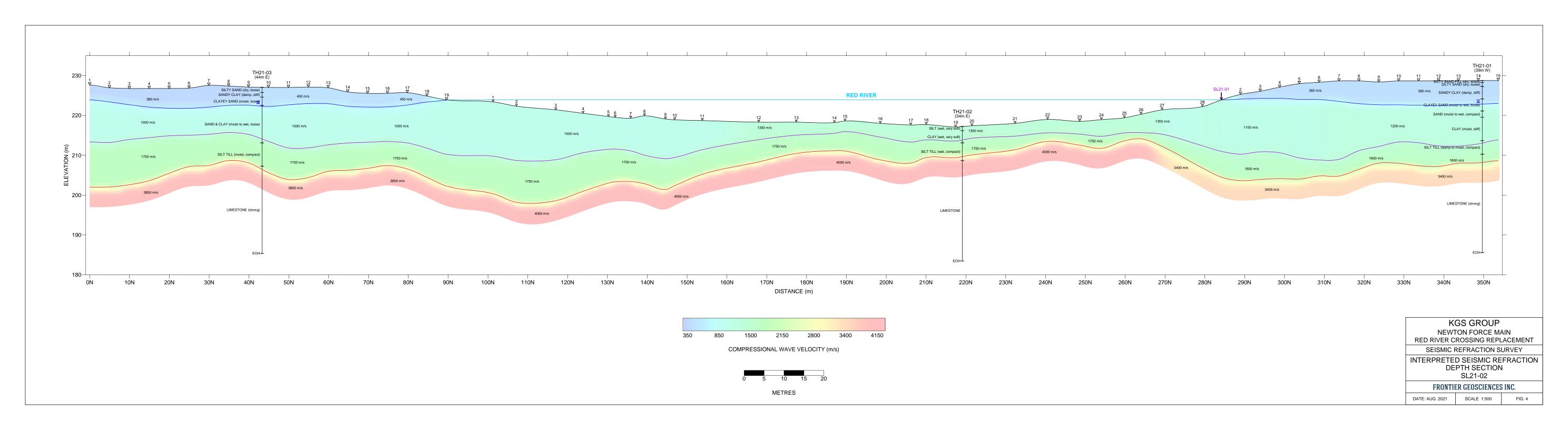
The information in this report is based upon geophysical measurements and field procedures and our interpretation of the data. The results are interpretive in nature and are considered to be a reasonably accurate representation of existing subsurface conditions within the limitations of the seismic refraction method.

26,2021


For: Frontier Geosciences Inc.


Sean Henry, B.Sc.


Caitlin Gugins, P.Geo.


APPENDIX

August, 2021 Project No. 1743

APPENDIX E

2021 Geotechnical Investigation Laboratory Data

Geo-Lab Report

GEOTECHNICAL & MATERIAL TESTING LABORATORY

#9-3620 29 St. NE, Calgary, AB T1Y 528
Phone: (403)250-3035 Cell: (403)619-7250
Prime email: solum@mymts.net
2nd email: solumconsultantsltd111@outlook.com
www.solumconsultantsltd.com

Revision	#	0

Report Date: October 24, 2021

Client: KGS Group

Address: 865 Waverley St., Winnipeg, MB R3T 5P4

Attn: Dami Adedapo
Project No: 21-3913-001

Project Name: Newton FM Crossing
Solum Job No.: 13501211014(206)

Sample Received Date: October 14, 2021

Sample Quantity: 4 cores

Test Quantity ASTM Destination

YOUNG'S MODULUS, Poisson's Ratio W/ UCS 2 D7012

President: Saad Farag

Elastic Moduli for Rock (ASTM D7012)

2.06

Project Info: 21-3913-001 / Newton FM Crossing Reviewed by:

S. F.

Client:

KGS Group

Solum Job No.:

13501211014(206)

Sample Info:

TH21-01

82'7" R5

12.46

H/D Ratio

Mass (g)

872.8

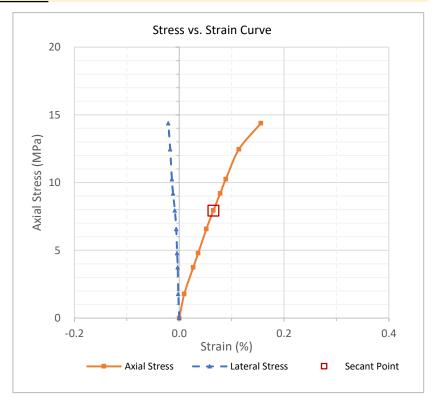
MC(%)

0.7

Shear Rate (%/min)

Diameter (cm)

0.04


6.03

Wet BD

Height (cm)

2452 (kg/m^3)

Axial Strain	Axial Stress	Lateral Strain
(%)	(MPa)	(%)
0.00	0.00	0.000
0.01	1.78	-0.002
0.03	3.74	-0.003
0.04	4.79	-0.004
0.05	6.58	-0.006
0.07	7.94	-0.008
0.08	9.20	-0.012
0.09	10.25	-0.014
0.11	12.46	-0.017
0.16	14.38	-0.021

Test Result

Compressive Strength (MPa) 14.37

Axial Modulus of Elasticity (GPa)

12.17

*(secant, ~ 50% of Ultimate Strength)

Radial Modulus of Elasticity (GPa)

95.57

Poisson's Ratio

0.13

Elastic Moduli for Rock (ASTM D7012)

Project Info: 21-3913-001 / Newton FM Crossing Reviewed by:

S. F.

Client:

KGS Group

Solum Job No.:

13501211014(206)

Sample Info:

TH21-01

90'6" R6

Diameter (cm)

6.06

Height (cm)

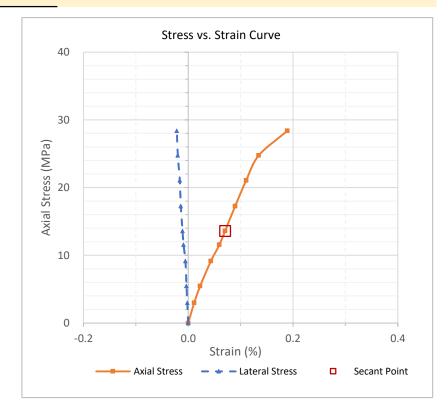
13.05

H/D Ratio

2.16

Mass (g) 910.6 MC(%)

0.9


Shear Rate (%/min)

0.04

Wet BD (kg/m^3)

2422

Axial Strain	Axial Stress	Lateral Strain
(%)	(MPa)	(%)
0.00	0.00	0.000
0.01	2.99	-0.002
0.02	5.49	-0.003
0.04	9.17	-0.005
0.06	11.56	-0.009
0.07	13.61	-0.011
0.09	17.25	-0.014
0.11	21.07	-0.016
0.13	24.75	-0.020
0.19	28.40	-0.022

Test Result

Compressive Strength (MPa) 28.40

Axial Modulus of Elasticity (GPa)

19.31

*(secant, ~ 50% of Ultimate Strength)

Radial Modulus of Elasticity (GPa)

124.16

Poisson's Ratio

0.16

STANDARD LABORATORY TERMS AND CONDITIONS

1.0 Description of Services to be Performed by Solum Consultants Ltd. (Solum)

Solum shall provide geotechnical and material laboratory testing services on samples in accordance with these terms and conditions and executed Laboratory Testing Request Forms. Solum shall perform its work in accordance with accepted laboratory standards and accepted standard operating procedures. Solum reserves the right to modify methods as necessary based upon experience and/or current scientific literature. If the Client requests a manner of analysis that varies from standard operating or recommended procedures, the Client shall not hold Solum responsible for the results. Such variations of analysis will be noted on the reports. Solum reserves the right to subcontract laboratory testing if a particular test cannot be performed by Solum.

2.0 Reports, Confidentiality and Third Parties

Laboratory reports provided by Solum will be composed of a cover page, tables and figures if applicable. Reports will be e-mailed in PDF format to the individual(s) specified on the Laboratory Testing Request Forms. Laboratory reports may also be faxed or mailed to the Client upon request. Except as required by law, Solum shall not disclose testing results or reports to any party other than the Client, unless the Client, in writing, requests information to be provided to a third party. Solum shall abide by any additional confidentiality requirements requested by the Client provided that such requirements are provided to Solum at or before execution of the testing.

Information provided by Solum is intended for Client use only. Any use by a third party, of reports or documents authored by Solum, or any reliance on or decisions made by a third party based on the findings described in said documents, are the sole responsibility of such third parities, and Solum accepts no responsibility of damages suffered by any third party as a result of decisions made or actions conducted.

3.0 Laboratory Testing Request Form (Chain of Custody)

The laboratory testing request form must be completed by the Client and be accompanied with the samples. Other form of COC may be accepted; however, the condition of Solum COC is still applied. Testing will not commence until the laboratory testing request form has been completed. If requested by the Client, Solum shall provide a copy of the laboratory testing request form with the report.

No persons other than the designated representatives for each Laboratory Testing Request Form are authorized to act regarding changes to the testing request form. Any changes or amendments of the laboratory testing request form must be in writing and be completed by the originator.

4.0 Acceptance, Contamination and Disposal of Samples

Loss or damages to samples remains the responsibility of the Client until Solum representatives acceptance of samples by notation on the laboratory testing request form.

As to any samples that are suspected of containing hazardous substances, the Client will specify the suspected or known substance and level of contamination. This information is to be stated on the laboratory testing request form and be accompanied with the samples before testing can commence. Solum may refuse acceptance of samples if it determines they present a risk to health and safety.

Samples accepted by Solum shall remain the property and liability of the Client while in the custody of Solum. Solum will discard all non-contaminated samples after two weeks of submitting lab report or a month from the date of receiving the samples without additional retention period at a fixed disposal charge, or if requested by the Client, samples may be returned to the Client at no cost to Solum. If requested by client, Solum will store samples provided the client agrees to pay for the storage charge. Contaminated material may be returned/shipped to the Client at the Client's expense or Solum will discard samples with disposal rates varying for samples containing higher levels of contamination, refer to price list.

Soil samples requested to be stored will be stored inside the lab up to the expiration of storage period. Soil samples will be discarded upon the expiration date of the storage period unless client requests either extending storage period or return samples back to client at no cost to Solum.

5.0 Indemnification/Hold Harmless

Solum shall protect, indemnify and save harmless Client, and its directors, officers, employees, agents, representatives, invitees and subcontractors, and at Client's request, investigate and defend such entities form and against all claims, demands and causes of action, of every kind and character, without limitation, arising in favour of or made by third parties, on account of bodily injury, death or damage to or loss of their property resulting from any negligent act or wilful misconduct of Solum.

The Client shall protect, indemnify and save harmless Solum, and its directors, officers, employees, agents, representatives, invitees and subcontractors, and at Solum's request, investigate and defend such entities form and against all claims, demands and causes of action, of every kind and character, without limitation, arising in favour of or made by third parties, on account of bodily injury, death or damage to or loss of their property resulting from any negligent act or wilful misconduct of Client.

6.0 Limitation of Liability

The total liability of Solum or its staff whether based in contract or tort, will be limited to the lesser of the fees paid or actual damages incurred by the Client. Solum will not be responsible for any consequential or indirect damages even if caused by negligence of Solum. Solum will only be liable for damages resulting form negligence of Solum. All claims by the Client shall be deemed relinquished if not made within one year after the testing date. No warranty is either expressed or implied, or intended by any agreement or by furnishing oral or written reports or findings.

7.0 Termination of Testing Work Order

The Client may order work suspended or terminated upon seven days advance written notice. If work is suspended, Solum shall receive, upon resumption, an adjustment in the cost of services to compensate for additional costs incurred due to the interruption of services. Upon suspension or termination, Solum shall preserve samples provided that the Client agrees to pay the sample storage charge.

8.0 Pricing, Payments and Invoicing

Invoices will be based on most current Solum laboratory testing rates; rates may change without notice. Solum invoices shall be paid within thirty (30) days of receipt of the invoice. Amounts not paid when due shall bear interest at the rate of 18% per annum from the date due until the date of payment.

Experience in Action