CITY OF WINNIPEG

Tender No.: 197-2022
DESIGN \& CONTRACT ADMINISTRATION OF NEWPCC INTERIM PHOSPHOROUS REMOVAL

Construction Plan - DRAFT

Final:
Rev A
KGS Group Project:
21-0107-015

Date:
May 26, 2022

CITY OF WINNIPEG

Tender No.: 197-2022
DESIGN \& CONTRACT ADMINISTRATION OF NEWPCC INTERIM PHOSPHOROUS REMOVAL

Construction Plan - DRAFT

Final:
Rev A

Date:
May 26, 2022

Colburn Holbrook, B.Sc., P.Eng.
PREPARED BY: Mechanical Engineer

Robin Chen, B.Sc., P.Eng.

REVIEWED BY:

APPROVED BY:

Mechanical Engineer

Prasan Silva, B.Sc., P.Eng.
Senior Mechanical Engineer

TABLE OF CONTENTS

1.0 INTRODUCTION 1
2.0 PROJECT CONTACT PERSONNEL 2
3.0 PROJECT CONSTRAINTS 3
3.1 Operating Plant 3
3.2 Stakeholders 3
3.3 Seasonal Construction 3
3.4 Work Area 4
4.0 CONSTRUCTION SCHEDULE 5
4.1 Project Start-Up 5
4.2 Early Construction Works 5
4.3 Middle Construction Works 6
4.3.1 Rail Unloading Area 6
4.3.2 Active Process Areas 6
4.4 Late Construction Works 8
4.5 Project Close-Out 8
5.0 CONCLUSION 9

List of Appendices

Appendix A: Contact Information Table
Appendix B: Risk Assessment
Appendix C: Mark-up of NEWPCC Site Map/Aerial View
Appendix D: Preliminary Project Schedule

City of Winnipeg NEWPCC Interim Phosphorous Removal

1.0 INTRODUCTION

The North End Sewage Treatment Plant (NEWPCC) is the largest of three sewage treatment plants servicing the City of Winnipeg. In the NEWPCC wastewater treatment process, ferric chloride is currently dosed at two points around the anaerobic digesters, being the primary and digested sludge. The purpose of the NEWPCC Interim Phosphorous Removal project is to provide an interim a way to reduce phosphorus in the effluent at NEWPCC until a permanent upgrade to the current biological nutrient removal system is built.

The interim dosing system will add three new chemical dosing scenarios to the wastewater treatment process for phosphorous removal. To make new dosing scenarios possible, two new buildings will be annexed on to the existing "Railcar Shelter 1" building to the south and to the east. The new "Railcar Shelter 2" building addition to the south will provide a second railcar unloading area. The new "Ferric Chloride Chemical Storage Room" building addition to the east will house two new ferric chloride storage tanks and chemical distribution systems. Finally, a new "Sodium Hydroxide Chemical Storage Building" will be constructed west of the existing dewatering building to house two new sodium hydroxide storage tanks and chemical distribution systems.

The new ferric chloride distribution system will include one main triplex chemical metering pump skid and two chemical transfers pumps located within the new Ferric Chloride Chemical Storage Room. Additionally, two local pump skids and dosing tanks will be installed to service chemical dosing points DP 2.1A/B and DP 4.1/4.2/4.3. The new sodium hydroxide chemical distribution system, located in the Sodium Hydroxide Chemical Storage Building, will include one main triplex chemical metering pump skid.

Ancillary systems within each of the building or building additions will include HVAC, plumbing, emergency shower/eyewash stations, flushing water, compressed air, and natural gas systems.

New dedicated process controls and automation systems to control chemical unloading, storage and distribution will be connected back to the NEWPCC site's main DCS/PCS control system. Building mechanical controls will also be through the NEWPCC DCS/PCS with the exception of gas fired air handling equipment that will incorporate vendor specific controls that interface with the DCS/PCS.

This construction plan document provides the details of the proposed construction plan for the above scope. The plan indicates who the project personnel are and what the communication links between them will be. A project outline schedule is presented to illustrate the timeframe to complete the work.

The document is separated into sections defined by the applicable phase of construction. Each section describes generally the work done by the General Contractor and the steps involved in each task. It also illustrates how to minimize the risk to the project schedule posed by unpredictable weather, materials procurement, and other risks to the work at the North End treatment plant.

2.0 PROJECT CONTACT PERSONNEL

Communication for the project will be between various City, Contract Administrator, and Contractor personnel. The following plan for lines of communication is to be observed by the Contractor. See key instructions for communication listed below:

The Contractor will direct all enquiries and requests for clarification to Contract Administrator directly and copy City Project Manager. Contract Administrator will review with the City if necessary and advise the Contractor how to proceed.

Contract Administrator:

Prasan Silva, P.Eng.
KGS Group

- Mobile: 2049982278
- Email: psilva@kgsgroup.com

City Project Manager:

Erica Campbell, C.E.T.
City of Winnipeg - Water and Waste Department

- Mobile: 204-986-3150
- Email: ecampbell@winnipeg.ca

A table of contact persons and their information is provided in Appendix A. The Contractor may contact additional project personnel with Contract Administrator approval only. All correspondence between the Contractor and additional project personnel must be copied to the Contract Administrator and City Project Manager.

3.0 PROJECT CONSTRAINTS

A general discussion of the major constraints on the project is provided below. For a more detailed review of limitations on the project and their causes, refer to the Risk Assessment in Appendix B. This document illustrates the full set of project risks considered by the Contract Administrator, the City Engineering and PM team, and NEWPCC Plant Operations. The Contractor shall review this list and accept the responsibility to mitigate the risks described and the constraints listed below

3.1 Operating Plant

Due to the volume of effluent captured and treated by the facilities wastewater treatment process, and the lack of an alternative to treat the wastewater, it is not possible for the NEWPCC to entirely shut down for any length of time. So, the plant will remain in operation throughout the construction project. It is possible, however, to temporarily suspend some portion of the treatment system in order to install any tie-ins or work that cannot be done on or around a live system.

The above process stoppages must be planned during the window between December and March. At this time of year, the flow of wastewater to the plant is lowest due to the typically cold and dry conditions in the City. Because the wastewater treatment process at each dosing location represents a large segment of the total plant capacity, suspension of the process must not be for more than a few days at a time during this window. All work must be planned to limit the amount of time that each process is shut down and respect the limited window.

When the new dosing equipment is installed and operating, the wastewater treatment process operators will begin dosing with ferric chloride and sodium hydroxide. To ensure that the process is not upset, dosing point will be chosen conservatively, and the process will be monitored until further adjustment can be done safely. The Contractor will be responsible for effluent testing and sampling to monitor the process during performance verification. Testing and sampling will be coordinated with NEWPCC plant operations and the Contract Administrator.

3.2 Stakeholders

In addition, this construction plan is constrained by the project goal of having the phosphorous removal system installed by August 2023. This very tight construction time requirement is a result of the concerns made by Lake Winnipeg residents and stakeholders regarding the recent occurrence of green algae bloom at the south end of the lake. The algae bloom is understood to be the result of high concentrations of phosphorous in the lake water, which prompted the capital investment decision to build the interim phosphorous removal system to solve the issue while the larger plant replacement project is underway.

3.3 Seasonal Construction

Other seasonal limitations that relate to outdoor construction in colder climates will require that the Contractor may plan some activities earlier or later to facilitate work. Any special techniques needed to deal
with risks associated with winter construction activities should be planned such that the above constraints are met.

3.4 Work Area

Access to the plant by project staff will be limited to the areas necessary for the scope of the installation work. Generally speaking, this will mostly be in the South East area of the plant, around the existing Railcar Shelter 1 building. Access will also be required to the plant pipe galleries and electrical rooms to install new process tie-ins, dosing tanks, pumps, piping, and electrical and controls equipment. Access to the site will be from the main entrance to the plant off Main Street. Contractor Parking will be located outside the main administrative building and large vehicle access will be as shown in the mark-up of the site map/aerial view in Appendix C.

Also shown in the appendix is the planned equipment laydown area and construction trailer site. Active work areas for other projects and areas of overlap between this project and others are also shown. For the most part, ongoing work in the plant from other projects is not anticipated to interfere with this project.

Throughout the work the rail line leading to Railcar Shelter 1 building will remain active, and as such the Contractor must ensure that appropriate safety procedures are in place to avoid damage and injury as a result of rail traffic on that line. Furthermore, the Contract must keep the area surrounding the rail line clear of equipment or materials and make efforts necessary to avoid obstruction the railway.

4.0 CONSTRUCTION SCHEDULE

The scheduled award for the construction contract is July, 2022. A preliminary construction schedule is provided in Appendix D. The overall scope of work is broken into five main construction phases:

- Project Start-up
- Early Construction Works:
- Middle Construction Works:
- Late Construction Works:
- Project Closeout:

June 2022
July 2022 - November 2022
November 2022 - June 2023
June 2023 - August 2023
September 2023 - May 2024

4.1 Project Start-Up

Prior to, and immediately after, the award of the construction contract, the proponent will be required to submit documentation for review by the Contract Administrator. The submittal review will include:

- Contractor Qualifications
- Procurement Information (vendor data)
- Construction Engineering Documents (fabrication/shop drawings)
- Construction Schedule

Each document will be reviewed and returned to the Contractor, and in some cases further re-submittals will be necessary. Approval of shop drawings, and procurement of long-lead items such as chemical tanks, pump skids, air handling equipment, packaged compressor, control valves, VFD panels, control panels and instrumentation should be prioritized to prevent later delays. Note that the above list of items shall not be considered a complete list and the Contractor shall be responsible to identify additional long lead items at the start of the project that may impact the overall project schedule and target completion date.

The Contractor will begin mobilizing their staff and equipment to the NEWPCC facility. When ready, the City will hand over control of the rail unloading area to the Contractor and their Subcontractors. However, because the system will remain in operation for the majority of the work, the City will require continuous access to specific areas such as:

- Building 100 - Existing chemical storage room 1
- Building 101A - Existing railcar shelter 101A
- All Piping Galleries on Site
- Junction Chamber
- All Electrical Rooms on Site

4.2 Early Construction Works

As soon as access to the rail unloading building and chemical storage room is provided, critical path early works such as the items listed below should begin as quickly as possible. In order to allow for the new rail line and new building construction to proceed, the following activities must be complete.

- Site survey
- Soil sampling and testing for contaminated soil
- Demolition of old rail line
- Clearing and grubbing, fencing removal
- Site grading and drainage
- Underground utilities installation, tie-ins

Concurrently with the initial site preparatory works, some preliminary mechanical and electrical work inside the plant may proceed as procurement of materials allows. Additionally, equipment procurement of long lead items must also be initiated as early as possible to avoid delaying future mechanical and electrical installation work. Lastly, modifications to the existing Railcar Shelter 1 roof, roof support, gas system, and HVAC can also proceed soon after mobilization. However, work in this area will be performed around an active rail line, and care must be taken to avoid interruption of service.

Following the initial site preparatory works, and procurement activity, installation of the new rail should begin (including modification of existing), concurrently with construction of building foundations, with the aim of completing before winter 2022/23.

4.3 Middle Construction Works

Once the early construction works on the new buildings planned for summer and fall 2022 is complete, more intensive structural work can begin such as the unit masonry walls and interior access structures. This work will continue through the winter, and heating/hoarding may be required. Construction on the buildings will continue until they are structurally complete leaving only minor architectural work and civil works for the late construction period.

Inside the plant, if mechanical and electrical equipment is successfully procured with short enough lead times, installation work may begin on the ferric chloride and sodium hydroxide piping and remote dosing locations. Additionally, work that requires down time of wastewater process systems will also be required.

4.3.1 RAIL UNLOADING AREA

Once the foundations of the new building and building extensions are complete, and repairs to the existing Railcar Shelter 1 are done, construction of unit masonry walls, and equipment footings may proceed. Construction of interior access platforms and supports will follow along with installation of tanks and piping. New OWSJ roof supports will be installed and new roof deck poured as timing permits. However, as noted previously, work in this area will be performed around an active rail line, and care must be taken to avoid interruption of service.

4.3.2 ACTIVE PROCESS AREAS

4.3.2 1 Work Requiring Shut-Down

The following process tie-ins will result in temporary suspension of wastewater process systems and therefore must occur during the winter season of 2022/23 when sewage flows are lowest.

- 1.4 - Trucked Sludge (Ferric Chloride)
- 1.5A - Primary Sludge to Digesters (Sodium Hydroxide)
- 1.5B - Primary Sludge to Digesters (Sodium Hydroxide)
- 1.6 - Trucked Sludge (Sodium Hydroxide)
- 2.1A - Waste Activated Sludge (Ferric Chloride)
- 2.1B - Waste Activated Sludge (Ferric Chloride)
- 4.1 - Mixed Liquors (Ferric Chloride)
- 4.2 - Mixed Liquors (Ferric Chloride)
- 4.3 - Mixed Liquors (Ferric Chloride)

Because each wastewater treatment system is critical to the operation of the treatment plant, no two systems can be suspended simultaneously, and they may only be stopped one at a time during the low-flow winter season. Therefore, during this time, suspension of each system will be staggered to minimize the risk of upsetting the treatment process. Suspending or stopping of the plant process must be scheduled in advance and coordinated with NEWPCC Plant Operation staff to ensure the process interruption can be handled by the plant. Tie-ins must be coordinated with shut-downs currently planned for other projects currently under construction, such as the RAS/WAS Piping Refurbishment Project.

In addition to the process tie-ins, certain utilities tie-ins may require shut down of critical systems. These include the new connections listed below. These tie-ins may also need to be planned during the low flow period to limit impact to the plant depending on the anticipated impact to the process.

- Existing ferric chloride chemical dosing system
- Compressed air system
- Natural gas system
- Electrical connections in the Bioreactor Area, Grit Building, and Dewatering Building.
- Sanitary piping system

Each shut down requires a continuous and un-interrupted work effort on the part of the Contractor to minimize the length of the shut down and reduce impact of the work on the treatment plant operation. After a system has been shut down it will be followed by a 15-day (minimum 2-3 Solids Retention Time (SRT) periods) monitoring period to verify the water treatment process has stabilized before any other interruption of the same subprocess can be suspended.

The tie-ins listed in LST-M-007 will be prioritized due to the sensitivity of each system to interruption.

4.3.2.2 Work Not Requiring Shut-Down

Once delivery of mechanical equipment has been accepted, installation of long lead mechanical equipment can proceed in the active/operating areas of the plant. This includes the remote dosing tanks and pumps and associated emergency shower and eyewash stations. Also included will be the new air compressor and mechanical piping, fittings, and valves not installed in fall 2022.

The new PLC, LCP, RIO panels, and some control valves and instrumentation are anticipated to be long lead items. For this reason, electrical work on in the operating plant will by necessity be limited to MCC modifications, cabling, JBs and starters to supply power to new equipment. Control systems work will follow as new panels and instrumentation is delivered.

4.4 Late Construction Works

As construction of the new buildings reaches a conclusion, final grading, landscaping and architectural features will be completed. Interior and exterior wall and roof finishes will be installed along with other architectural features.

Control panel and instrumentation installation will progress towards completion, and static inspection and start-up testing will begin. Pre-commissioning documentation will be gathered for each piece ahead of functional testing of the new chemical unloading, dosing, transfer, and storage systems. For a detailed description of the commissioning process, refer to the Commissioning Plan Report located in Appendix E of the Tender document.

4.5 Project Close-Out

After commissioning work has proven the system to be functional and ready, the first phase of process verification will begin. During this time the wastewater treatment process will be treated with the new chemical dosing system, and the results will be monitored closely. Refer to the Commissioning Plan Report located in Appendix E of the Tender document for further information.

Concurrently with performance verification, de-mobilization of the temporary construction facilities will proceed. Project Close-out document submittals such as red-line drawings, operation and maintenance documents, etc. will be submitted to the Contract Administrator for review and approval.

5.0 CONCLUSION

This report has presented the details of the construction sequence for the project. Each portion of construction activity has been described with pertinent details highlighted. The scheduling and sequence of work provided are intended to be guidelines for the Work, and the Contractor must undertake each stage/phase in the way deemed to be most efficient for the project. Discrepancies or deviations should be reported as soon as they are noted.

APPENDIX A

Contact Information Table

Tender No. 197-2022: CONSTRUCTION PLAN - APPENDIX A CONTACT LST - (to be updated by Contractor)

First	Last	Organization	Role	Phone	Email
Contractor:					
name	name	GENERALCONTRACTOR	Project M anager		
name	name	GENERAL CONTRACTOR	Job Superintendant		
name	name	GENERAL CONTRACTOR	Field Supervisor (Foreman)		
name	name	ELECTRICAL SUBCONTRACTOR	Project Manager		
name	name	ELECTRICAL SUBCONTRACTOR	Job Superintendant		
name	name	ELECTRICAL SUBCONTRACTOR	Field Supervisor (Foreman)		
		(additonal trades)			
KGS Group:					
Prasan	Silva	KGSGROUP	Assistant Project M anager	204-318-2202	psilva@ kgsgroup.com
Adam	Pawlikewich	KGS GROUP	Project M anager	204-478-3244	apawlikewich@ kgsgroup.com
Jason	Smith	KGSGROUP	Senior M echanical Engineer	204-478-3214	jsmith@ kqsgroup.com
Robin	Chen	KGSGROUP	Mechanical Engineer	-	rchen@ kgsgroup.com
Jason	Bouchard	KGSGROUP	Electrical Engineer	-	jbouchard@kgsgroup.com
Colin	Siepman	KGSGROUP	Structural Engineer	204-318-2206	csiepman@kgsgroup.com
City of Winnipeg:					
Erica	Campbell	CITY WWSD	Project M anager	204-986-7642	ecampbell@ winnipeg.ca
Neil	Abercrombie	CITY WWSD	Facility Leader	204-898-3000	x-naberc@ winnipeg.ca
Jong	Hwang	CITY WWSD	Senior Project Engineer	204-619-2185	jhwang@winnipeg.ca

APPENDIX B
Risk Assessment

For details and instructions on how to complete this document, click the [I]] icon under the Home tab to display the hidden text.

Date of Meeting:	November 5, 2021	Time of Meeting:	9:30 am
Meeting Location	: Online via MS Teams	Minutes Issued:	November 10, 2021
Meeting Type/Purpose:	Risk Workshop 1		
Project File No.:	S-1146		
Chairperson:	Adam Pawlikewich, P.Eng.		
Recorder:	Prasan Silva, P.Eng.		

Attendees

Name	Initials	Title	Organization	Contact \#	Email
Erica Campbell	EC	Senior Project Engineer	CoW-WWD-ESD	(W) 204-9867642; (M) 204-232-0317	ECampbell@winnipeg.ca
Neil Abercrombie	NWA	Facility Leader, Winnipeg, Municipal \& Commercial Business	Veolia North America (VNA)	$\begin{aligned} & \text { (W\&M) 204-898- } \\ & 3000 \end{aligned}$	x-naberc@winnipeg.ca
Michelle Paetkau	MP	Acting Wastewater Planning and Project Delivery (WWP\&PD) Branch Head	CoW-WWD-Engineering Services Division (ESD)	(W) 204-9864904; (M) 204-619-3874	mpaetkau@winnipeg.ca
Jong Hwang	JH	Senior Project Engineer	CoW-WWD-WWSD	$\begin{aligned} & \text { (W\&M) 204-619- } \\ & 2185 \end{aligned}$	jhwang@winnipeg.ca
Dustan Fuerest	DF	Senior Operator - Dry Side	CoW-WWD-WWSD	$\begin{aligned} & \text { (M) 204-391- } \\ & 5773 \end{aligned}$	dfuerst@winnipeg.ca
Matthew Klowak	MK	Wastewater Contracts Officer - Chemical Supply	CoW-WWD-WWSD		MKlowak@winnipeg.ca
Joey Tarko	JT	E.I.T. at Wastewater Dept.	CoW-WWD-WWSD		JTarko@winnipeg.ca
Adam Pawlikewich	AP	Project Manager	KGS Group	(W) 204896 1209 (M) 204 7977772	apawlikewich@kgsgroup.com
Jason Smith	JS	Senior Mechanical Engineer	KGS Group	$\begin{aligned} & \text { (W) } 204896 \\ & 1209 ;(\mathrm{M}) 204 \\ & 2238904 \end{aligned}$	ismith@kgsgroup.com
Prasan Silva	PS	Senior Mechanical Engineer	KGS Group	(W) 204896 1209; (M) 204 9982278	psilva@kgsgroup.com
Andrew Fustey	AF	Mechanical EIT	KGS Group	$\begin{aligned} & \text { (W) } 204896 \\ & 1209 \end{aligned}$	afustey@kgsgroup.com
Keith Gerrits	KG	Lead Rail Design	HDR Inc.	$\begin{aligned} & \text { (M) } 403869 \\ & 6179 \end{aligned}$	Keith.Gerrits@hdrinc.com
Jan Oleszkiewicz	JO	Senior Process Engineer	University of Manitoba	$\begin{aligned} & \text { (W) } 204474 \\ & 8722 \end{aligned}$	Jan.Oleszkiewicz@umanitoba.ca

Risk Workshop
Project Name: NEWPCC Interim Phosphorous Removal

Regrets

Name	Initials	Title	Organization	Contact \#	Email
Terry Josephson	TSJ	Wastewater Engineer, Treatment Branch Head	CoW-WWD-WWSD	$\begin{aligned} & (W(M) \text { 204-47) } \\ & 204-986-8609 ; 0- \\ & 7745 \end{aligned}$	TJosephson@winnipeg.ca
John Amos	JA	NEWPCC Plant Supervisor	CoW-WWD-WWSD	(W) 204-9864845; (M) 204-470-7326	JAmos@winnipeg.ca
Brendan Hellrung	BH	Wastewater Treatment Operator 4	CoW-WWD-WWSD	$\begin{aligned} & \text { (W) 204-986- } \\ & 3463 ;(\mathrm{M}) 204- \\ & 291-1739 \end{aligned}$	bhellrun@winnipeg.ca
Robin Chen	RCC	Mechanical Engineer	KGS Group	(W) 204896 1209; (M) 204 9987929	rchen@kgsgroup.com
Chris Carroll	CC				ccarroll@winnipeg.ca
Cynthia Wiebe	CW				cwiebe@winnipeg.ca

Agenda

1.0 Safety Moment

2.0 Introduction

City of Winnipeg Treaty Acknowledgement:
I would like to begin by acknowledging that we are in Treaty One territory and the traditional homeland of the Metis Nation.
3.0 Project Scope Overview:

- Presentation (Approx. 20 min)
- \quad Questions/Discussion (Approx. 10 min)
4.0 Risk Workshop 1:
- Review Risk Register (Approx. 1.5 hours)
5.0 Other Items

Risk Workshop 1
Project Name: NEWPCC Interim Phosphorous Removal

Item	Description	Action By
$\mathbf{1 . 0}$	Safety Moment	Action By
$\mathbf{1 . 1}$	Adam provided the safety moment: -In this project we are dealing with many different chemicals. We want to make sure that we are aware of their proper handling and safe use procedures to avoid any incidents that may occur.	Information
$\mathbf{2 . 0}$	Introduction	Action By
2.1	City of Winnipeg Treaty Acknowledgement: I would like to begin by acknowledging that we are in Treaty One territory and the traditional homeland of the Metis Nation.	Information
2.2	Introductions - Adam began by having all members of the meeting introduce themselves to the group (role and organization)	Information

3.0 Project Scope Overview

Action By

3.1 Jason introduced the project with a general scope overview using a process flow diagram

- Two existing chemical ferric chloride tanks dose to three points in the system
- Primary sludge
- Digested sludge
- Centrate

New Dosing Scenarios

- Scenario 1: Ferric dosing to the sludge
- Scenario 2: Ferric dosing Upstream of primary clarifiers
- Scenario 3: upstream of HPO reactors
- Additional: dosing downstream of bio reactors - to be discussed in next week's design meeting
- Sodium Hydroxide dosing system for pH control

Jason used the 3D model to show the proposed design options of the railcar and chemical storage buildings

- Second Ferric railcar shelter to be built
- New Ferric storage tank building
- Double the storage volume of the two existing tanks
- Total volume will be triple that of the existing

Information

Risk Workshop 1
Project Name: NEWPCC Interim Phosphorous Removal

- Sodium Hydride storage
- Two storage tanks South of Sludge dewatering building
- $40,000 \mathrm{~L}$ each for redundant services
- Dosing pumps will be included for both the ferric chloride and sodium hydroxide chemicals
- Jason noted the rational for the two Sodium Hydroxide tanks:
- The building would be too large if all the tanks were under one roof. This could protrude into the roadway. Therefore, it is proposed to split the sodium hydroxide and ferric chloride tanks into two buildings.
- Existing dosing points:
- Primary sludge
- Digested sludge
- Centrate
- New Ferric Chloride dosing points:
- SEWPCC and WEWPCC truck sludge
- Day tank filling
- Future optional dosing points downstream of bioreactors
- Sodium hydroxide dosing points:
- Primary sludge
- SEWPCC and WEWPCC truck sludge
- Jason noted if all three dosing scenarios were to be run all the time, 2 railcars would be required every 8 days. The new ferric chloride tanks allow for 28 days of reserve.
- Michelle noted that not all $1+2+3$ scenarios are to run at a time, only to do $1+2$ or $1+3$. Jason responded that the dosing of scenario 3 does not add a lot of extra dosing volume. KGS will investigate further for the design meeting.
- Matt asked if the ferric chloride tanks will be connected with a bypass. Jason responded the tanks will be connected from an unloading standpoint. Operators could select which tank would be filled. Transfer between is to be incorporated into the design.
- Matt noted this a much larger ferric chloride usage than expected. Adam and Jason responded that scenario $1+2$ are only to be run during wet/high flow. Jan confirmed.
- Dustan asked if the day tank would be providing metered dosing to scenario $2+3$. Jason responded yes.
- Neil asked Matt if his primary concerns are about logistic issues. Matt responded that there can be issues with unloading, sometimes requiring NEWPCC staff having to fix rail car connections, etc. Typically, $1 / 2$ day required to unload. Also, it takes CP 4 to 5 days to pick up a rail car, once the unloading is completed. CP only does drop offs/pickups 3 days per week. Matt noted that delivery times range from 15-42 days currently and it is a very volatile supply chain. Adam responded that storage reserve can reduce volatility issues. This is a large challenge that KGS is trying to address: can logistics be handled.

4.0 Risk Workshop 1

Action By
4.1 Adam introduced the Risk Register provided by the City. Items 1 to 30 have been already workshopped under the previous project. Adam noted item 31 and above are new items added by the City and KGS. Adam explained how the weighted scoring system works.

Information

Risk Workshop 1
Project Name: NEWPCC Interim Phosphorous Removal

4.2 Discussion of Risk Outcome

- Damage to railcar facility
- It is possible to truck in product if existing rail car facility is to be damaged. However, trucking in ferric can only be sustained for a short period of time
- Availability of a qualified contractor
- Jason noted the risk of an unqualified Contractor or no bidders is low.
- Keith noted the project is small for a rail contractor so getting a local Subcontractor to the general mechanical is the likely scenario.
- Adam noted the rail Subcontractor qualifications must be verified.
- Ferric chloride dosing shutdown
- Jason noted under the current plan the existing points can still be dosed.
- Neil noted there are some tie-ins that will need to be performed. Shutdowns needs be short and calculated.
- Disruption of truck unloading operations
- Erica clarified that there could be disruption to ferric truck unloading. This is primarily a back-up system.
- Neil suggested that consequence should be rated highly, but the probability low because this is a back-up system.
- This situation was noted be unlikely, but consequence of not having the truck unloading available when needed is high.
- Solution was to include a contractual clause in the tender.
- Delay in chemical unloading due to damaged railcars
- Clarified to be a long-term risk because of increased frequency of incoming railcars. More of a chance that a damaged railcar would arrive if the frequency were increased.
- This is an existing problem that will become worse with an increase in frequency.
- Disruption of railcar delivery due to construction activity (new switch/turnout)
- Adam clarified this risk outcome to be the probability that construction will delay current live rail track for ferric chloride. Keith noted it would be a low risk as the construction activity disruption to existing track can be accommodated in between the current deliveries (approx. every 14 days). Keith noted that the track construction can be completed within a week.
- Delay of project completion due to underground utilities at building construction
- Delays the work. Utility locates to be completed as a mitigation measure, however, potential for not detecting smaller items.
- Disruption of Dewatering sludge truck traffic
- Dustan clarified this is for the exit side of truck unloading.
- Adam asked if it is possible to go out the entrance. It was confirmed this is possible, but an inconvenience.
- Delay of project completion due to verification of south property line
- City owns the land, but project delays can be expected if new buildings encroach on the setback from the property line, requiring a variance application.
- Erica noted legal team is looking into this.
- Disruption of traffic on road between rail car building and chemical storage building
- Dustan confirmed this road is usually only used for ferric shipments;

Risk Workshop 1
Project Name: NEWPCC Interim Phosphorous Removal
otherwise, it is not used.

- Neil clarified this should be for a scenario where the road is blocked for a few days. Therefore, the likelihood is lower.
- Delay of project due to NEWPCC staff being overloaded with work at site (multiple projects happening on site at the same time)
- Defined as project delay for long term (over a month)
- Delay in responding to contractor needs
- High probability. Multiple projects ongoing at NEWPCC
- Need to include significant coordination and lead time planning in contract
- Delay of project due to overlapping construction (multiple projects)
- Defined as project delay of one month
- Access to certain areas may not be available and physical system overlap
- Example: likely to occur near the headworks project.
- Dustan noted that this event is likely due to the Primary Upgrade project happening in the same area.
- Loss of Ferric Chloride due to supply chain issues and demand of new systems (long term post construction)
- Matt noted there are not enough trucks to supplement a long-term rail delivery outage. It takes 48-72 hours to get a truck delivery from the US, and only limited number of trucks available.

4.3 Suggested Additional Risks

- Neil suggested issues with running multiple dosing scenarios and how to cope with controlling the dosing
- Adam clarified this would be for the risk where it would be difficult for operators to keep the process under control
- Split into two categories: 1. Phosphorous non-compliance from system with inadequate feedback and 2. Phosphorous non-compliance due to improper commissioning
- Neil clarified this concern: "difficult to keep process under control, as workload will be high to evaluate the different operating scenarios."
- Michelle existing online monitoring system is older version and may not be reliable, a newer online monitoring system may be required.
- Adam suggested uncontrolled chemical leaks due to expanding ferric and caustic distribution network into new areas
- Jason noted this is unlikely around the tanks due to containment, but ferric and caustic lines will be routed to new areas. The new lines may cause a risk.
- Dustan noted there generally aren't any leaks on the line themselves, but the hoses on the metering pumps tend to break.
- Adam suggested expansion of corrosion environment
- Could lead to corrosion on electrical equipment
- Mitigated by isolating electrical equipment in new areas

Adam opened the floor of the meeting for any other risks

- Jong suggested that the price of ferric could rise. Neil clarified that this a risk that could be optimized via the process. Reduce unneeded consumption as stated by

Risk Workshop 1

Project Name: NEWPCC Interim Phosphorous Removal

Adam and Neil. \circ Differ to City	Information/KGS	
\bullet	Jong suggested a change in operating requirements of license could occur \circ Erica noted this project will not reach the license requirement. City has an alteration to the license until major upgrade project is completed. \circ Neil clarified this risk is primarily a consequence of expectations between the City and Province \circ Erica will coordinate with Michelle and Province on expectations of the project. \circ There could be an increase in funding required if ferric requirements change. Neil noted this risk could be the trigger for another project \circ Follow up with Michelle on these expectations/risks is required Information/KGS/ City	Information/KGS/ City

Details for next meeting

Date of next meeting: TBD
Time: TBD
Location: TBD

Meeting adjourned at: 11:30 am

Report any errors or omissions in the meeting minutes within 3 business days to Prasan Silva at 2049982278 or by e-mail at psilva@kgsgroup.com, otherwise these minutes are considered accurate and accepted.

Attachment(s): • n/a

Distribution (to be completed by Chairperson)

- Attendees
- Regrets
- Other:

Risk Event tientitication						Risk			${ }_{\text {R }}^{\substack{\text { Risk } \\ \text { Severity }}}$	Risk Response	Action (s) to be underaken	Contingency Plan	Cost to Manage Risks(Identified in BOE with the "costbreakdown" detail shown on separateworksheet)	Risk owner	Staus
(tisklo	Risk Event Outrome	(Treator ${ }_{\text {a }}$	As result of Risk Cause)	This event may occur (Uncertain Event)	Which leads to (Effect on objectives)	Probability	Consequence	Score							
1		treat	\|ncease cremicaldasesed sluge		oftreamenvprocess, eniomment wodiolios	${ }^{3}$	5	${ }^{15}$	cinal	Reeniu	Montor treatment parameters and limit chemical dosing to capacit of sludge treatment plant	Model and bench scale test to confirm reactions and capacities			
2	Digesion process upselprocess issabily	Treat		Process may beome move ussale	Furtere issatilitand pooess upet	5	4	20	cincal	Reture		Gradual increase of chemical dosing during the ful scale applciation and wait for a period of minimum 15 days (or in chemical dosing.			
3	Stemie	treat	Evp proess a sewecc	Struvite precipitation as a result of excess P quantity in the SEWPCC sludge and is not rem digestion in sidestream treatment	Reduced digesters capacity, pipe clogging, struvite precipitation in centriuges, in general an upse process in sludge handing facility	3	5	${ }^{15}$	cinad	Relue	Consider sidestream P removal in scenarios 2 and 3 . At minimum remove excess P from SEWPCC BNR and meet the current TP concentration in the treated centrate				
5	Oosing point treaex scemain ona acesside	treat			Moe einding and inceeseses scope	4	4	${ }^{16}$	crical	keture	Consider using day tanks or pumping from the existing chemical dosing facility for scenarios 2 and 3 (CEPT and HPO). This stud to confirm concept.				
6		Treat	SEWVCC E WN C Cominssioning is deayed	Crencial dimmingat neweci is seaped	Oeamed phosphouos ennoual	5	3	${ }^{15}$	Citual	Aceep					
7		Treat				3	5	${ }^{15}$	cinal	anoid	Sara adidin tericic o centaie				
8	Chenemal Penomala sewpcc	${ }_{\text {treat }}$	Implementation of chem P removal at SEWPCC prior to BNR commissioning	The capacity of the treatment system may be exceeded		3	5	${ }^{15}$	cancal	Anod	Oogester 11 Staud becone enine				
9		Treat			Invesesed phosphocuss 10 Late Winimeg	5	3	${ }^{15}$	${ }_{\text {cinad }}$	Reture	Practice optimizing the ferric dosing during the jart testing and modeling to minimize the final elluent phosphorus concentration without overlaoding digesters	Faciltate the construction of the new sludge handing faciity at NEWPCC to provide more capacity			
10		Treat	sed denicald osing			3	4	${ }^{12}$	Setious	Anwid	Track akainity and model chemical reactions; increase doses gradually and track response of system	Uninctienicad osing			
11	Existing chemical tanks and dosing system cannot keep up with demand	treat	Unined denimiad dosing capacties		Increased phosphorous discharges to the Red River and ultimately to Lake Winnipeg	4	2	8	Serius	Reatue	Hendal				
12		treat	seinteric osigigrate	The current delivery system railcar/truck cannot keep up with chemical demand	Not enough ferric available for P removal, increase in TP concentration in the effluent	3	4	${ }^{12}$	Serius	anvid	Evaluate the capacity of the delivery system. Additiona infrastructure might be required (4 tanks?)				
${ }^{13}$	y yisk	${ }_{\text {Theat }}$			onemens wind clenical haxding	3	3	9	sous	Reture					
${ }^{14}$		treat	ecompue	The dosing/efficiency of the chemical system may be off	Phosphorous bleeding through (in event of under dosing) or process upset (in event of overdosing)	2	3	6	Serius	Reiuce	Veify modetrg winhar resting	Gradual increase of chemical dosing during the ful scale appliciation			
15	Jar testing is not representative of operational experiences	treat	Nor ereresenativive conditions suing testing ge.g. mixing	Jar testing may mislead designer on dosing amounts/requirements	Phosphorous bleeding through (in event of under dosing) or process upset (in event of overdosing)	3	3	9	Serius	keture	Increase dosing in full scale gradualy with tracking for operating parameters (add to RFP, include SOP)				
${ }^{16}$		treat	in enicicosisig rate	Phatijusmentlobe adued	Additionaluming and incesesed scope	2	5	${ }^{10}$	Serous	Anoid	Include provisions for pH adjustement, a cost estimate to be for the new faciity. The City to evaluate the available funding and project schedule				
${ }^{17}$		treat	Sur proessa a sewrc			3	3	9	Serius	Acceent					
19	Ithencicas onexsising indsastuctue matial	treat	dosase of teric			3	4	${ }^{12}$	Stious	Reture	A review is required to evaluate the compatibility of existing infrastructure material incl new with higher ferric dosage, design	Prevent exces concentration of ferric at areas where there is a risk of corrosion			
${ }^{20}$		treat	rcease clenemial suluge	sools disclage wint heefluen		3	2	6	Serous	Anvid	The sludge production and sludge blanket depth will be evaluated during the jar testing.	Monitor sludge blanket depth and other operating parameters affecting the sludge depth (e.g. WAS flow)			
${ }^{21}$		treat	neatasaladation			3	3	9	sous	Anoid	Soluble iron and UVT will be two of the parameters monitored as anten wibe monived during nodeding	Monitor UVT during the ful scale applciation to adjust the ferric addition accordingly			
22		meat	Oreedossmg tericichinide	1 Ios on mintifes acimixy nine Sesps		2	4	8	Sefius	Reauce	Try to find an optimum ferric dose during the jar testing and modeling	Monitor the iron concentration in the centrate duirng the optimization period in ful scale aplication and adjust ferric dosage accordingly			

Risk Event tientification						Risk			${ }_{\substack{\text { Risk } \\ \text { Severity }}}$	Risk Response	Action (s) to be underaten	Contingency Plan		Risk Owner	Status
(Riskl0	Risk Event Outcome	Threat or Opportunity?	Asa resulut of R(isk Cause)	This event may occur (Uncertain Event)	Which leads to (Effect on objectives)	Probability	Consequence	Score							
${ }^{23}$		oppotunit	Cheneical phosphouss semoxa			4	2	8	Serius	Acceent					
${ }^{24}$	Mminive struxie ereceiplaion	opporunity	Cheneical phosphouoss semoua	less struvite precipitation in sludge handling faciity when SEWPCC is online	Less manieneaxere equieded oneantiviges	3	2	6	Serious	aceepl					
${ }^{25}$	Poor public perception because system cannot treat to $1 \mathrm{mg} / \mathrm{L}$ total phosphorous removal	treat	Constanss insuldge ereamem spsem	pospspousus senowan may be mined	Criticisms from the pubic and local environmental groups regarding lack of phosphorous reduction groups regarding lack of phosphorous reduction	5	1	5	Selous	Aceepr	Communicate about decreasing phosphorous trends and highlight actions taken to reduce phosphorous to Lake Winnipeg				
${ }^{26}$	Itaines in sewpcc opeation	Treat	Commissioning and operation of new plant creates a new/different sudge		Retued phossmousus emonal	3	3	9	Serius	wid	Implement interim P removal at NEWPCC when SEWPCC BNR is fuly commissioned				

Risk Workshop 2

NEWPCC Interim Phosphorous Removal

For details and instructions on how to complete this document, click the [I] icon under the Home tab to display the hidden text.

Date of Meeting:	April 20, 2022	Time of Meeting:	1:00 pm
Meeting Location	: Online via MS Teams	Minutes Issued:	April 25, 2022
Meeting Type/Purpose:	Risk Workshop 2		
Project File No.:	S-1146		
Chairperson:	Adam Pawlikewich, P.Eng.		
Recorder:	Prasan Silva, P.Eng.		

Attendees

Name	Initials	Title	Organization	Contact \#	Email
Erica Campbell	EC	Senior Project Engineer	CoW-WWD-ESD	(W) 204-9867642; (M) 204-232-0317	ECampbell@winnipeg.ca
Jong Hwang	JH	Senior Project Engineer	CoW-WWD-WWSD	$\begin{aligned} & \text { (W\&M) 204-619- } \\ & 2185 \end{aligned}$	jhwang@winnipeg.ca
Dustan Fuerest	DF	Senior Operator - Dry Side	CoW-WWD-WWSD	$\begin{aligned} & \text { (M) 204-391- } \\ & 5773 \end{aligned}$	dfuerst@winnipeg.ca
Matthew Klowak	MK	Wastewater Contracts Officer - Chemical Supply	CoW-WWD-WWSD	-	MKlowak@winnipeg.ca
Adam Pawlikewich	AP	Project Manager	KGS Group	(W) 204896 1209 (M) 204 7977772	apawlikewich@kgsgroup.com
Jason Smith	JS	Senior Mechanical Engineer	KGS Group	$\begin{aligned} & \text { (W) } 204896 \\ & 1209 ;(\mathrm{M}) 204 \\ & 2238904 \end{aligned}$	jsmith@kgsgroup.com
Prasan Silva	PS	Senior Mechanical Engineer	KGS Group	(W) 204896 1209; (M) 204 9982278	psilva@kgsgroup.com
Robin Chen	RCC	Mechanical Engineer	KGS Group	(W) 204896 1209; (M) 204 9987929	rchen@kgsgroup.com
Andrew Fustey	AF	Mechanical EIT	KGS Group	$\begin{aligned} & \text { (W) } 204896 \\ & 1209 \end{aligned}$	afustey@kgsgroup.com

Regrets

Name	Initials	Title	Organization	Contact \#	Email
Neil Abercrombie	NWA	Facility Leader, Winnipeg, Municipal \& Commercial Business	Veolia North America (VNA)	$\begin{aligned} & \text { (W\&M) 204-898- } \\ & 3000 \end{aligned}$	x-naberc@winnipeg.ca
Michelle Paetkau	MP	Acting Wastewater Planning and Project Delivery (WWP\&PD) Branch Head	CoW-WWD-Engineering Services Division (ESD)	(W) 204-9864904; (M) 204-619-3874	mpaetkau@winnipeg.ca
Terry Josephson	TSJ	Wastewater Engineer, Treatment Branch Head	CoW-WWD-WWSD	$\begin{aligned} & (\mathrm{W}(\mathrm{M}) 204-47) \\ & 204-986-8609 ; 0- \\ & 7745 \end{aligned}$	TJosephson@winnipeg.ca
John Amos	JA	NEWPCC Plant Supervisor	CoW-WWD-WWSD	(W) 204-9864845; (M) 204-470-7326	JAmos@winnipeg.ca
Brendan Hellrung	BH	Wastewater Treatment Operator 4	CoW-WWD-WWSD	(W) 204-9863463; (M) 204-291-1739	bhellrun@winnipeg.ca

Risk Workshop 2

Joey Tarko	JT	E.I.T. at Wastewater Dept.	CoW-WWD-WWSD		JTarko@winnipeg.ca
Chris Carroll	CC			ccarroll@winnipeg.ca	
Cynthia Wiebe	CW			cwiebe@winnipeg.ca	

Agenda

1.0 Safety Moment
2.0 Introduction

City of Winnipeg Treaty Acknowledgement:
I would like to begin by acknowledging that we are in Treaty One territory and the traditional homeland of the Metis Nation. Our drinking water comes from Shoal Lake 40 First Nation in Treaty No. 3 territory.
3.0 Project Scope Overview:
4.0 Risk Workshop 2:

- Review Risk Register
5.0 Other Items

Risk Workshop 2

NEWPCC Interim Phosphorous Removal

Item	Description	Action By
1.0	Safety Moment	Action By
1.1	Adam provided the safety moment: - Plan ahead while driving through the City and in rural areas. Weather conditions can change rapidly. Keep to the safe routes if possible.	Information
2.0	Introduction	Action By
2.1	City of Winnipeg Treaty Acknowledgement: I would like to begin by acknowledging that we are in Treaty One territory and the traditional homeland of the Metis Nation. Our drinking water comes from Shoal Lake 40 First Nation in Treaty No. 3 territory.	Information
2.2	Introductions - Introductions were skipped for this meeting.	Information
3.0	Project Scope Overview	Action By
3.1	Robin provided an update on the new developments on the project. - Dosing scenario 4 after the bio reactors is being kept. Dosing scenario 3 before the bioreactors will be deleted. - Compressed air upgrade will be incorporated into the IFC submission. This will include a third air compressor/dryer added to the existing system. - A Saferack system will be incorporated into the new railcar shelter unloading platform.	Information
4.0	Risk Workshop 2	Action By
4.1	Adam presented the risk register and reviewed the previously assessed items.	Information
4.2	Rail construction activity - Adam noted this should be performed during shoulder seasons. Property line - Adam asked Erica if any further action is required for building across the property lines. Erica said no further action is required, but the email can be printed and submitted with the permit application to ensure no hold-ups occur. Interference with other projects - Laydown area and other potential conflicts will be discussed with the City.	Information Information Information/City/ KGS

Risk Workshop 2

NEWPCC Interim Phosphorous Removal

Product supply chain issues and high demand of new systems

- Adam noted the delays in product delivery are still a risk. Erica asked if pre-ordering or scheduled ordering would be considered. Matt confirmed that a standing order would be discussed with Kemira.

Non-compliance from a system with inadequate feedback

- Adam asked if the Chemscan system will be implemented. Prasan confirmed that a Chemscan system would not be installed.

Additional chemical storage causing increased corrosive environment

- Score probability was updated to a lower score of 1 because a separate electrical room will be built. This would reduce the item to a total score of 4.
- Adam noted that no pre-risk or post-risk evaluation score tally is available. Jong asked if Adam could check with Neil Abercrombie on the scoring system of the risk register for pre and post.

Contaminated Soil

- Adam added a risk item for contaminated soil. Contaminated soil may be found from digging around the existing railcar shelter facility. This item was noted as likely to occur. This item would be associated with a moderate cost. The response for the risk would be to include a cost per unit in the RFP.

4.3 Critical items

Digester capacity is exceeded because of chemical based sludge

- Monitor treatment parameters and limit chemical dosing to capacity of sludge treatment plant

Ferric chloride toxicity on unstable/poor process performance

- Complete testing and verify digester ability to handle additional ferric chloride.

Dosing point for each scenario not accessible

- Adam confirmed day tank will be used for storage at the dosing points

Jar testing is not representative of operational experiences

- Adam asked if the City would like the installer or KGS to be present during commissioning or is this task an operator item. Jong confirmed it is an operator item. Erica confirmed that KGS will need to be present during commissioning and post commissioning to ensure the system operates as intended. Dustan added that components/instrumentation must be present within the system that allows operations to base operating decisions from data.
Jar test indicates low pH after chemical dosing
- Robin confirmed this will be controlled through the sodium hydroxide dosing

Information

Information

Information/KGS

Information

Risk Workshop 2

NEWPCC Interim Phosphorous Removal

Impact of chemicals on existing infrastructure material

- Robin confirmed that pipe sections will be replaced around the dosing points to ensure that the existing system is not damaged.
Poor public perception
- City of Winnipeg action to address.

Other Questions/Comments

Equipment footprint at remote dosing points

- Erica asked if there will be enough room at the new dosing locations to construct them properly. KGS will ensure that there is a set footprint on the drawings that the pump skids and containment will have to fit. Robin responded that at the junction chamber there will be access to bring a skid inside and install it. Additionally, KGS will confirm the placement and access of the skid for the dosing point located after grit removal.
- Robin added the size of the skids have been kept to a minimum. Robin presented a drawing of a representative dosing skid. Erica clarified that she wanted to ensure that the space allocation has been considered.

Junction Chamber - Corrosive Environment

- Dustan voiced a concern that the air quality is not the best in the junction chamber. He added the items in the area are corroded. Dustan believes that this could be mitigated by adding covers on top of the aluminum grates. Robin confirmed this is not in the scope of work currently. Adam asked if this should be added to the risk register.
- Adam added this item to the risk register. Junction chamber could be a corrosive environment. This would lead to failure of electrical equipment and early replacement. Probability is placed at low because corrosive resistance items have been selected.

Other

- Adam asked if SEWPCC BNR will be fully commissioned in time for this project. Jong confirmed it is expected to be.
- Adam to follow up with Prasan and Jan to confirm KGS involvement with bench scale testing. KGS involvement with commissioning progress will need to be further discussed.
- Robin confirmed that a meeting is scheduled next week for operator touch points. Dosing point locations will be discussed with operations to finalize dosing locations and skid placement.
- Prasan confirmed tender submission is scheduled for Wednesday May 18, 2022

Information

Information

Details for next meeting

Date of next meeting: TBD
Time: TBD
Location: TBD

Risk Workshop 2

Meeting adjourned at: 2:00 pm

Report any errors or omissions in the meeting minutes within 3 business days to Prasan Silva at 2049982278 or by e-mail at psilva@kgsgroup.com, otherwise these minutes are considered accurate and accepted.

Attachment(s): • Attachment 1_S-1146 RMP 2022-04-20

Distribution (to be completed by Chairperson)

- Attendees
- Regrets
- Other:

Risk Event tientification						Risk			Risk	Risk Response	Action (s) to be underataen	Contingency Plan		Risk Owner	Status
(Riskl0	Risk vent Outrome		As aresult f (Risk Cause)	This event may occur (Uncertain Event)	Which leads to (Effect on objectives)	Probability	Consequence	Score							
1		${ }_{\text {Treat }}$	Incease chenicalbseses stuge		sortreamenumpoess, enimomen wodiors	3	5	${ }^{15}$	cinial	Redue	Moner	Model and bench scale test to confirm reactions and capacities			
2	Digesion process uspelvoceses issalily	Treat		Process may beame nore ussabe	Ithe insabiliy and proess upsel	5	4	${ }^{20}$	cinced	Reture		Gradual increase of chemical dosing during the ful scale applciation and wait for a period of minimum 15 days (or digesters SRT) before making another significant change in chemical dosing.			
3	Stic.	Treat	swp proessa sewwcc	Struvite precipitation as a result of excess P quantity in the SEWPCC sludge and is not ren digestion in sidestream treatment	Reduced digesters capacity, pipe clogging, struvite precipitation in centrifuges, in gene process in sludge handing facility	3	5	${ }^{15}$	anical	Reatue	Consider sidestream P removal in scenarios 2 and 3. At minimum remove excess P from SEWPCC BNR and meet the current TP concentration in the treated centrate				
5	Osisis poit tro each semaid notacaessbe	Treat			Mote turing and inceasese scope	4	4	${ }^{16}$	cinal	Reatue	Consider using day tanks or pumping from the existing chemical dosing facility for scenarios 2 and 3 (CEPT and to confirm concept. (PRP _ Day tanks in use)				
6		Theat	SEWvec env C Comisissiongis iseleyed	Crenical limininga aneweci is deaped	Oedayed phosshouoss enowal	5	3	${ }^{15}$	${ }_{\text {cincal }}$	Acceer					
7	Greater phosphorus loading from SEWPCC sludge than anticipated	${ }^{\text {Treat }}$	Increased phosphorus load from BNR process at SEWPCC	Higher TP load in treated centrate and insufficient chemical addition at NEWPCC	Violate the sidestream current licence, increase	3	5	${ }^{15}$	crival	Anvid	Sata adion tericic ocentae				
8	Chenical Penemala sewec	${ }_{\text {Treat }}$				3	5	${ }^{15}$	Emad	Anoid	Pigsese 11.1 staud beocme omine				
9		Theat	Higher phosphorus loading from SEWPCC and limited sludge processing capacity at NEWPCC	Exceeding secondary effluent phosphorus limit of 1 mgh	Ineesesed phosplocous to tae Wmineg	5	3	${ }^{15}$	simad	Reatue	Practice optimizing the ferric dosing during the jart testing and wodeling to minimize the final elluent phosphors concentration without overlaoding digesters	Faciltate the construction of the new sludge handing faciity at NEWPCC to provide more capacity			
${ }^{10}$	Additional chemical dosing for NEWPCC interim P removal results in low pH and process issues	Treat	${ }^{\text {maeasesed cenemad osoing }}$		Loss of reamenelvocess enivomen wobiolis	3	4	${ }^{12}$	Serios	Anvid	Track akainity and model chemical reactions; increase doses gradually and track response of system	Unit denemial ososing			
11		${ }_{\text {Treat }}$	Linied denemial dosing capacties	Phosinhous my beed thounh nad inease		4	2	8	Serios	Realue					
12	Cbse Chenemial demey lo wewpec	Treat	wease intericicosing rate			3	4	${ }^{12}$	Serius	anvid	Evaluate the capacity of the delivery system. Additional infrastructure might be required (4 tanks?)				
${ }^{13}$	Satey is	Treat	Safety risks assocciated with additional chemical handing/multiple chemicals		nee concens with cenenial haxiling	3	3	9	Sefios	Reture	Consider appropriate safety measures for chemcial handing during the design and implementation of chem P removal				
${ }^{14}$	close-Computer modeling and simulations are not representative of real-world conditions	Theat	pioss inte compuet model	The dosing/efficiency of the chemical system may be off		2	3	6	Serius	Reture	nodeng winiar resing	Gradual increase of chemical dosing during the ful scale appliation			
15	Jar testing is not representative of operational experiences	treat		Jar testing may mislead designer on dosing amounts/requirements	Phosphorous bleeding through (in event of under dosing) or process upset (in event of overdosing)	3	3	9	Serius	Reatue	Increase dosing in full scale gradualy with tracking for operating parameters (add to RFP, include SOP) - Really an operational requirement. Commissioning and post-commissio Jan and process design. Inculd t tacking in RPP.				
${ }^{16}$		Heat	eese inenicicosigg ate	phajusment obe eadied	Addionoluturig and diceseses scope	2	5	${ }^{10}$	Sefous	Awid	Include provisions for pH adjustement, a cost estimate to be for the new facity. The City to evaluate the available funding and project schedule				
${ }^{17}$		Treat	SvP proessa a swwec		Adodionalituring and inceseseds scope	3	3	9	Seious	Acceent					
19		neat	Excess dosase of tenic			3	4	${ }^{12}$	mous	Reduse		Prevent exces concentration of ferric at areas where there is a risk of corrosion is a risk of corrosion			
${ }^{20}$		treat	mexesese cenemas suluge	sodis dishage with hee fluent		3	2	6	stous	Auvid		Monitor sludge blanket depth and other operating parameters affecting the sludge			
${ }^{21}$		${ }_{\text {Theat }}$	Excess meal san addion		(nutased poeating and manineance cossis, reene	3	3	9	Seious	Anvid	Soluble iron and UVT will be two of the parameters monitored as effluent will be monitored during modeling	Monitor UVT during the ful scale applciation to adjust the ferric addition accordingly			
22	coneentraiono uneared derici ine eentrat	Treat	Oeredsising leficichinide		Highe ammoic oneentaiomin the reated eentral	2	4	8	Serius	Relue		Monitor the iron concentration in the centrate duirng the optimization period in dosage accordingly			

Risk Event tientitication						Risk			${ }_{\text {R }}^{\substack{\text { Risk }}}$ Severity	Risk Response	Action (s) to be underaken	Contingency Plan		Risk owner	staus
(RiskID	Risk Event Outcome	$\underset{\substack{\text { Treat or } \\ \text { Opportunty? }}}{ }$	Asa result of Risk Cause)	Tis event my (Uneeratain verut)	Which leads to (Effect on objectives)	Probability	Consequence	Score							
${ }^{23}$	Phossmoususis redued in finae efluen	opporuniy	Creneidal prosphrous semove			4	2	${ }^{8}$	Setios	Acceen					
${ }^{24}$	Mrinice strumie erecipition	Opporunity	a phosphoos emomal		Less manemaxere equieded on enemituges	3	2	6	Seious	Acceen					
25	Pat	treat		polspspous semoxal may ve mined		5	1	5	Serious	Aceept					
${ }^{26}$	Unereatioses in sewpcc operaion	${ }_{\text {Theat }}$	Commissioning and operation of new plant creates a new/different sludge		wued posphaous senoal	3	${ }^{3}$	$\stackrel{ }{ }$	Setioss	Anod	Implement interim P removal at NEWPCC when SEWPCC BNR is fuly commissioned				
${ }^{27}$	HRC Sludge from SEWPCC results in process insability in the NEWPCC digesters	${ }^{\text {Thear }}$	New HRC process at SEWPCC- More chemical suldge hauled to NEWPCC	Ourimadigs stude proessing tainy	Less ofteamenemprocess enimoment wobiolios	2	5	${ }^{10}$	Serious	Reatue	Keepal6 digeseses s semive duning tereet weateremontis				
${ }^{28}$	Cremical axialily	treat	in eneric cosing ate	Tre Supplecemant kep up wind demand		1	4	4	Imporam	Anoid	Uxias stppy contrad				
${ }^{29}$	Etestas	tweat	Crenicaly ennareed pimay treamen (CFPT)	Laxco frumens in ine pimay efluent	Loss of biomass growth in the HPO reacators, filamentous growth and sludge bulking	2	2	${ }^{4}$	Impram	Reatue	Optimize ferric dose during jar testing and modeing. Conduct SOUR as part of jar testing	Increase ferric dosing in ful scale gradualy with effluent			
30	Returexd demaneabiliyo tibosalis	${ }_{\text {theat }}$	mueased demenial dosing			2	2	4	Impotan	Reatue	During the jar testing, the generated sludge will be tested for capillary Suction Time (CST) which shows the changes in the capiliary Suction Time sludge dewaterabilty	Monitor solids concentration in the dewatered biosolids and Polymer consumption during the ful scale application			
${ }^{31}$	Dannege evesising Ralaca failiy	treat	Constuciens ocosese teexsing buibing	Oemage teexsingeauiment	Stat	2	4	8	Serios		Adds some nuesto frPp?				
32	ooaylo popece conpeion	treat	Aarabilis oqualfed dontactos		Poueceroristere issalaion	1	4	4	Imporam						
${ }^{32}$	Doayro popece compeion	treat		Mghingen obiders	Sigitianateass	1	5	5	Serious		Noel ogestidides wel inomead and ined up.				
${ }^{33}$		${ }^{\text {Treat }}$				2	3	${ }^{6}$	Serious		Keepensistrag sosperioiond	Panuo hande, mate sure esconse eanas ave inpace			
${ }^{34}$		Treat	Loss of backup unloading capabilites, when you need them.		menenpuion ot trox deneries	3	5	${ }^{15}$	cincal		Contractual requirements to coordinate and keep access to truck unloading	veed on minimize enitowif ibded			
${ }^{35}$		treat		boneer unoming,		5	2	${ }^{10}$	Sefius						
${ }^{36}$	DSsupiono fata ara deney	Treat	Rallonstuction acamies (nensmench /umul)	Oeneeted Rala cacess	exenened detere oulase	1	4	4	Imporam						
${ }^{37}$	Oolaylo pooect compeion	Treat		Cossucriein delas ofa mant	deayin neev dosing	2	3	${ }^{6}$	Serioss						
${ }^{38}$		Treat		disurumomo tataic	operational limit (Can't be stopped, but could be inconvenient)	2	2	${ }^{4}$	Impotam						
${ }^{39}$	oeaylvopoed compleion	${ }_{\text {Treat }}$		varinere equied		2	4	8	Setioss		Verify limits in advance to mitigate risk - Has been looked into, we are OK to proceed. E-mail should be included with permi				
40		Theat		ataficic ouve sbodeded tor moer than ateve das	Congestion ontes site	2	2	4	Impotam						
41		treat		1 Isata fe e vere baded winto one wookat hes sie	deabsi inesponding 10 contracter neds	4	4	${ }^{16}$	Cutral						

Risk Event tientitication						Risk			Risk	Risk Response	Action (s) to be underataen	Contingency Plan		Risk Owner	Staus
$\underbrace{}_{\substack{\text { RisklD } \\ \text { No. }}}$	Risk Event Outcome	Treat or Opporunity?	As reseult of R(isc Cause)	This event may occur (Uncertain Event)	Which leads to (Effect on objectives)	Probability	Consequence	Score							
${ }^{41}$	Oeaylv popeec compeleion (One mont)	${ }_{\text {Treat }}$	Interference with other project works at NEWPCC (e.g., new scum dewatering building)	Areas have overlapping construction and are not available	Delays in access to certain items - for instance day tank location and PCS/ DCS tie in / Primary upgrade	${ }^{4}$	3	${ }^{12}$	Setioss						
42	Loss flerenc. Long lem post construcion	treat	Poper	vuase of product	Oeapsis ineterey	2	5	${ }^{10}$	Sefous	Accepl					
${ }^{43}$		treat	nereme	It may be difficult for operators to keep process under control, as workload will be high different operating scenarios	Sspeous onorcomplinee of rooess susus	3	3	9	Serious						
43	non-compliance from a system with inadequate feedback	${ }_{\text {Theat }}$	nuesesed senenios	nsustrien instuemmaion	Asssien withindedequet eeedabak	1	5	5	Setioss		Verify reliable operation of the chemscan unit, and for locations Chemscan is an issue, will not be used	May need doeveene crations			
${ }^{44}$	Addrional cenical leae eposure	Theat		creasedel eadage pints	uncontrolled chemical leak around piping and tanks have extra containment, terminations may need additional containment / monitoring	1	3	3	Imporam						
45	Additional chemical storage causing increased corrosive environment	treat	aring corssisie enimoment	Orososo on eneaticale euveemt	Failue of opme sumplt a aea	3	4	${ }^{12}$	Serius		Isolate electrical distribution to cleaner room - mitigated this item Update score - Would be a 1 probality - reducing to a 4 score.				
${ }^{46}$	eesed opeatige coss	treat	sse cosummpiono f Fenic	neresese Pine of fenic		3	4	${ }^{12}$	Sefous		Difer lo ciy (Action usisie popect lean)	as wite adidionalefricas ososibl			
${ }^{47}$		Treat		cramesestonedt ous eneric											
${ }^{47}$		treat		Poter	Fiulue dispuc bewnen Cly and Prowire										
${ }^{48}$		Treat	Uopedigaing ind dial ine	Conaminatees soin my betound	meesesen misadion coss	3	2	6	Sefious	Aceep					
49	No room to build dosing points	treat	Tontspaxe	May bedifutut ofetacess	Reconfiguaien ontery	1	4	${ }^{4}$	Impram	Aceep					
50	High corossisie enviomen	Treat	Haghy crossisie eniomen	Eay taile of etearical and euviment	eatryepremenet and lackot flatalily	1	${ }^{3}$	${ }^{3}$	Imporam	Aceent	Ateady inudus corsosion resisantemenets.				

APPENDIX C

Site Map

APPENDIX D

Schedule

Experience in Action

