# APPENDIX 'A' GEOTECHNICAL REPORT



WSP Canada Group Ltd.

# 2022 Local Streets Package (21-R-06)

## Prepared for:

Lissa Van Dorp. P.Eng. WSP Canada Group Ltd. 111-93 Lombard Avenue Winnipeg, MB R3B 3B1

Project Number: 1000 043 20

Date:

February 2, 2022 Final Report



## Quality Engineering | Valued Relationships

February 2, 2022

Our File No. 1000 043 20

Lissa Van Dorp WSP Canada Group Ltd. 111-93 Lombard Avenue Winnipeg, MB R3E 3P1

RE: Road Investigation Report for 2022 Local Streets Package (22-R-06)

TREK Geotechnical Inc. is pleased to submit our report for the road investigation for the 2022 Local Streets Package (22-R-03) project.

Please contact the undersigned if you have any questions. Thank you for the opportunity to serve you on this assignment.

Sincerely,

TREK Geotechnical Inc.

Per:

Nelson John Ferreira, Ph.D., P. Eng.

Geotechnical Engineer, Principal

Tel: 204.975.9433 ext. 103

cc: Angela Fidler-Kliewer C.Tech. (TREK Geotechnical)



# **Revision History**

| Revision No. | Author | Issue Date       | Description  |
|--------------|--------|------------------|--------------|
| 0            | AD     | February 2, 2022 | Final Report |

# **Authorization Signatures**

Prepared By:

Asad Dustmanatov, C.E.T.

Geolechnical Engineering Technician

Reviewed By:

Angela Fidler-Kliewer, C. Tech Manager of Laboratory and Field

Services

Reviewed By:

Nelson John Ferreira, Ph.D., P.Eng. Geotechnical Engineer





# **Table of Contents**

Letter of Transmittal

| Revision I | History and Authorization Signatures                                                                             |
|------------|------------------------------------------------------------------------------------------------------------------|
| 1.0 Int    | roduction1                                                                                                       |
| 2.0 Ro     | ad Investigation1                                                                                                |
| 3.0 Clo    | osure3                                                                                                           |
| List of    | Tables                                                                                                           |
| Table 1: R | oad Investigation Program                                                                                        |
| Table 2: C | Concrete Core Compressive Strength                                                                               |
| Figures    |                                                                                                                  |
| Appendice  | es                                                                                                               |
| List of Fi | gures                                                                                                            |
| Figure 01  | Pavement Core Location Plan – Lawndale Avenue                                                                    |
| Figure 02  | Pavement Core Location Plan – Dubuc Street                                                                       |
| Figure 03  | Pavement Core Location Plan – Youville Street                                                                    |
| Figure 04  | Pavement Core Location Plan – Winona Street                                                                      |
| Figure 05  | Pavement Core Location Plan – Victoria Ave E. and Harvard Ave E.                                                 |
| Figure 06  | Pavement Core Location Plan – Widlake Street                                                                     |
| List of A  | ppendices                                                                                                        |
| Appendix   | A Summary Table, Pavement Core Compressive Strength and Photographs of Pavement Core Samples – Dubuc Street      |
| Appendix   | B Summary Table, Pavement Core Compressive Strength and Photographs of Pavement Core Samples – Harvard Avenue E. |
| Appendix   | C Summary Table, Pavement Core Compressive Strength and Photographs of Pavement Core Samples – Lawndale Avenue   |

Appendix D Summary Table, Pavement Core Compressive Strength and Photographs

of Pavement Core Samples – Victoria Avenue E.



- Appendix E Summary Table, Pavement Core Compressive Strength and Photographs of Pavement Core Samples Widlake Street
- Appendix F Summary Table, Pavement Core Compressive Strength and Photographs of Pavement Core Samples Winona Street
- Appendix G Summary Table, Pavement Core Compressive Strength and Photographs of Pavement Core Samples Youville Street



## 1.0 Introduction

This report summarizes the results of the road investigation completed for the 2022 Local Streets Package 22-R-06. The investigation was carried out along Dubuc Street, Harvard Ave E., Lawndale Ave, Victoria Ave E., Widlake Street, Winona Street and Youville Street. Information collected describes the asphalt and concrete pavement structure of the existing roads. The investigation was carried out in accordance with the City of Winnipeg RFP No. 476-2021.

# 2.0 Road Investigation

The investigation included coring of pavement at 36 locations on 7 different local streets. WSP selected the investigation locations as shown on Figures 01 to 06 (attached) and the table below summarizes the investigation program.

# of Street Investigation Locations **Dubuc Street** Pavement Cores 6 (Between Enfield Cresc and Des Meurons St.) Harvard Avenue E. 3 **Pavement Cores** (Between Roanoke Str. and Leola St.) Lawndale Avenue 6 Pavement Cores (Between Lyndale Dr. and Highfield St.) Victoria Avenue E. 3 Pavement Cores (Between Roanoke Str. and Leola St.) Widlake Street Pavement Cores 6 (Between Kildare Ave E. and Victoria Ave E.) Winona Street 8 Pavement Cores (Between Kildare Ave W. and Regent Ave W.) Youville Street 4 **Pavement Cores** (Between Marion St. and Eugenie St.)

**Table 1: Road Investigation Program** 

Pavement coring was completed between January 11<sup>th</sup> and 20<sup>th</sup>, 2022. The pavement was cored by Naimu Mujyambere and Asad Dustmamatov of TREK Geotechnical Inc. (TREK) using a portable coring press equipped with a hollow 100 and 150 mm diameter diamond core drill bits. Core samples were also retrieved and logged at TREK's material testing laboratory. A summary table of the concrete pavement cores and photographs of the cores are included in Appendices A to G

Nineteen concrete cores were selected for concrete compressive strength breaks and the length to diameter ratio ranged between 1.16 to 1.91 for the cores collected. The core compressive strength tests were tested in accordance with CSA A23.2-14C – wet condition. The measured compressive strengths were also corrected based on an adapted ACI 214.4R-03 Standard to estimate the in-place concrete



strengths. The table below summarizes the compressive strength results while the compressive strength testing details and the correction factor methodology are included in Appendices A to G.

**Table 2: Concrete Core Compressive Strength Results** 

| Core ID | Uncorrected Compressive<br>Strength (MPa) | Corrected Compressive<br>Strength (MPa) |  |  |  |  |
|---------|-------------------------------------------|-----------------------------------------|--|--|--|--|
| PC-01   | 55.39                                     | 63.21                                   |  |  |  |  |
| PC-05   | 60.15                                     | 69.73                                   |  |  |  |  |
| PC-06   | 48.83                                     | 56.53                                   |  |  |  |  |
| PC-07   | 65.58                                     | 75.27                                   |  |  |  |  |
| PC-08   | 44.95                                     | 51.20                                   |  |  |  |  |
| PC-09   | 53.83                                     | 60.49                                   |  |  |  |  |
| PC-14   | 44.50                                     | 48.05                                   |  |  |  |  |
| PC-19   | 43.63                                     | 50.16                                   |  |  |  |  |
| PC-22   | 41.52                                     | 47.53                                   |  |  |  |  |
| PC-23   | 34.48                                     | 39.59                                   |  |  |  |  |
| PC-25   | 51.19                                     | 58.49                                   |  |  |  |  |
| PC-26   | 66.54                                     | 74.83                                   |  |  |  |  |
| PC-27   | 50.67                                     | 57.99                                   |  |  |  |  |
| PC-28   | 68.35                                     | 78.70                                   |  |  |  |  |
| PC-29   | 76.63                                     | 87.59                                   |  |  |  |  |
| PC-31   | 59.15                                     | 67.57                                   |  |  |  |  |
| PC-34   | 53.56                                     | 61.11                                   |  |  |  |  |
| PC-35   | 43.99                                     | 50.58                                   |  |  |  |  |
| PC-36   | 53.44                                     | 60.58                                   |  |  |  |  |

The locations noted on the summary tables (Appendices A to G) are based on the core locations relative

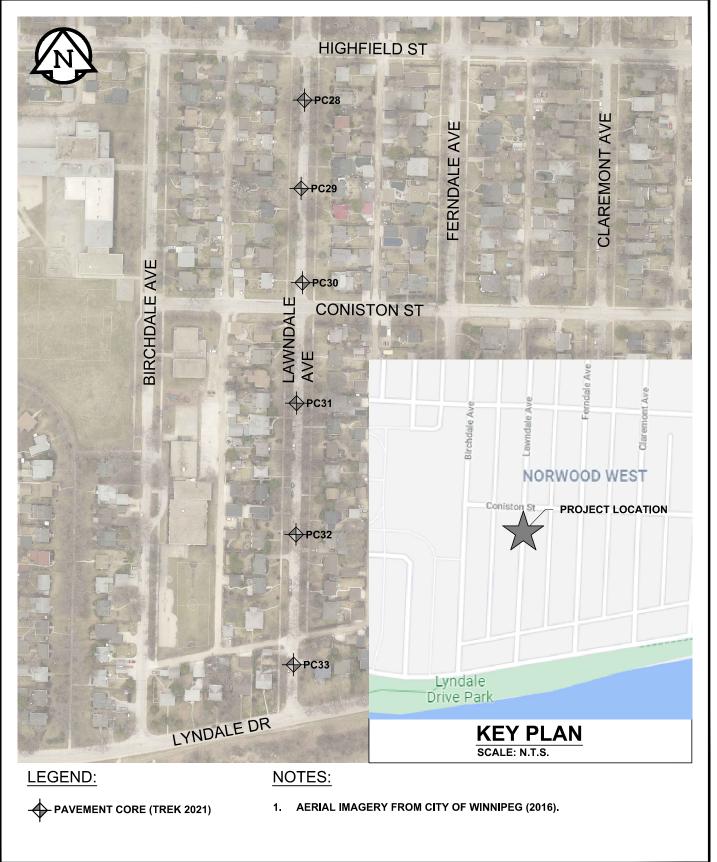


to the nearest address or intersection, and measured distances from the edge of pavement. UTM coordinates measured using a handheld GPS unit are also provided.

## 3.0 Closure

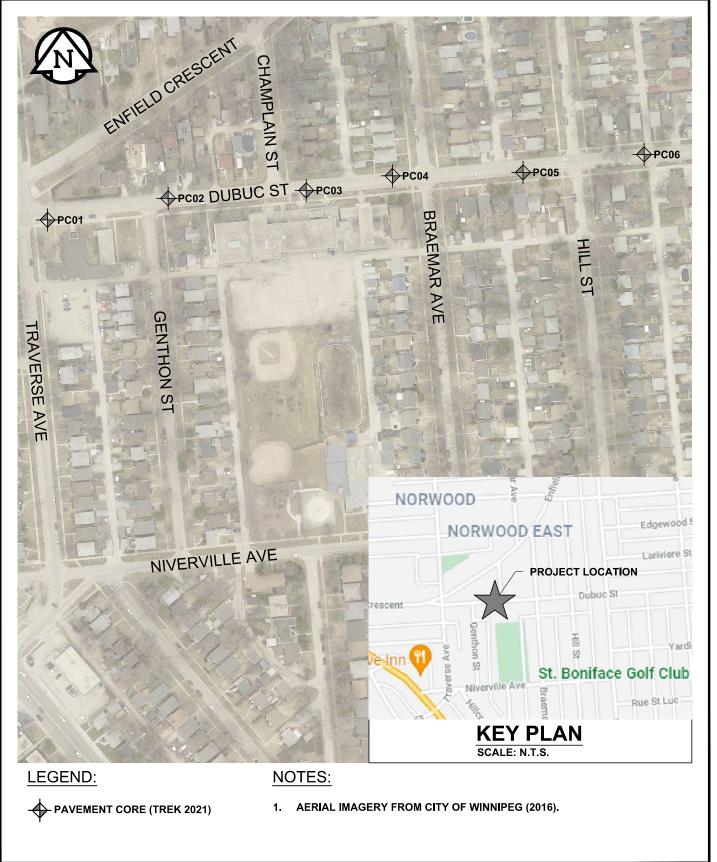
The information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation).

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work, or a mutually executed standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.


This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of WSP Group of Canada (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

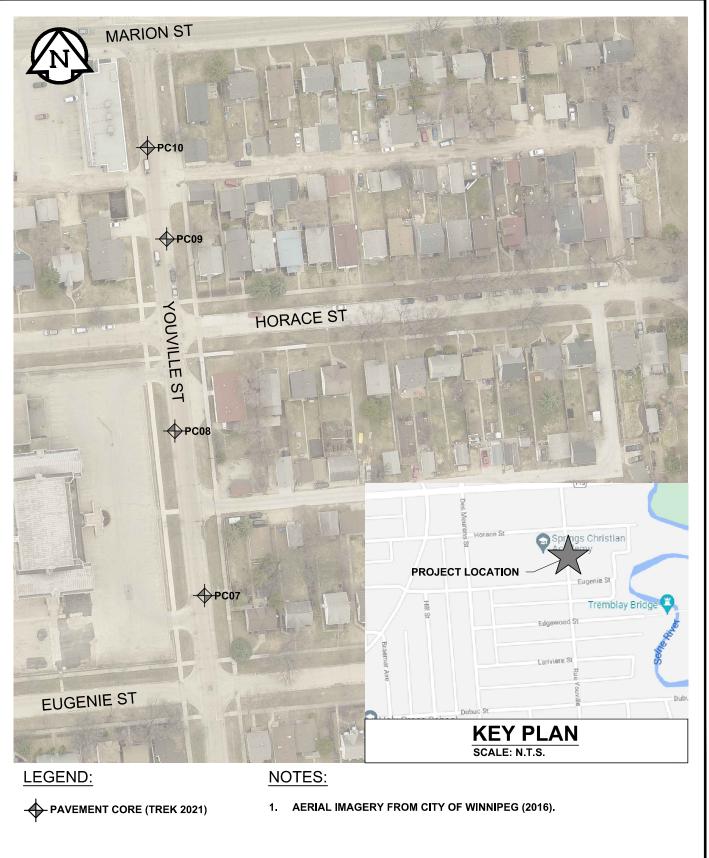


**Figures** 



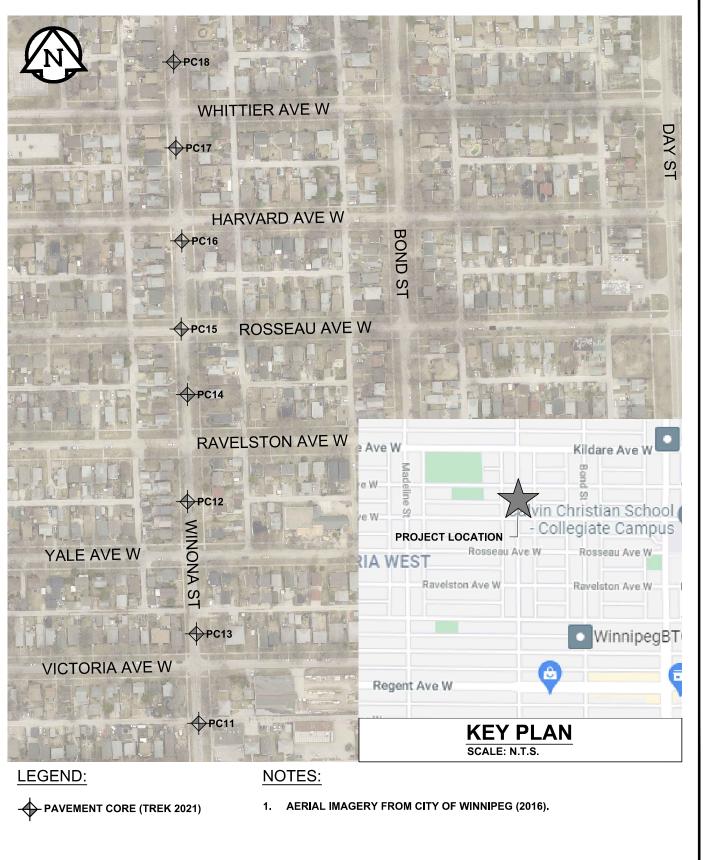

Z./Projects/1000 Soils LabtLab Projects/1000 Lab Projects/1000 Lab Projects/1000 -043 WSP/1000-043-20 2022 Local Streets Package (22-R-06)\(3\) Survey and Dwg\(3\) 4 CAD\(3\) 4.3 Working Folder, 2022-01-31 1:52:08 PM






Z./Projects/1000 Soils LabtLab Projects/1000 Lab Projects/1000 Lab Projects/1000 -043 WSP/1000-043-20 2022 Local Streets Package (22-R-06)\(\text{3}\) Survey and Dwg\(\text{3}\) 4 CAD\(\text{3}\) 4.3 Working Folder, 2022-01-31 1:52:39 PM






Z./Projects/1000 Soils Lab/Lab Projects/1000 Lab Projects/1000 Lab Projects/1000 0-043 WSP/1000-043-20 2022 Local Streets Package (22-R-06)/3 Survey and Dwg/3.4 CAD/3.4.3 Working Folder, 2022-01-31 1:56:20 PM





Z./Projects/1000 Soils Lab/Lab Projects/1000 Lab Projects/1000 Lab Projects/1000 0-043 WSP/1000-043-20 2022 Local Streets Package (22-R-06)/3 Survey and Dwg/3.4 CAD/3.4.3 Working Folder, 2022-01-31 1:53:21 PM





Z./Projects/1000 Soils LabtLab Projects/1000 Lab Projects/1000 Lab Projects/1000 0-043 WSP/1000-043-20 2022 Local Streets Package (22-R-06)\(\alpha\) Survey and Dwg\(\alpha\) 4 CAD\(\alpha\) 4.3 Working Folder, 2022-01-31 1:53:51 PM

HARVARD AVE E PC25 LEOLA ST **RAVELSTON AVE E** Safeway Kildar (Transcona Whittier Ave E Harvard Ave E YALE AVE E Kern Dr Wayoata ( ementary School Coldstream Av Ravelston Ave E Walden ( PROJECT LOCATION KERN PARK VICTORIA AVE E Regent Ave E Transcona East End Melrose Ave E **KEY PLAN** REGENT AVE E SCALE: N.T.S. LEGEND: NOTES: **AERIAL IMAGERY FROM CITY OF WINNIPEG (2016). PAVEMENT CORE (TREK 2021)** 



Z./Projects/1000 Soils LabtLab Projects/1000 Lab Projects/1000 Lab Projects/1000 -043 WSP/1000-043-20 2022 Local Streets Package (22-R-06)\(3\) Survey and Dwg\(3\) 4 CAD\(3\) 4.3 Working Folder, 2022-01-31 1:54:16 PM

WIDLAKE ST CRANBROOK BAY CAMROSE BAY WAYOATA ST PC23 COLDSTREAM AVE PC20 Park Manor Care Home Subway WALDEN CRESCENT PROJECT LOCATION PC21 Victoria Jason Park Colle Pieri Walden Crescent Victoria Ave E Victoria Ave E VICTORIA AVE E **KEY PLAN** SCALE: N.T.S. LEGEND: NOTES: **AERIAL IMAGERY FROM CITY OF WINNIPEG (2016). PAVEMENT CORE (TREK 2021)** 



| Α | D | D | e | n | ď | ix | Α |
|---|---|---|---|---|---|----|---|
| - | ~ | ~ | · |   | • |    | , |

Summary Table, Pavement Core Compressive Strength and Photographs of Pavement Core Samples - Dubuc St



#### 2022 Local Street Package - 22-R-06

#### **Dubuc Street: between Enfield Crescent and Des Meurons Street**

|                      |                                                                                                                                          | Paveme  | ent Surface       |          | Pavement Structure Ma | terial                                     |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|----------|-----------------------|--------------------------------------------|
| Pavement<br>Core No. | Pavement Core Location                                                                                                                   | Type    | Thickness<br>(mm) | Туре     | Thickness (mm)        | Corrected<br>Compressive<br>Strength (Mpa) |
| PC22-01              | UTM : 5526678 m N, 635314 m E; Located 10 m East of Traverse Ave and Dubuc St intersection, Eastbound lane, 1.5 m North of South curb.   | Asphalt | 90                | Concrete | 190                   | 63.21                                      |
| PC22-02              | UTM : 5526693 m N, 635399 m E; Located 12 m East of Genthon St and Dubuc St intersection, Westbound lane, 1.5 m South of North curb.     | Asphalt | 50                | Concrete | 200                   | -                                          |
| PC22-03              | UTM : 5526695 m N, 635487 m E; Located 20 m East of Champlain St and Dubuc St intersection, Eastbound lane, 1.5 m North of South curb.   | Asphalt | 50                | Concrete | 200                   | -                                          |
| PC22-04              | UTM : 5526704 m N, 635544 m E; Located 23 m West of Braemar Ave and Dubuc St intersection, Westbound lane, 1.5 m South of North curb.    | Asphalt | 50                | Concrete | 190                   | -                                          |
| PC22-05              | UTM: 5526717 m N, 635630 m E; Located 30 m West of Hill St and Dubuc St intersection, Eastbound lane, 1.5 m North of South curb.         | Asphalt | 60                | Concrete | 200                   | 69.73                                      |
| PC22-06              | UTM : 5526718 m N, 635711 m E; Located 61 m West of Des Meurons St and Dubuc St intersection, Westbound lane, 1.5 m South of North curb. | Asphalt | 60                | Concrete | 190                   | 56.53                                      |





Photo 1: Pavement Core Sample at PC22-01



Photo 2: Pavement Core Sample at PC22-02





Photo 3: Pavement Core Sample at PC22-03



Photo 4: Pavement Core Sample at PC22-04

Project No. 1000 043 20 January 2022





Photo 5: Pavement Core Sample at PC22-05



Photo 6: Pavement Core Sample at PC22-06



# **Concrete Core Compressive Strength Report**

CSA A23.2-14C

Project No. 1000-043-20 Date January 28, 2022

2022 Local Street Package - 22-R-06 Technician NM Project

Client WSP Group Canada Inc.

|               |         | Date       | Date of<br>Break | Age at<br>Break |    | Diam. Length (mm) | gth Moisture | Compressive S                 | Compressive Strength (MPa) |      | (                | Correc    | tion Fa  | actors* | *                  |
|---------------|---------|------------|------------------|-----------------|----|-------------------|--------------|-------------------------------|----------------------------|------|------------------|-----------|----------|---------|--------------------|
| Core Location | Core ID | Received   |                  |                 |    |                   |              | Uncorrected f <sub>conc</sub> | Corrected* f <sub>c</sub>  | Туре | F <sub>I/d</sub> | $F_{dia}$ | $F_{mc}$ | $F_D$   | F <sub>reinf</sub> |
| Dubuc Street  | PC01    | 2022-01-13 | 2022-01-26       | -               | 95 | 150               | Soaked 48 h  | 55.39                         | 63.21                      | 1    | 0.98             | 1.00      | 1.09     | 1.06    | 1.00               |
| Dubuc Street  | PC05    | 2022-01-13 | 2022-01-26       | -               | 95 | 181               | Soaked 48 h  | 60.15                         | 69.73                      | 1    | 1.00             | 1.00      | 1.09     | 1.06    | 1.00               |
| Dubuc Street  | PC06    | 2022-01-13 | 2022-01-26       | -               | 95 | 176               | Soaked 48 h  | 48.83                         | 56.53                      | 1    | 1.00             | 1.00      | 1.09     | 1.06    | 1.00               |
|               |         |            |                  |                 |    |                   |              |                               |                            |      |                  |           |          |         |                    |


#### Comments

\*Correction factors F<sub>I/d</sub>, F<sub>dia</sub>, F<sub>mc</sub>, and F<sub>D</sub> calculated as per ACI 214.4R-03, and correction factor F<sub>reinf</sub> calculated as per Khoury et al. (2014):  $f_c = f_{conc}F_{l/d}F_{dia}F_{mc}F_DF_{reinf}$ 











Type 6

Reviewed by (print):

Angela Fidler-Kliewer, C. Tech. Signature: Angela Fidler-Kliewer

| Table 1 | Factors in | volved in | interpretation | of core | results | by different co | odes.              |
|---------|------------|-----------|----------------|---------|---------|-----------------|--------------------|
|         |            |           |                |         |         |                 | 21 300 000 000 000 |

| List | Code/standard                        | Edition | Factors Considered |          |             |          |        |           |  |  |  |  |
|------|--------------------------------------|---------|--------------------|----------|-------------|----------|--------|-----------|--|--|--|--|
|      |                                      |         | Aspect ratio       | Diameter | Reinforcing | Moisture | Damage | Direction |  |  |  |  |
| 1    | Egyptian Code/Standard Specification | 2008    | <b>√</b>           |          | <b>√</b>    |          |        | <b>√</b>  |  |  |  |  |
| 2    | British Code/Standard Specification  | 2003    | V                  |          | 1           |          |        | 1         |  |  |  |  |
| 3    | American Concrete Institute ACI      | 1998    | <b>V</b>           |          |             |          |        |           |  |  |  |  |
|      |                                      | 2012    | 1                  | V        |             | 1        | 1      |           |  |  |  |  |
| 4    | European Standard Specification      | 1998    | 1                  | 1        | 1           |          | 1      |           |  |  |  |  |
|      |                                      | 2009    | 1                  |          | J           |          |        |           |  |  |  |  |
| 5    | Japanese Standard                    | 1998    | 1                  |          |             |          |        |           |  |  |  |  |
| 6    | Concrete Society                     | 1987    | 1                  |          | 1           |          | 1      | 1         |  |  |  |  |

In addition, for core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of  $(\Phi_r * d)$  is considered. If the bars are further apart, their combined effect should be assessed by replacing the term  $(\Phi_r * d)$  by the term  $(\sum \Phi_r * d)$ .

It should be pointed out that above equations used to interpret the core concrete strength to the in-situ concrete cube strength have been developed based on a set of assumptions and through many converting process. It is also of interest to note that the damage effect is considered in the development of the formulas in indirect way. The subject derivation and detailed formulas may be seen elsewhere [14].

#### 3.2. American Concrete Institute (ACI)

#### 3.2.1. Former ACI Code (2002) & Current ASTM (2009)

The methodology of core interpretation given in the former ACI code was remained without changes for decades and up to Year (2003). The in-place strength of concrete cylinder at the location from which a core test specimen was extracted can be computed using the equation:

$$f_{\rm cy} = F_{l/d} \cdot f_{\rm core} \tag{4}$$

where  $f_{\rm cy}$  is the equivalent in-place concrete cylinder strength,  $f_{\rm core}$  is concrete core strength, and  $F_{l/d}$  is the strength correction factor for aspect ratio.

The former ACI code does not include any equation to calculate the correction factor  $(F_{I/d})$ ; however, the code gives different values for this term that is associated with different aspect ratios (I/d) as given in Table 2. It should also be noted that the approach of current ASTM is similar to that mentioned above. The only considered variable is the aspect ratio (I/d). It should be noted that identical approach to that mentioned above is still effective in ASTM C42/C42M-03 [10].

## 3.2.2. Current ACI Code (2012) [15]

Starting from Year 2003, significant changes have been made to the relevant ACI Code provisions regarding the interpreta-

**Table 2** Mean values for factor  $F_{I/d}$  according to ACI Code (1998) and ASTM.

|           | Specimen | length-to-dian | neter ratio, l/d |      |
|-----------|----------|----------------|------------------|------|
|           | 1.00     | 1.25           | 1.50             | 1.75 |
| $F_{l/d}$ | 0.87     | 0.93           | 0.96             | 0.98 |

tion of core strength test results. New factors have been considered. These include core diameter, moisture content of core sample, core damage associated with drilling, in addition to the effect of aspect ratio that was previously considered in the former ACI edition (1998). According to the ACI 214.4R-03, the in-place concrete strength can be computed using the equation:

using the equation:
$$f_c = F_{i/d} \cdot F_{dia} \cdot F_{mc} \cdot F_D \cdot f_{core} \quad F_{core} \quad F_{core} \quad (5)$$

where  $f_c$  is the equivalent in-place concrete cylinder strength,  $f_{\rm core}$  is concrete core strength,  $F_{l/d}$  is strength correction factor for aspect ratio,  $F_{\rm dia}$  is strength correction factors for diameter,  $F_{\rm mc}$  is strength correction factor for moisture condition of core sample, and  $F_D$  is the strength correction factor that accounts for effect of damage sustained during core drilling including micro-cracking and undulations at the drilled surface and cutting through coarse-aggregate particles that may subsequently pop out during testing.

The ACI committee considered the correction factors presented in Table 3 for converting core strengths into equivalent in-place strengths based on the work reported by Bartlett and MacGregor [6]. It should be noted that the magnitude of

Table 3 Strength correction factors according to ACI 214.4R-03

| List             | Factors                              | Mean values                                                             |
|------------------|--------------------------------------|-------------------------------------------------------------------------|
| (1) <sup>b</sup> | $F_{l/d}: l/d$ ratio                 |                                                                         |
|                  | As-received                          | $1 - \{0.130 - \alpha f_{\text{core}}\} \left(2 - \frac{l}{d}\right)^2$ |
|                  | Soaked 48 h                          | $1 - \{0.117 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$ |
|                  | Air dried                            | $1 - \{0.144 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$ |
| (2)              | F <sub>dia</sub> : core diameter     |                                                                         |
|                  | 50 mm                                | 1.06                                                                    |
|                  | 100 mm                               | 1.00                                                                    |
|                  | 150 mm                               | 0.98                                                                    |
| (3)              | $F_{\rm mc}$ : core moisture content |                                                                         |
|                  | As-received                          | 1.00                                                                    |
|                  | Soaked 48 h                          | 1.09                                                                    |
|                  | Air dried <sup>a</sup>               | 0.96                                                                    |
| (4)              | $F_D$ : damage due to drilling       | 1.06                                                                    |

<sup>&</sup>lt;sup>a</sup> Standard treatment specified in ASTM C 42/C 42M.

<sup>&</sup>lt;sup>b</sup> Constant  $\alpha$  equals 4.3(10<sup>-4</sup>) 1/MPa for  $f_{core}$  in MPa.

| Table 6    | List of co | omparisor | is betw | een tes | ted cor | es to de | etermin | e.  |     |    |    |       |    |          |          |    |             |   |
|------------|------------|-----------|---------|---------|---------|----------|---------|-----|-----|----|----|-------|----|----------|----------|----|-------------|---|
|            | A18        | A17       | A16     | A15     | A14     | A13      | A12     | A11 | A10 | A9 | A8 | A7    | A6 | A5       | A4       | A3 | A2          | A |
| A1         | +0         | •         | +0      | 10      | 10      |          | •       |     |     |    | •  | # PAR |    | <b>A</b> | $\wedge$ |    | <b>1/18</b> |   |
| A2         |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |             |   |
| A3         |            |           |         |         |         | -        |         |     |     | -  |    |       |    |          |          |    |             |   |
| A4         |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |             |   |
| A5         |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |             |   |
| A6         |            |           |         |         |         |          |         | -AO | HAO |    |    |       |    |          |          |    |             |   |
| A7         |            |           |         |         |         |          |         | -AO |     |    |    |       |    |          |          |    |             |   |
| A8         |            | •         |         | •       | •       |          |         |     |     |    |    |       |    |          |          |    |             |   |
| A9         |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |             |   |
| A10        |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |             |   |
| A11        |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |             |   |
| A12        |            | •         |         | •       | •       |          |         |     |     |    |    |       |    |          |          |    |             |   |
| A13        |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |             |   |
| A14        |            |           |         | •       |         |          |         |     |     |    |    |       |    |          |          |    |             |   |
| A15        |            | •         |         |         |         |          |         |     |     |    |    |       |    |          |          |    |             |   |
| A16        | ••         |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |             |   |
| <b>A17</b> | •          |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |             |   |
| 418        |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |             |   |

• Diameter of steel bar.

▲ Distance of steel bar from nearly end of core.

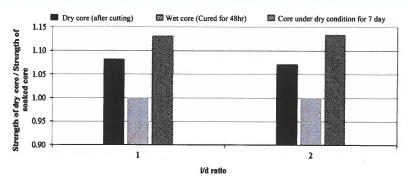
■ Number of steel bars and spacing between bars.

• Distance of steel bar from vertical axis of specimen.

This brief review indicated that the various proposed relationships for correction factors are all nonlinear. It should be noted that the equations given by the Egyptian Code takes into account most variables that may affect the interpretation of the results; however, the code ignores the deterioration of steel-concrete bond that may occur and also the position of the reinforcement from vertical axis of core specimens.

Weighted nonlinear regression analysis has been performed to determine the factor  $(F_{reinf})$  with the use of the software "SAS" package and "Data Fit." This shows that the correction factor for reinforcement  $(F_{reinf})$  is given by the following expression:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\left[\Phi_r \times r + \Phi_r \times (S/10)\right]}{\Phi_c * L} \times \frac{1.13}{f_{\text{core}}^{0.015}}\right] \times \frac{1.13}{f_{\text{core}}^{0.015}}$$


• For core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of  $(\Phi_r * d)$  is considered. If the bars are further apart, their combined effect is assessed by replacing the term  $(\Phi_r * r)$  by  $(\sum \Phi_r * r)$  as follows:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\sum [\Phi_r \times r + \Phi_r \times (S/10)]}{\Phi_r * I_r}\right] \times \frac{1.13}{\rho_{0.015}}$$
(13)

where  $F_{\text{reinf}}$  is the correction factor for reinforcement,  $\Phi_r$  is the diameter of the reinforcement,  $\Phi_c$  is the diameter of the concrete specimen, r is the distance of axis of bar from nearer end of specimen, S is the distance of axis of bar from axis of core specimen, L is the length of the specimen after end preparation by grinding or capping, and  $f_{core}$  is the concrete core strength (kg/cm<sup>2</sup>).

#### 6.1.6. Effect of moisture condition of core

Results of about 100 cores indicate that the strength of cores left to dry in air for 7 days is on average 13% greater than that of cores soaked at least 40 h before testing. The strength of cores with negligible moisture gradient and tested after cutting is found to be 7-9% larger than that of soaked cores as shown in Fig. 20. The authors strongly recommend to use a correction factor accounting for moisture condition  $(F_m)$  equals to 1.09 and 0.96, respectively, for cores tested after 48 h soaked in water and for those tested after 7 days dry in air.



Effect of core moisture condition on core strength for different aspect ratios (l/d).



Appendix B

Summary Table, Pavement Core Compressive Strength and Photographs of Pavement Core Samples - Harvard Ave E.



#### 2022 Local Street Package - 22-R-06

#### Harvard Avenue East: between Roanoke Street and Leola Street

|                      |                                                                                                                                        | Paveme  | ent Surface       | Pavement Structure Material |                |                                            |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|-----------------------------|----------------|--------------------------------------------|--|--|
| Pavement<br>Core No. | Pavement Core Location                                                                                                                 | Type    | Thickness<br>(mm) | Туре                        | Thickness (mm) | Corrected<br>Compressive<br>Strength (Mpa) |  |  |
| PC22-25              | UTM: 5529342 m N, 644071 m E; Located 26 m West of Harvard Ave E and Leola St intersection, Westbound lane, 1.5 m South of North curb. | Asphalt | -                 | Concrete                    | 170            | 58.49                                      |  |  |
|                      | South of North Curb.                                                                                                                   |         |                   |                             |                |                                            |  |  |
| DC22.26              | UTM: 5529339 m N, 644002 m E; Located in front of #427 Harvard Ave E, Eastbound lane, 1.5 m North of South curb.                       | Asphalt | -                 | Concrete                    | 160            | 74.83                                      |  |  |
| F G 2 2 - 2 0        | OTIVIT. 3325335 HTN, 044002 HTE, EUCATEU III HORE OF #427 Harvard Ave E, Eastbourd Faile, 1.5 HTNORR OF South Curb.                    |         |                   |                             |                |                                            |  |  |
| PC22-27              | UTM: 5529339 m N, 643949 m E; Located 11 m West of West corner of #421 Harvard Ave E, Westbound lane, 1.5 m South                      | Asphalt | -                 | Concrete                    | 170            | 57.99                                      |  |  |
| FU22-21              | of North curb.                                                                                                                         |         |                   |                             |                |                                            |  |  |



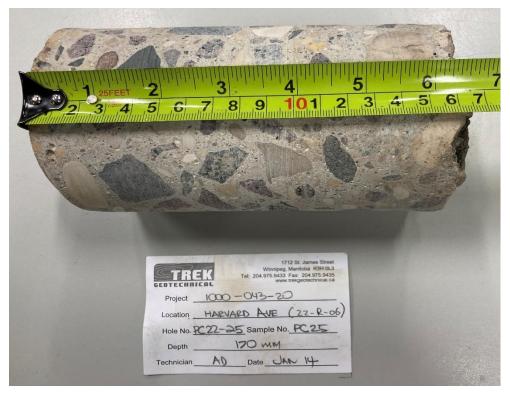



Photo 1: Pavement Core Sample at PC22-25



Photo 2: Pavement Core Sample at PC22-26





Photo 3: Pavement Core Sample at PC22-27



# **Concrete Core Compressive Strength Report**

CSA A23.2-14C

**Project No.** 1000-043-20 **Date** January 28, 2022

Project 2022 Local Street Package - 22-R-06 Technician NM

Client WSP Group Canada Inc.

|                     | Date Date of Age at Diam. Length Moisture |            | Compressive Moisture |       | Strength (MPa) | Break | (            | Correc                        | tion F                    | actors* | *                |           |          |       |             |
|---------------------|-------------------------------------------|------------|----------------------|-------|----------------|-------|--------------|-------------------------------|---------------------------|---------|------------------|-----------|----------|-------|-------------|
| Core Location       | Core ID Rec                               | Received   | Break                | Break |                | (mm)  | Conditioning | Uncorrected f <sub>conc</sub> | Corrected* f <sub>c</sub> | Туре    | F <sub>I/d</sub> | $F_{dia}$ | $F_{mc}$ | $F_D$ | $F_{reinf}$ |
| Harvard Avenue East | PC25                                      | 2022-01-14 | 2022-01-27           | -     | 95             | 152   | Soaked 48 h  | 51.19                         | 58.49                     | 1       | 0.98             | 1.00      | 1.09     | 1.06  | 1.00        |
| Harvard Avenue East | PC26                                      | 2022-01-14 | 2022-01-27           | -     | 95             | 134   | Soaked 48 h  | 66.54                         | 74.83                     | 1       | 0.97             | 1.00      | 1.09     | 1.06  | 1.00        |
| Harvard Avenue East | PC27                                      | 2022-01-14 | 2022-01-27           | -     | 95             | 154   | Soaked 48 h  | 50.67                         | 57.99                     | 1       | 0.99             | 1.00      | 1.09     | 1.06  | 1.00        |
|                     |                                           |            |                      |       |                |       |              |                               |                           |         |                  |           |          |       |             |

#### Comments

\*Correction factors  $F_{I/d}$ ,  $F_{dia}$ ,  $F_{mc}$ , and  $F_D$  calculated as per ACI 214.4R-03, and correction factor  $F_{reinf}$  calculated as per Khoury et al. (2014):  $f_c = f_{conc}F_{I/d}F_{dia}F_{mc}F_DF_{reinf}$ 













Reviewed by (print): Angela Fidler-Kliewer, C. Tech. Signature: Angela Fidler - Kliewer

| Table 1 | Factors in | volved in | interpretation | of core | results | by different co | odes.                   |
|---------|------------|-----------|----------------|---------|---------|-----------------|-------------------------|
|         |            |           |                |         |         |                 | The Broke Street Street |

| List | Code/standard                        | Edition | lition Factors Considered |          |             |          |        |           |  |  |  |  |
|------|--------------------------------------|---------|---------------------------|----------|-------------|----------|--------|-----------|--|--|--|--|
|      |                                      |         | Aspect ratio              | Diameter | Reinforcing | Moisture | Damage | Direction |  |  |  |  |
| 1    | Egyptian Code/Standard Specification | 2008    | <b>√</b>                  |          | <b>√</b>    |          |        | √         |  |  |  |  |
| 2    | British Code/Standard Specification  | 2003    | V                         |          | 1           |          |        | 1         |  |  |  |  |
| 3    | American Concrete Institute ACI      | 1998    | <b>V</b>                  |          |             |          |        |           |  |  |  |  |
|      |                                      | 2012    | 1                         | V        |             | 1        | 1      |           |  |  |  |  |
| 4    | European Standard Specification      | 1998    | 1                         | 1        | 1           |          | 1      |           |  |  |  |  |
|      |                                      | 2009    | 1                         |          | J           |          |        |           |  |  |  |  |
| 5    | Japanese Standard                    | 1998    | 1                         |          |             |          |        |           |  |  |  |  |
| 6    | Concrete Society                     | 1987    | 1                         |          | 1           |          | 1      | 1         |  |  |  |  |

In addition, for core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of  $(\Phi_r * d)$  is considered. If the bars are further apart, their combined effect should be assessed by replacing the term  $(\Phi_r * d)$  by the term  $(\sum \Phi_r * d)$ .

It should be pointed out that above equations used to interpret the core concrete strength to the in-situ concrete cube strength have been developed based on a set of assumptions and through many converting process. It is also of interest to note that the damage effect is considered in the development of the formulas in indirect way. The subject derivation and detailed formulas may be seen elsewhere [14].

#### 3.2. American Concrete Institute (ACI)

#### 3.2.1. Former ACI Code (2002) & Current ASTM (2009)

The methodology of core interpretation given in the former ACI code was remained without changes for decades and up to Year (2003). The in-place strength of concrete cylinder at the location from which a core test specimen was extracted can be computed using the equation:

$$f_{\rm cy} = F_{l/d} \cdot f_{\rm core} \tag{4}$$

where  $f_{\rm cy}$  is the equivalent in-place concrete cylinder strength,  $f_{\rm core}$  is concrete core strength, and  $F_{l/d}$  is the strength correction factor for aspect ratio.

The former ACI code does not include any equation to calculate the correction factor  $(F_{I/d})$ ; however, the code gives different values for this term that is associated with different aspect ratios (I/d) as given in Table 2. It should also be noted that the approach of current ASTM is similar to that mentioned above. The only considered variable is the aspect ratio (I/d). It should be noted that identical approach to that mentioned above is still effective in ASTM C42/C42M-03 [10].

## 3.2.2. Current ACI Code (2012) [15]

Starting from Year 2003, significant changes have been made to the relevant ACI Code provisions regarding the interpreta-

**Table 2** Mean values for factor  $F_{I/d}$  according to ACI Code (1998) and ASTM.

|           | Specimen | Specimen length-to-diameter ratio, $l/d$ |      |      |  |  |  |  |  |  |  |  |
|-----------|----------|------------------------------------------|------|------|--|--|--|--|--|--|--|--|
|           | 1.00     | 1.25                                     | 1.50 | 1.75 |  |  |  |  |  |  |  |  |
| $F_{l/d}$ | 0.87     | 0.93                                     | 0.96 | 0.98 |  |  |  |  |  |  |  |  |

tion of core strength test results. New factors have been considered. These include core diameter, moisture content of core sample, core damage associated with drilling, in addition to the effect of aspect ratio that was previously considered in the former ACI edition (1998). According to the ACI 214.4R-03, the in-place concrete strength can be computed using the equation:

using the equation:
$$f_c = F_{i/d} \cdot F_{dia} \cdot F_{mc} \cdot F_D \cdot f_{core} \quad F_{core} \quad F_{core} \quad (5)$$

where  $f_c$  is the equivalent in-place concrete cylinder strength,  $f_{\rm core}$  is concrete core strength,  $F_{l/d}$  is strength correction factor for aspect ratio,  $F_{\rm dia}$  is strength correction factors for diameter,  $F_{\rm mc}$  is strength correction factor for moisture condition of core sample, and  $F_D$  is the strength correction factor that accounts for effect of damage sustained during core drilling including micro-cracking and undulations at the drilled surface and cutting through coarse-aggregate particles that may subsequently pop out during testing.

The ACI committee considered the correction factors presented in Table 3 for converting core strengths into equivalent in-place strengths based on the work reported by Bartlett and MacGregor [6]. It should be noted that the magnitude of

Table 3 Strength correction factors according to ACI 214.4R-03

| List             | Factors                              | Mean values                                                             |
|------------------|--------------------------------------|-------------------------------------------------------------------------|
| (1) <sup>b</sup> | $F_{l/d}: l/d$ ratio                 |                                                                         |
|                  | As-received                          | $1 - \{0.130 - \alpha f_{\text{core}}\} \left(2 - \frac{l}{d}\right)^2$ |
|                  | Soaked 48 h                          | $1 - \{0.117 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$ |
|                  | Air dried                            | $1 - \{0.144 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$ |
| (2)              | F <sub>dia</sub> : core diameter     |                                                                         |
|                  | 50 mm                                | 1.06                                                                    |
|                  | 100 mm                               | 1.00                                                                    |
|                  | 150 mm                               | 0.98                                                                    |
| (3)              | $F_{\rm mc}$ : core moisture content |                                                                         |
|                  | As-received                          | 1.00                                                                    |
|                  | Soaked 48 h                          | 1.09                                                                    |
|                  | Air dried <sup>a</sup>               | 0.96                                                                    |
| (4)              | $F_D$ : damage due to drilling       | 1.06                                                                    |

<sup>&</sup>lt;sup>a</sup> Standard treatment specified in ASTM C 42/C 42M.

<sup>&</sup>lt;sup>b</sup> Constant  $\alpha$  equals 4.3(10<sup>-4</sup>) 1/MPa for  $f_{core}$  in MPa.

| Table 6    | List of co | omparisor | is betw | een tes | ted cor | es to de | etermin | e.  |     |    |    |       |    |          |          |    |    |   |
|------------|------------|-----------|---------|---------|---------|----------|---------|-----|-----|----|----|-------|----|----------|----------|----|----|---|
|            | A18        | A17       | A16     | A15     | A14     | A13      | A12     | A11 | A10 | A9 | A8 | A7    | A6 | A5       | A4       | A3 | A2 | A |
| A1         | +0         | •         | +0      | 10      | 10      |          | •       |     |     |    | •  | # PAR |    | <b>A</b> | $\wedge$ |    |    |   |
| A2         |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |    |   |
| A3         |            |           |         |         |         | -        |         |     |     | -  |    |       |    |          |          |    |    |   |
| A4         |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |    |   |
| A5         |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |    |   |
| A6         |            |           |         |         |         |          |         | -AO | HAO |    |    |       |    |          |          |    |    |   |
| A7         |            |           |         |         |         |          |         | -AO |     |    |    |       |    |          |          |    |    |   |
| A8         |            | •         |         | •       | •       |          |         |     |     |    |    |       |    |          |          |    |    |   |
| A9         |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |    |   |
| A10        |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |    |   |
| A11        |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |    |   |
| A12        |            | •         |         | •       | •       |          |         |     |     |    |    |       |    |          |          |    |    |   |
| A13        |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |    |   |
| A14        |            |           |         | •       |         |          |         |     |     |    |    |       |    |          |          |    |    |   |
| A15        |            | •         |         |         |         |          |         |     |     |    |    |       |    |          |          |    |    |   |
| A16        | ••         |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |    |   |
| <b>A17</b> | •          |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |    |   |
| 418        |            |           |         |         |         |          |         |     |     |    |    |       |    |          |          |    |    |   |

• Diameter of steel bar.

▲ Distance of steel bar from nearly end of core.

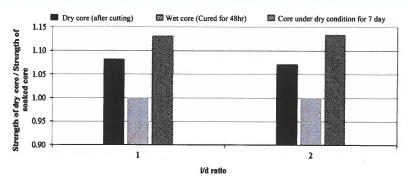
■ Number of steel bars and spacing between bars.

• Distance of steel bar from vertical axis of specimen.

This brief review indicated that the various proposed relationships for correction factors are all nonlinear. It should be noted that the equations given by the Egyptian Code takes into account most variables that may affect the interpretation of the results; however, the code ignores the deterioration of steel-concrete bond that may occur and also the position of the reinforcement from vertical axis of core specimens.

Weighted nonlinear regression analysis has been performed to determine the factor  $(F_{reinf})$  with the use of the software "SAS" package and "Data Fit." This shows that the correction factor for reinforcement  $(F_{reinf})$  is given by the following expression:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\left[\Phi_r \times r + \Phi_r \times (S/10)\right]}{\Phi_c * L} \times \frac{1.13}{f_{\text{core}}^{0.015}}\right] \times \frac{1.13}{f_{\text{core}}^{0.015}}$$


• For core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of  $(\Phi_r * d)$  is considered. If the bars are further apart, their combined effect is assessed by replacing the term  $(\Phi_r * r)$  by  $(\sum \Phi_r * r)$  as follows:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\sum [\Phi_r \times r + \Phi_r \times (S/10)]}{\Phi_r * I_r}\right] \times \frac{1.13}{\rho_{0.015}}$$
(13)

where  $F_{\text{reinf}}$  is the correction factor for reinforcement,  $\Phi_r$  is the diameter of the reinforcement,  $\Phi_c$  is the diameter of the concrete specimen, r is the distance of axis of bar from nearer end of specimen, S is the distance of axis of bar from axis of core specimen, L is the length of the specimen after end preparation by grinding or capping, and  $f_{core}$  is the concrete core strength (kg/cm<sup>2</sup>).

#### 6.1.6. Effect of moisture condition of core

Results of about 100 cores indicate that the strength of cores left to dry in air for 7 days is on average 13% greater than that of cores soaked at least 40 h before testing. The strength of cores with negligible moisture gradient and tested after cutting is found to be 7-9% larger than that of soaked cores as shown in Fig. 20. The authors strongly recommend to use a correction factor accounting for moisture condition  $(F_m)$  equals to 1.09 and 0.96, respectively, for cores tested after 48 h soaked in water and for those tested after 7 days dry in air.



Effect of core moisture condition on core strength for different aspect ratios (l/d).



| Αp | pe | nd | ix | C |
|----|----|----|----|---|
|    |    |    |    |   |

Summary Table, Pavement Core Compressive Strength and Photographs of Pavement Core Samples - Lawndale Ave



## 2022 Local Street Package - 22-R-06

## Lawndale Avenue: between Lyndale Drive and Highfield Street

|                      |                                                                                                                                            | Paveme  | ent Surface       | Pavement Structure Material |                |                                            |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|-----------------------------|----------------|--------------------------------------------|--|--|
| Pavement<br>Core No. | Pavement Core Location                                                                                                                     | Туре    | Thickness<br>(mm) | Туре                        | Thickness (mm) | Corrected<br>Compressive<br>Strength (Mpa) |  |  |
| PC22-28              | UTM: 5526432 m N, 634448 m E; Located 36 m South of Lawndale Ave and Highfield St intersection, Northbound lane, 1.5 m West of East curb.  | Asphalt | -                 | Concrete                    | 170            | 78.70                                      |  |  |
| PC22-29              | UTM: 5526368 m N, 634451 m E; Located 105 m South of Lawndale Ave and Highfield St intersection, Southbound lane, 1.5 m East of West curb. | Asphalt | -                 | Concrete                    | 160            | 87.59                                      |  |  |
| PC22-30              | UTM: 5526308 m N, 634447 m E; Located 15 m North of Coniston St and Lawndale Ave intersection, Northbound lane, 1.5 m West of East curb.   | Asphalt | 10                | Concrete                    | 160            | -                                          |  |  |
| PC22-31              | UTM: 5526226 m N, 634448 m E; Located 71 m South of Coniston St and Lawndale Ave intersection, Southbound lane, 1.5 m East of West curb.   | Asphalt | -                 | Concrete                    | 160            | 67.57                                      |  |  |
| PC22-32              | UTM : 5526141 m N, 634443 m E; Located 169 m South of Coniston St and Lawndale Ave intersection, Northbound lane, 1.5 m West of East curb. | Asphalt | -                 | Concrete                    | 150            | -                                          |  |  |
| PC22-33              | UTM : 5526053 m N, 634446 m E; Located 27 m North of Lyndale Dr and Lawndale Ave intersection, Southbound lane, 1.5 m East of West curb.   | Asphalt | -                 | Concrete                    | 150            | -                                          |  |  |





Photo 1: Pavement Core Sample at PC22-28

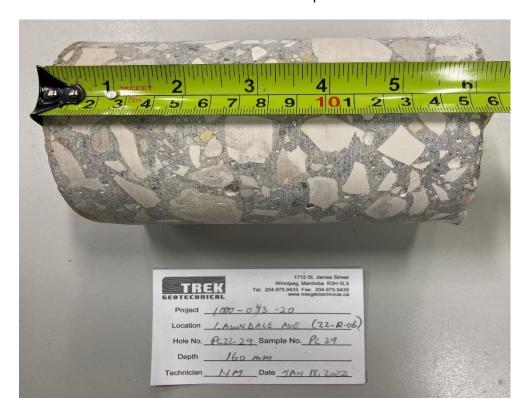



Photo 2: Pavement Core Sample at PC22-29





Photo 3: Pavement Core Sample at PC22-30



Photo 4: Pavement Core Sample at PC22-31





Photo 5: Pavement Core Sample at PC22-32



Photo 6: Pavement Core Sample at PC22-33



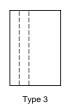
# **Concrete Core Compressive Strength Report**

CSA A23.2-14C

**Project No.** 1000-043-20 **Date** January 28, 2022

Project 2022 Local Street Package - 22-R-06 Technician NM

Client WSP Group Canada Inc.


|                 |         | Date       | Date of    | Age at | Diam. | Length | Moisture     | Compressive S                 | Strength (MPa)            | Break | C                | Correc    | tion F          | actors*        | *                  |
|-----------------|---------|------------|------------|--------|-------|--------|--------------|-------------------------------|---------------------------|-------|------------------|-----------|-----------------|----------------|--------------------|
| Core Location   | Core ID | Received   | Break      | Break  | (mm)  | (mm)   | Conditioning | Uncorrected f <sub>conc</sub> | Corrected* f <sub>c</sub> | Type  | F <sub>I/d</sub> | $F_{dia}$ | F <sub>mc</sub> | F <sub>D</sub> | F <sub>reinf</sub> |
| Lawndale Avenue | PC28    | 2022-01-18 | 2022-01-27 | -      | 95    | 162    | Soaked 48 h  | 68.35                         | 78.70                     | 1     | 0.99             | 1.00      | 1.09            | 1.06           | 1.00               |
| Lawndale Avenue | PC29    | 2022-01-18 | 2022-01-27 | -      | 95    | 150    | Soaked 48 h  | 76.63                         | 87.59                     | 1     | 0.99             | 1.00      | 1.09            | 1.06           | 1.00               |
| Lawndale Avenue | PC31    | 2022-01-18 | 2022-01-27 | -      | 95    | 151    | Soaked 48 h  | 59.15                         | 67.57                     | 1     | 0.98             | 1.00      | 1.09            | 1.06           | 1.00               |
|                 |         |            |            |        |       |        |              |                               |                           |       |                  |           |                 |                |                    |

# Comments

\*Correction factors  $F_{I/d}$ ,  $F_{dia}$ ,  $F_{mc}$ , and  $F_D$  calculated as per ACI 214.4R-03, and correction factor  $F_{reinf}$  calculated as per Khoury et al. (2014):  $f_c = f_{conc}F_{I/d}F_{dia}F_{mc}F_DF_{reinf}$ 













Reviewed by (print): Angela Fidler-Kliewer, C. Tech. Signature: Angela Fibler - Kliewer

| Table 1         | Factors involved | in interpretation         | of core results                            | by different codes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------|------------------|---------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A SECURITION OF |                  | I SAN TO SERVICE STATE OF | and the state of the state of the state of | The state of the s |

| List | Code/standard                        | Edition | Factors Considered |          |             |          |        |           |  |  |  |  |
|------|--------------------------------------|---------|--------------------|----------|-------------|----------|--------|-----------|--|--|--|--|
|      |                                      |         | Aspect ratio       | Diameter | Reinforcing | Moisture | Damage | Direction |  |  |  |  |
| 1    | Egyptian Code/Standard Specification | 2008    | <b>√</b>           |          | <b>√</b>    |          |        | <b>√</b>  |  |  |  |  |
| 2    | British Code/Standard Specification  | 2003    | 1                  |          | 1           |          |        | 1         |  |  |  |  |
| 3    | American Concrete Institute ACI      | 1998    | 1                  |          |             |          |        |           |  |  |  |  |
|      |                                      | 2012    | 1                  | <b>√</b> |             | V        | 1      |           |  |  |  |  |
| 4    | European Standard Specification      | 1998    | 1                  | <b>V</b> | <b>√</b>    |          | 1      |           |  |  |  |  |
|      |                                      | 2009    | 1                  |          | 1           |          |        |           |  |  |  |  |
| 5    | Japanese Standard                    | 1998    | 1                  |          |             |          |        |           |  |  |  |  |
| 6    | Concrete Society                     | 1987    | 1                  |          | 1           |          | 1      | 1         |  |  |  |  |

In addition, for core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of  $(\Phi_r * d)$  is considered. If the bars are further apart, their combined effect should be assessed by replacing the term  $(\Phi_r * d)$  by the term  $(\sum \Phi_r * d)$ .

It should be pointed out that above equations used to interpret the core concrete strength to the in-situ concrete cube strength have been developed based on a set of assumptions and through many converting process. It is also of interest to note that the damage effect is considered in the development of the formulas in indirect way. The subject derivation and detailed formulas may be seen elsewhere [14].

# 3.2. American Concrete Institute (ACI)

# 3.2.1. Former ACI Code (2002) & Current ASTM (2009)

The methodology of core interpretation given in the former ACI code was remained without changes for decades and up to Year (2003). The in-place strength of concrete cylinder at the location from which a core test specimen was extracted can be computed using the equation:

$$f_{\rm cy} = F_{l/d} \cdot f_{\rm core} \tag{4}$$

where  $f_{\rm cy}$  is the equivalent in-place concrete cylinder strength,  $f_{\rm core}$  is concrete core strength, and  $F_{l/d}$  is the strength correction factor for aspect ratio.

The former ACI code does not include any equation to calculate the correction factor  $(F_{I/d})$ ; however, the code gives different values for this term that is associated with different aspect ratios (I/d) as given in Table 2. It should also be noted that the approach of current ASTM is similar to that mentioned above. The only considered variable is the aspect ratio (I/d). It should be noted that identical approach to that mentioned above is still effective in ASTM C42/C42M-03 [10].

# 3.2.2. Current ACI Code (2012) [15]

Starting from Year 2003, significant changes have been made to the relevant ACI Code provisions regarding the interpreta-

**Table 2** Mean values for factor  $F_{l/d}$  according to ACI Code (1998) and ASTM.

|           | Specimen | Specimen length-to-diameter ratio, $l/d$ |      |      |  |  |  |  |  |  |
|-----------|----------|------------------------------------------|------|------|--|--|--|--|--|--|
|           | 1.00     | 1.25                                     | 1.50 | 1.75 |  |  |  |  |  |  |
| $F_{l/d}$ | 0.87     | 0.93                                     | 0.96 | 0.98 |  |  |  |  |  |  |

tion of core strength test results. New factors have been considered. These include core diameter, moisture content of core sample, core damage associated with drilling, in addition to the effect of aspect ratio that was previously considered in the former ACI edition (1998). According to the ACI 214.4R-03, the in-place concrete strength can be computed using the equation:

using the equation:
$$f_c = F_{I/d} \cdot F_{dia} \cdot F_{mc} \cdot F_D \cdot f_{core} \quad F_{core} \quad F_{core} \quad (5)$$

where  $f_c$  is the equivalent in-place concrete cylinder strength,  $f_{\rm core}$  is concrete core strength,  $F_{l/d}$  is strength correction factor for aspect ratio,  $F_{\rm dia}$  is strength correction factors for diameter,  $F_{\rm mc}$  is strength correction factor for moisture condition of core sample, and  $F_D$  is the strength correction factor that accounts for effect of damage sustained during core drilling including micro-cracking and undulations at the drilled surface and cutting through coarse-aggregate particles that may subsequently pop out during testing.

The ACI committee considered the correction factors presented in Table 3 for converting core strengths into equivalent in-place strengths based on the work reported by Bartlett and MacGregor [6]. It should be noted that the magnitude of

Table 3 Strength correction factors according to ACI 214.4R-03

| List             | Factors                              | Mean values                                                             |
|------------------|--------------------------------------|-------------------------------------------------------------------------|
| (1) <sup>b</sup> | $F_{l/d}: l/d$ ratio                 |                                                                         |
|                  | As-received                          | $1 - \{0.130 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$ |
|                  | Soaked 48 h                          | $1 - \{0.117 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$ |
|                  | Air dried <sup>a</sup>               | $1 - \{0.144 - \alpha f_{\text{core}}\} (2 - \frac{1}{d})^2$            |
| (2)              | F <sub>dia</sub> : core diameter     |                                                                         |
|                  | 50 mm                                | 1.06                                                                    |
|                  | 100 mm                               | 1.00                                                                    |
|                  | 150 mm                               | 0.98                                                                    |
| (3)              | $F_{\rm mc}$ : core moisture content |                                                                         |
|                  | As-received                          | 1.00                                                                    |
|                  | Soaked 48 h                          | 1.09                                                                    |
|                  | Air dried <sup>a</sup>               | 0.96                                                                    |
| (4)              | $F_D$ : damage due to drilling       | 1.06                                                                    |

<sup>&</sup>lt;sup>a</sup> Standard treatment specified in ASTM C 42/C 42M.

<sup>&</sup>lt;sup>b</sup> Constant  $\alpha$  equals 4.3(10<sup>-4</sup>) 1/MPa for  $f_{core}$  in MPa.

| Table 6    | List of co | omparisor | is betw | een tes | ted cor | es to de | etermin | e.  |        |    |    |       |    |          |          |    |             |   |
|------------|------------|-----------|---------|---------|---------|----------|---------|-----|--------|----|----|-------|----|----------|----------|----|-------------|---|
|            | A18        | A17       | A16     | A15     | A14     | A13      | A12     | A11 | A10    | A9 | A8 | A7    | A6 | A5       | A4       | A3 | A2          | A |
| A1         | +0         | •         | +0      | 10      | 10      |          | •       |     | THE ST |    | •  | # PAR |    | <b>A</b> | $\wedge$ |    | <b>1/18</b> |   |
| A2         |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A3         |            |           |         |         |         | -        |         |     |        | -  |    |       |    |          |          |    |             |   |
| A4         |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A5         |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A6         |            |           |         |         |         |          |         | -AO | HAO    |    |    |       |    |          |          |    |             |   |
| A7         |            |           |         |         |         |          |         | -AO |        |    |    |       |    |          |          |    |             |   |
| A8         |            | •         |         | •       | •       |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A9         |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A10        |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A11        |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A12        |            | •         |         | •       | •       |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A13        |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A14        |            |           |         | •       |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A15        |            | •         |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A16        | ••         |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| <b>A17</b> | •          |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| 418        |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |

• Diameter of steel bar.

▲ Distance of steel bar from nearly end of core.

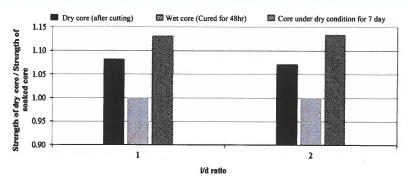
■ Number of steel bars and spacing between bars.

• Distance of steel bar from vertical axis of specimen.

This brief review indicated that the various proposed relationships for correction factors are all nonlinear. It should be noted that the equations given by the Egyptian Code takes into account most variables that may affect the interpretation of the results; however, the code ignores the deterioration of steel-concrete bond that may occur and also the position of the reinforcement from vertical axis of core specimens.

Weighted nonlinear regression analysis has been performed to determine the factor  $(F_{reinf})$  with the use of the software "SAS" package and "Data Fit." This shows that the correction factor for reinforcement  $(F_{reinf})$  is given by the following expression:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\left[\Phi_r \times r + \Phi_r \times (S/10)\right]}{\Phi_c * L} \times \frac{1.13}{f_{\text{core}}^{0.015}}\right]$$


• For core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of  $(\Phi_r * d)$  is considered. If the bars are further apart, their combined effect is assessed by replacing the term  $(\Phi_r * r)$  by  $(\sum \Phi_r * r)$  as follows:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\sum [\Phi_r \times r + \Phi_r \times (S/10)]}{\Phi_r * I_r}\right] \times \frac{1.13}{\rho_{0.015}}$$
(13)

where  $F_{\text{reinf}}$  is the correction factor for reinforcement,  $\Phi_r$  is the diameter of the reinforcement,  $\Phi_c$  is the diameter of the concrete specimen, r is the distance of axis of bar from nearer end of specimen, S is the distance of axis of bar from axis of core specimen, L is the length of the specimen after end preparation by grinding or capping, and  $f_{core}$  is the concrete core strength (kg/cm<sup>2</sup>).

# 6.1.6. Effect of moisture condition of core

Results of about 100 cores indicate that the strength of cores left to dry in air for 7 days is on average 13% greater than that of cores soaked at least 40 h before testing. The strength of cores with negligible moisture gradient and tested after cutting is found to be 7-9% larger than that of soaked cores as shown in Fig. 20. The authors strongly recommend to use a correction factor accounting for moisture condition  $(F_m)$  equals to 1.09 and 0.96, respectively, for cores tested after 48 h soaked in water and for those tested after 7 days dry in air.



Effect of core moisture condition on core strength for different aspect ratios (l/d).



| Λ | n | n | _ | n | A | ix |   |
|---|---|---|---|---|---|----|---|
| м | μ | μ | E |   | u | IX | L |

Summary Table, Pavement Core Compressive Strength and Photographs of Pavement Core Samples – Victoria Ave E.



# 2022 Local Street Package - 22-R-06

# Victoria Avenue East: between Roanoke Street and Leola Street

|                      |                                                                                                                                              | Paveme  | ent Surface       |          | Pavement Structure Ma | terial                                     |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|----------|-----------------------|--------------------------------------------|
| Pavement<br>Core No. | Pavement Core Location                                                                                                                       | Туре    | Thickness<br>(mm) | Туре     | Thickness (mm)        | Corrected<br>Compressive<br>Strength (Mpa) |
| PC22-34              | UTM: 5528992 m N, 644064 m E; Located 45 m West of Victoria Ave East and Leola St intersection, Westbound lane, 1.5 m South of North curb.   | Asphalt | -                 | Concrete | 160                   | 61.11                                      |
| PC22-35              | UTM: 5528986 m N, 644017 m E; Located 99 m West of Victoria Ave East and Leola St intersection, Eastbound lane, 1.5 m North of South curb.   | Asphalt | -                 | Concrete | 180                   | 50.58                                      |
| PC22-36              | UTM: 5528985 m N, 643982 m E; Located 35 m East of Victoria Ave East and Roanoke St intersection, Westbound lane, 1.5 m South of North curb. | Asphalt | -                 | Concrete | 150                   | 60.58                                      |



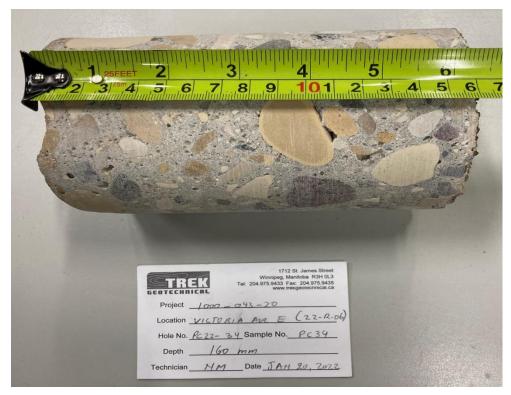



Photo 1: Pavement Core Sample at PC22-34



Photo 2: Pavement Core Sample at PC22-35



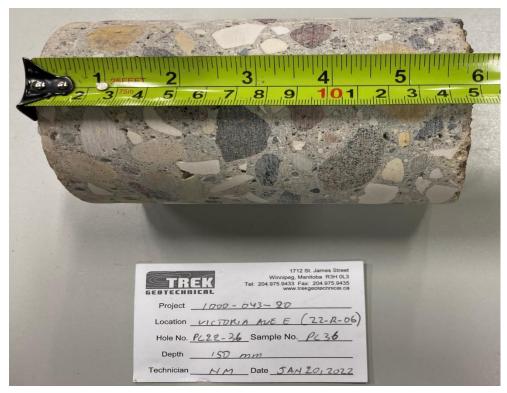



Photo 3: Pavement Core Sample at PC22-36



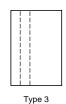
# **Concrete Core Compressive Strength Report**

CSA A23.2-14C

**Project No.** 1000-043-20 **Date** January 28, 2022

Project 2022 Local Street Package - 22-R-06 Technician NM

Client WSP Group Canada Inc.


|   |                      |         | Date       | Date of    | Age at | Diam. | Length | Moisture     | Compressive S                 | Strength (MPa)            | Break | (                | Correc    | tion F   | actors'        | *                  |
|---|----------------------|---------|------------|------------|--------|-------|--------|--------------|-------------------------------|---------------------------|-------|------------------|-----------|----------|----------------|--------------------|
|   | Core Location        | Core ID | Received   | Break      | Break  | (mm)  | (mm)   | Conditioning | Uncorrected f <sub>conc</sub> | Corrected* f <sub>c</sub> | Туре  | F <sub>I/d</sub> | $F_{dia}$ | $F_{mc}$ | F <sub>D</sub> | F <sub>reinf</sub> |
|   | Victoria Avenue East | PC34    | 2022-01-20 | 2022-01-27 | -      | 95    | 150    | Soaked 48 h  | 53.56                         | 61.11                     | 1     | 0.98             | 1.00      | 1.09     | 1.06           | 1.00               |
| Γ | Victoria Avenue East | PC35    | 2022-01-20 | 2022-01-26 | -      | 95    | 161    | Soaked 48 h  | 43.99                         | 50.58                     | 1     | 0.99             | 1.00      | 1.09     | 1.06           | 1.00               |
|   | Victoria Avenue East | PC36    | 2022-01-20 | 2022-01-26 | -      | 95    | 143    | Soaked 48 h  | 53.44                         | 60.58                     | 1     | 0.98             | 1.00      | 1.09     | 1.06           | 1.00               |
|   |                      |         |            |            |        |       |        |              |                               |                           |       |                  |           |          |                |                    |

# Comments

\*Correction factors  $F_{I/d}$ ,  $F_{dia}$ ,  $F_{mc}$ , and  $F_D$  calculated as per ACI 214.4R-03, and correction factor  $F_{reinf}$  calculated as per Khoury et al. (2014):  $f_c = f_{conc}F_{I/d}F_{dia}F_{mc}F_DF_{reinf}$ 











Type 6

Reviewed by (print): Angela Fidler-Kliewer, C. Tech. Signature: Angela Fidler-Kliewer

| Table 1         | Factors involved | in interpretation         | of core results                            | by different codes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------|------------------|---------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A SECURITION OF |                  | I SAN TO SERVICE STATE OF | and the state of the state of the state of | The state of the s |

| List | Code/standard                        | Edition | Factors Considered |          |             |          |        |           |  |  |  |  |
|------|--------------------------------------|---------|--------------------|----------|-------------|----------|--------|-----------|--|--|--|--|
|      |                                      |         | Aspect ratio       | Diameter | Reinforcing | Moisture | Damage | Direction |  |  |  |  |
| 1    | Egyptian Code/Standard Specification | 2008    | <b>√</b>           |          | <b>√</b>    |          |        | <b>√</b>  |  |  |  |  |
| 2    | British Code/Standard Specification  | 2003    | 1                  |          | 1           |          |        | 1         |  |  |  |  |
| 3    | American Concrete Institute ACI      | 1998    | 1                  |          |             |          |        |           |  |  |  |  |
|      |                                      | 2012    | 1                  | <b>√</b> |             | V        | 1      |           |  |  |  |  |
| 4    | European Standard Specification      | 1998    | 1                  | <b>V</b> | <b>√</b>    |          | 1      |           |  |  |  |  |
|      |                                      | 2009    | 1                  |          | 1           |          |        |           |  |  |  |  |
| 5    | Japanese Standard                    | 1998    | 1                  |          |             |          |        |           |  |  |  |  |
| 6    | Concrete Society                     | 1987    | 1                  |          | 1           |          | 1      | 1         |  |  |  |  |

In addition, for core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of  $(\Phi_r * d)$  is considered. If the bars are further apart, their combined effect should be assessed by replacing the term  $(\Phi_r * d)$  by the term  $(\sum \Phi_r * d)$ .

It should be pointed out that above equations used to interpret the core concrete strength to the in-situ concrete cube strength have been developed based on a set of assumptions and through many converting process. It is also of interest to note that the damage effect is considered in the development of the formulas in indirect way. The subject derivation and detailed formulas may be seen elsewhere [14].

# 3.2. American Concrete Institute (ACI)

# 3.2.1. Former ACI Code (2002) & Current ASTM (2009)

The methodology of core interpretation given in the former ACI code was remained without changes for decades and up to Year (2003). The in-place strength of concrete cylinder at the location from which a core test specimen was extracted can be computed using the equation:

$$f_{\rm cy} = F_{l/d} \cdot f_{\rm core} \tag{4}$$

where  $f_{\rm cy}$  is the equivalent in-place concrete cylinder strength,  $f_{\rm core}$  is concrete core strength, and  $F_{l/d}$  is the strength correction factor for aspect ratio.

The former ACI code does not include any equation to calculate the correction factor  $(F_{I/d})$ ; however, the code gives different values for this term that is associated with different aspect ratios (I/d) as given in Table 2. It should also be noted that the approach of current ASTM is similar to that mentioned above. The only considered variable is the aspect ratio (I/d). It should be noted that identical approach to that mentioned above is still effective in ASTM C42/C42M-03 [10].

# 3.2.2. Current ACI Code (2012) [15]

Starting from Year 2003, significant changes have been made to the relevant ACI Code provisions regarding the interpreta-

**Table 2** Mean values for factor  $F_{l/d}$  according to ACI Code (1998) and ASTM.

|           | Specimen | Specimen length-to-diameter ratio, $l/d$ |      |      |  |  |  |  |  |  |
|-----------|----------|------------------------------------------|------|------|--|--|--|--|--|--|
|           | 1.00     | 1.25                                     | 1.50 | 1.75 |  |  |  |  |  |  |
| $F_{l/d}$ | 0.87     | 0.93                                     | 0.96 | 0.98 |  |  |  |  |  |  |

tion of core strength test results. New factors have been considered. These include core diameter, moisture content of core sample, core damage associated with drilling, in addition to the effect of aspect ratio that was previously considered in the former ACI edition (1998). According to the ACI 214.4R-03, the in-place concrete strength can be computed using the equation:

using the equation:
$$f_c = F_{I/d} \cdot F_{dia} \cdot F_{mc} \cdot F_D \cdot f_{core} \quad F_{core} \quad F_{core} \quad (5)$$

where  $f_c$  is the equivalent in-place concrete cylinder strength,  $f_{\rm core}$  is concrete core strength,  $F_{l/d}$  is strength correction factor for aspect ratio,  $F_{\rm dia}$  is strength correction factors for diameter,  $F_{\rm mc}$  is strength correction factor for moisture condition of core sample, and  $F_D$  is the strength correction factor that accounts for effect of damage sustained during core drilling including micro-cracking and undulations at the drilled surface and cutting through coarse-aggregate particles that may subsequently pop out during testing.

The ACI committee considered the correction factors presented in Table 3 for converting core strengths into equivalent in-place strengths based on the work reported by Bartlett and MacGregor [6]. It should be noted that the magnitude of

Table 3 Strength correction factors according to ACI 214.4R-03

| List             | Factors                              | Mean values                                                             |
|------------------|--------------------------------------|-------------------------------------------------------------------------|
| (1) <sup>b</sup> | $F_{l/d}: l/d$ ratio                 |                                                                         |
|                  | As-received                          | $1 - \{0.130 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$ |
|                  | Soaked 48 h                          | $1 - \{0.117 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$ |
|                  | Air dried <sup>a</sup>               | $1 - \{0.144 - \alpha f_{\text{core}}\} (2 - \frac{1}{d})^2$            |
| (2)              | F <sub>dia</sub> : core diameter     |                                                                         |
|                  | 50 mm                                | 1.06                                                                    |
|                  | 100 mm                               | 1.00                                                                    |
|                  | 150 mm                               | 0.98                                                                    |
| (3)              | $F_{\rm mc}$ : core moisture content |                                                                         |
|                  | As-received                          | 1.00                                                                    |
|                  | Soaked 48 h                          | 1.09                                                                    |
|                  | Air dried <sup>a</sup>               | 0.96                                                                    |
| (4)              | $F_D$ : damage due to drilling       | 1.06                                                                    |

<sup>&</sup>lt;sup>a</sup> Standard treatment specified in ASTM C 42/C 42M.

<sup>&</sup>lt;sup>b</sup> Constant  $\alpha$  equals 4.3(10<sup>-4</sup>) 1/MPa for  $f_{core}$  in MPa.

| Table 6    | List of co | of comparisons between tested cores to determine. |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
|------------|------------|---------------------------------------------------|-----|-----|-----|-----|-----|-----|--------|----|----|-------|----|----------|----------|----|-------------|---|
|            | A18        | A17                                               | A16 | A15 | A14 | A13 | A12 | A11 | A10    | A9 | A8 | A7    | A6 | A5       | A4       | A3 | A2          | A |
| A1         | +0         | •                                                 | +0  | 10  | 10  |     | •   |     | THE ST |    | •  | # PAR |    | <b>A</b> | $\wedge$ |    | <b>1/18</b> |   |
| A2         |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A3         |            |                                                   |     |     |     | -   |     |     |        | -  |    |       |    |          |          |    |             |   |
| A4         |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A5         |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A6         |            |                                                   |     |     |     |     |     | -AO | HAO    |    |    |       |    |          |          |    |             |   |
| A7         |            |                                                   |     |     |     |     |     | -AO |        |    |    |       |    |          |          |    |             |   |
| A8         |            | •                                                 |     | •   | •   |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A9         |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A10        |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A11        |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A12        |            | •                                                 |     | •   | •   |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A13        |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A14        |            |                                                   |     | •   |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A15        |            | •                                                 |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A16        | ••         |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| <b>A17</b> | •          |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| 418        |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |

• Diameter of steel bar.

▲ Distance of steel bar from nearly end of core.

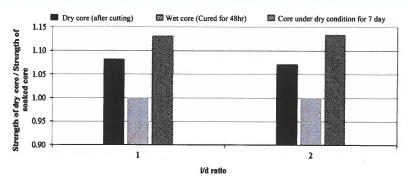
■ Number of steel bars and spacing between bars.

• Distance of steel bar from vertical axis of specimen.

This brief review indicated that the various proposed relationships for correction factors are all nonlinear. It should be noted that the equations given by the Egyptian Code takes into account most variables that may affect the interpretation of the results; however, the code ignores the deterioration of steel-concrete bond that may occur and also the position of the reinforcement from vertical axis of core specimens.

Weighted nonlinear regression analysis has been performed to determine the factor  $(F_{reinf})$  with the use of the software "SAS" package and "Data Fit." This shows that the correction factor for reinforcement  $(F_{reinf})$  is given by the following expression:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\left[\Phi_r \times r + \Phi_r \times (S/10)\right]}{\Phi_c * L} \times \frac{1.13}{f_{\text{core}}^{0.015}}\right]$$


• For core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of  $(\Phi_r * d)$  is considered. If the bars are further apart, their combined effect is assessed by replacing the term  $(\Phi_r * r)$  by  $(\sum \Phi_r * r)$  as follows:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\sum [\Phi_r \times r + \Phi_r \times (S/10)]}{\Phi_r * I_r}\right] \times \frac{1.13}{\rho_{0.015}}$$
(13)

where  $F_{\text{reinf}}$  is the correction factor for reinforcement,  $\Phi_r$  is the diameter of the reinforcement,  $\Phi_c$  is the diameter of the concrete specimen, r is the distance of axis of bar from nearer end of specimen, S is the distance of axis of bar from axis of core specimen, L is the length of the specimen after end preparation by grinding or capping, and  $f_{core}$  is the concrete core strength (kg/cm<sup>2</sup>).

# 6.1.6. Effect of moisture condition of core

Results of about 100 cores indicate that the strength of cores left to dry in air for 7 days is on average 13% greater than that of cores soaked at least 40 h before testing. The strength of cores with negligible moisture gradient and tested after cutting is found to be 7-9% larger than that of soaked cores as shown in Fig. 20. The authors strongly recommend to use a correction factor accounting for moisture condition  $(F_m)$  equals to 1.09 and 0.96, respectively, for cores tested after 48 h soaked in water and for those tested after 7 days dry in air.



Effect of core moisture condition on core strength for different aspect ratios (l/d).



**Appendix E** 

Summary Table, Pavement Core Compressive Strength and Photographs of Pavement Core Samples - Widlake St



# 2022 Local Street Package - 22-R-06

# Widlake Street: between Kildare Avenue West and Victoria Avenue East

|                      |                                                                                                                                            | Paveme  | ent Surface       |          | Pavement Structure Ma | terial                                     |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|----------|-----------------------|--------------------------------------------|
| Pavement<br>Core No. | Pavement Core Location                                                                                                                     | Туре    | Thickness<br>(mm) | Туре     | Thickness (mm)        | Corrected<br>Compressive<br>Strength (Mpa) |
| P(:://-14            | UTM : 5529491m N, 644789 m E; Located 68 m South of Kildare Ave E and Widlake St intersection, Northbound lane, 1.5 m West of East curb.   | Asphalt | 110               | Concrete | 170                   | 50.16                                      |
| PC22-20              | UTM : 5529242 m N, 644793 m E; Located 19 m South of Coldstream Ave and Widlake St intersection, Southbound lane, 1.5 m East of West curb. | Asphalt | -                 | Concrete | 170                   | -                                          |
| PC22-21              | UTM: 5529142 m N, 644800 m E; Located in front of #431 Widlake Ave, Northbound lane, 1.5 m West of East curb.                              | Asphalt | 80                | Concrete | 160                   | -                                          |
| PC22-22              | UTM: 5529052 m N, 644798 m E; Located in front of #407 Widlake Ave, Southbound lane, 2 m East of West curb.                                | Asphalt | 70                | Concrete | 160                   | 47.53                                      |
| PC22-23              | UTM: 5529335 m N, 644788 m E; Located in front of #483 Widlake St, Northbound lane, 2.5 m West of East curb.                               | Asphalt | 80                | Concrete | 170                   | 39.59                                      |
| P(:22-24             | UTM : 5529444 m N, 644790 m E; Located 23 m North of North corner of #503 Midlake St, Southbound lane, 1.5 m West of East curb.            | Asphalt | 50                | Concrete | 180                   | -                                          |





Photo 1: Pavement Core Sample at PC22-19



Photo 2: Pavement Core Sample at PC22-20





Photo 3: Pavement Core Sample at PC22-21

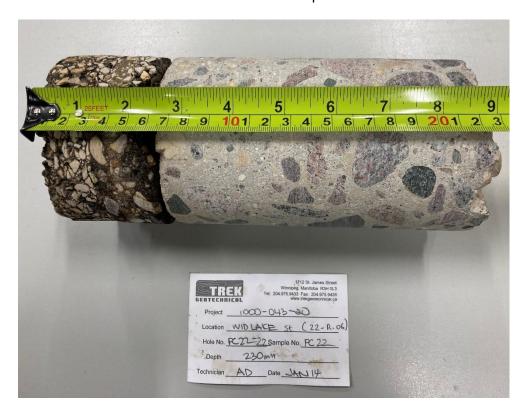



Photo 4: Pavement Core Sample at PC22-22





Photo 5: Pavement Core Sample at PC22-23

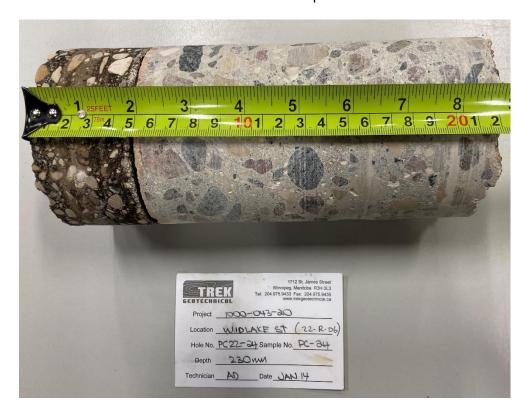



Photo 6: Pavement Core Sample at PC22-24



# **Concrete Core Compressive Strength Report**

CSA A23.2-14C

Project No. 1000-043-20 Date January 28, 2022

2022 Local Street Package - 22-R-06 Technician NM Project

Client WSP Group Canada Inc.

|                |         | Date       | Date of    | Date of Age at Diam. Length Moistu |      | Moisture | Compressive Strength (MPa) |                               | Break                     | (    | Correction Factors* |           |          |                |                    |  |
|----------------|---------|------------|------------|------------------------------------|------|----------|----------------------------|-------------------------------|---------------------------|------|---------------------|-----------|----------|----------------|--------------------|--|
| Core Location  | Core ID | Received   | Break      | Break                              | (mm) | n) (mm)  | Conditioning               | Uncorrected f <sub>conc</sub> | Corrected* f <sub>c</sub> | Туре | F <sub>I/d</sub>    | $F_{dia}$ | $F_{mc}$ | F <sub>D</sub> | F <sub>reinf</sub> |  |
| Widlake Street | PC19    | 2022-01-14 | 2022-01-26 | -                                  | 95   | 161      | Soaked 48 h                | 43.63                         | 50.16                     | 1    | 0.99                | 1.00      | 1.09     | 1.06           | 1.00               |  |
| Widlake Street | PC22    | 2022-01-14 | 2022-01-26 | -                                  | 95   | 155      | Soaked 48 h                | 41.52                         | 47.53                     | 1    | 0.99                | 1.00      | 1.09     | 1.06           | 1.00               |  |
| Widlake Street | PC23    | 2022-01-14 | 2022-01-26 | -                                  | 95   | 160      | Soaked 48 h                | 34.48                         | 39.59                     | 1    | 0.99                | 1.00      | 1.09     | 1.06           | 1.00               |  |
|                |         |            |            |                                    |      |          |                            |                               |                           |      |                     |           |          |                |                    |  |

# Comments

\*Correction factors F<sub>I/d</sub>, F<sub>dia</sub>, F<sub>mc</sub>, and F<sub>D</sub> calculated as per ACI 214.4R-03, and correction factor F<sub>reinf</sub> calculated as per Khoury et al. (2014):  $f_c = f_{conc}F_{l/d}F_{dia}F_{mc}F_DF_{reinf}$ 













Type 6

Reviewed by (print): Angela Fidler-Kliewer, C. Tech. Signature: Angela Fidler-Kliewer

| Table 1 | Factors in | volved in | interpretation | of core | results | by different co | odes.             |
|---------|------------|-----------|----------------|---------|---------|-----------------|-------------------|
|         |            |           |                |         |         |                 | an and the second |

| List | Code/standard                        | Edition | Factors Consi | idered   |             |          |        |           |
|------|--------------------------------------|---------|---------------|----------|-------------|----------|--------|-----------|
|      |                                      |         | Aspect ratio  | Diameter | Reinforcing | Moisture | Damage | Direction |
| 1    | Egyptian Code/Standard Specification | 2008    | <b>√</b>      |          | <b>√</b>    |          |        | <b>√</b>  |
| 2    | British Code/Standard Specification  | 2003    | V             |          | 1           |          |        | 1         |
| 3    | American Concrete Institute ACI      | 1998    | <b>V</b>      |          |             |          |        |           |
|      |                                      | 2012    | 1             | V        |             | 1        | 1      |           |
| 4    | European Standard Specification      | 1998    | 1             | 1        | 1           |          | 1      |           |
|      |                                      | 2009    | 1             |          | J           |          |        |           |
| 5    | Japanese Standard                    | 1998    | 1             |          |             |          |        |           |
| 6    | Concrete Society                     | 1987    | 1             |          | 1           |          | 1      | 1         |

In addition, for core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of  $(\Phi_r * d)$  is considered. If the bars are further apart, their combined effect should be assessed by replacing the term  $(\Phi_r * d)$  by the term  $(\sum \Phi_r * d)$ .

It should be pointed out that above equations used to interpret the core concrete strength to the in-situ concrete cube strength have been developed based on a set of assumptions and through many converting process. It is also of interest to note that the damage effect is considered in the development of the formulas in indirect way. The subject derivation and detailed formulas may be seen elsewhere [14].

# 3.2. American Concrete Institute (ACI)

# 3.2.1. Former ACI Code (2002) & Current ASTM (2009)

The methodology of core interpretation given in the former ACI code was remained without changes for decades and up to Year (2003). The in-place strength of concrete cylinder at the location from which a core test specimen was extracted can be computed using the equation:

$$f_{\rm cy} = F_{l/d} \cdot f_{\rm core} \tag{4}$$

where  $f_{\rm cy}$  is the equivalent in-place concrete cylinder strength,  $f_{\rm core}$  is concrete core strength, and  $F_{l/d}$  is the strength correction factor for aspect ratio.

The former ACI code does not include any equation to calculate the correction factor  $(F_{I/d})$ ; however, the code gives different values for this term that is associated with different aspect ratios (I/d) as given in Table 2. It should also be noted that the approach of current ASTM is similar to that mentioned above. The only considered variable is the aspect ratio (I/d). It should be noted that identical approach to that mentioned above is still effective in ASTM C42/C42M-03 [10].

# 3.2.2. Current ACI Code (2012) [15]

Starting from Year 2003, significant changes have been made to the relevant ACI Code provisions regarding the interpreta-

**Table 2** Mean values for factor  $F_{I/d}$  according to ACI Code (1998) and ASTM.

|           | Specimen | length-to-dian | neter ratio, l/d |      |
|-----------|----------|----------------|------------------|------|
|           | 1.00     | 1.25           | 1.50             | 1.75 |
| $F_{l/d}$ | 0.87     | 0.93           | 0.96             | 0.98 |

tion of core strength test results. New factors have been considered. These include core diameter, moisture content of core sample, core damage associated with drilling, in addition to the effect of aspect ratio that was previously considered in the former ACI edition (1998). According to the ACI 214.4R-03, the in-place concrete strength can be computed using the equation:

using the equation:
$$f_c = F_{i/d} \cdot F_{dia} \cdot F_{mc} \cdot F_D \cdot f_{core} \cdot F_{$$

where  $f_c$  is the equivalent in-place concrete cylinder strength,  $f_{\rm core}$  is concrete core strength,  $F_{l/d}$  is strength correction factor for aspect ratio,  $F_{\rm dia}$  is strength correction factors for diameter,  $F_{\rm mc}$  is strength correction factor for moisture condition of core sample, and  $F_D$  is the strength correction factor that accounts for effect of damage sustained during core drilling including micro-cracking and undulations at the drilled surface and cutting through coarse-aggregate particles that may subsequently pop out during testing.

The ACI committee considered the correction factors presented in Table 3 for converting core strengths into equivalent in-place strengths based on the work reported by Bartlett and MacGregor [6]. It should be noted that the magnitude of

Table 3 Strength correction factors according to ACI 214.4R-03

| List             | Factors                              | Mean values                                                             |
|------------------|--------------------------------------|-------------------------------------------------------------------------|
| (1) <sup>b</sup> | $F_{l/d}: l/d$ ratio                 |                                                                         |
|                  | As-received                          | $1 - \{0.130 - \alpha f_{\text{core}}\} \left(2 - \frac{l}{d}\right)^2$ |
|                  | Soaked 48 h                          | $1 - \{0.117 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$ |
|                  | Air dried                            | $1 - \{0.144 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$ |
| (2)              | F <sub>dia</sub> : core diameter     |                                                                         |
|                  | 50 mm                                | 1.06                                                                    |
|                  | 100 mm                               | 1.00                                                                    |
|                  | 150 mm                               | 0.98                                                                    |
| (3)              | $F_{\rm mc}$ : core moisture content |                                                                         |
|                  | As-received                          | 1.00                                                                    |
|                  | Soaked 48 h                          | 1.09                                                                    |
|                  | Air dried <sup>a</sup>               | 0.96                                                                    |
| (4)              | $F_D$ : damage due to drilling       | 1.06                                                                    |

<sup>&</sup>lt;sup>a</sup> Standard treatment specified in ASTM C 42/C 42M.

<sup>&</sup>lt;sup>b</sup> Constant  $\alpha$  equals 4.3(10<sup>-4</sup>) 1/MPa for  $f_{core}$  in MPa.

| Table 6    | List of co | of comparisons between tested cores to determine. |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
|------------|------------|---------------------------------------------------|-----|-----|-----|-----|-----|-----|--------|----|----|-------|----|----------|----------|----|-------------|---|
|            | A18        | A17                                               | A16 | A15 | A14 | A13 | A12 | A11 | A10    | A9 | A8 | A7    | A6 | A5       | A4       | A3 | A2          | A |
| A1         | +0         | •                                                 | +0  | 10  | 10  |     | •   |     | THE ST |    | •  | # PAR |    | <b>A</b> | $\wedge$ |    | <b>1/18</b> |   |
| A2         |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A3         |            |                                                   |     |     |     | -   |     |     |        | -  |    |       |    |          |          |    |             |   |
| A4         |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A5         |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A6         |            |                                                   |     |     |     |     |     | -AO | HAO    |    |    |       |    |          |          |    |             |   |
| A7         |            |                                                   |     |     |     |     |     | -AO |        |    |    |       |    |          |          |    |             |   |
| A8         |            | •                                                 |     | •   | •   |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A9         |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A10        |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A11        |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A12        |            | •                                                 |     | •   | •   |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A13        |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A14        |            |                                                   |     | •   |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A15        |            | •                                                 |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| A16        | ••         |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| <b>A17</b> | •          |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |
| 418        |            |                                                   |     |     |     |     |     |     |        |    |    |       |    |          |          |    |             |   |

• Diameter of steel bar.

▲ Distance of steel bar from nearly end of core.

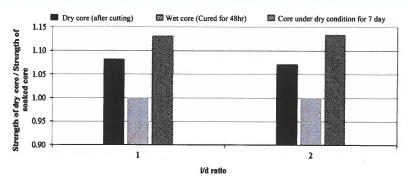
■ Number of steel bars and spacing between bars.

• Distance of steel bar from vertical axis of specimen.

This brief review indicated that the various proposed relationships for correction factors are all nonlinear. It should be noted that the equations given by the Egyptian Code takes into account most variables that may affect the interpretation of the results; however, the code ignores the deterioration of steel-concrete bond that may occur and also the position of the reinforcement from vertical axis of core specimens.

Weighted nonlinear regression analysis has been performed to determine the factor  $(F_{reinf})$  with the use of the software "SAS" package and "Data Fit." This shows that the correction factor for reinforcement  $(F_{reinf})$  is given by the following expression:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\left[\Phi_r \times r + \Phi_r \times (S/10)\right]}{\Phi_c * L} \times \frac{1.13}{f_{\text{core}}^{0.015}}\right]$$


• For core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of  $(\Phi_r * d)$  is considered. If the bars are further apart, their combined effect is assessed by replacing the term  $(\Phi_r * r)$  by  $(\sum \Phi_r * r)$  as follows:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\sum [\Phi_r \times r + \Phi_r \times (S/10)]}{\Phi_r * I_r}\right] \times \frac{1.13}{\rho_{0.015}}$$
(13)

where  $F_{\text{reinf}}$  is the correction factor for reinforcement,  $\Phi_r$  is the diameter of the reinforcement,  $\Phi_c$  is the diameter of the concrete specimen, r is the distance of axis of bar from nearer end of specimen, S is the distance of axis of bar from axis of core specimen, L is the length of the specimen after end preparation by grinding or capping, and  $f_{core}$  is the concrete core strength (kg/cm<sup>2</sup>).

# 6.1.6. Effect of moisture condition of core

Results of about 100 cores indicate that the strength of cores left to dry in air for 7 days is on average 13% greater than that of cores soaked at least 40 h before testing. The strength of cores with negligible moisture gradient and tested after cutting is found to be 7-9% larger than that of soaked cores as shown in Fig. 20. The authors strongly recommend to use a correction factor accounting for moisture condition  $(F_m)$  equals to 1.09 and 0.96, respectively, for cores tested after 48 h soaked in water and for those tested after 7 days dry in air.



Effect of core moisture condition on core strength for different aspect ratios (l/d).



Appendix F

Summary Table, Pavement Core Compressive Strength and Photographs of Pavement Core Samples – Winona St



# 2022 Local Street Package - 22-R-06

# Winona Street: between Kildare Avenue West and Regent Avenue West

|                      |                                                                                                                                            | Paveme  | ent Surface       |          | Pavement Structure Ma | terial                                     |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|----------|-----------------------|--------------------------------------------|
| Pavement<br>Core No. | Pavement Core Location                                                                                                                     | Туре    | Thickness<br>(mm) | Туре     | Thickness (mm)        | Corrected<br>Compressive<br>Strength (Mpa) |
| P(::22-11            | UTM : 5528915 m N, 643071 m E; Located 42 m North of Regent Ave and Winona St intersection, Southbound lane, 1 m West of East curb.        | Asphalt | 40                | Concrete | 140                   | -                                          |
|                      | UTM: 5529091 m N, 643062 m E; Located 38 m North of Yale Ave W and Winona St intersection, Southbound lane, 1.5 m East of West curb.       | Asphalt | 50                | Concrete | 140                   | -                                          |
|                      | UTM: 5528986 m N, 643069 m E; Located 26 m North of Victoria Ave W and Winona St intersection, Northbound lane, 1.5 m West of East curb.   | Asphalt | 40                | Concrete | 140                   | -                                          |
| PC22-14              | UTM: 5529176 m N, 6430062 m E; Located 36 m North of Ravelston Ave W and Winona St intersection, Northbound lane, 1.5 m West of East curb. | Asphalt | 40                | Concrete | 130                   | 48.05                                      |
| P(:22-15             | UTM : 5529228 m N, 643057 m E; Located at Rosseau Ave W and Winona st intersection, Southbound lane, 1.5 m East of West curb.              | Asphalt | 30                | Concrete | 160                   | -                                          |
| PC22-16              | UTM: 5529295 m N, 643055 m E; Located in front of #170 Winona St, Northbound lane, 1.5 m West of East curb.                                | Asphalt | 50                | Concrete | 150                   | -                                          |
| P(:22-17             | UTM : 5529369 m N, 643050 m E; Located 2 m North of South corner of #807 Winona St, Southbound lane, 1.5 m East of West curb.              | Asphalt | 70                | Concrete | 160                   | -                                          |
| PC22-18              | UTM: 5529440 m N, 643051 m E; Located in front of #905 Winona St, Northbound lane, 2 m West of East curb.                                  | Asphalt | 60                | Concrete | 160                   | -                                          |





Photo 1: Pavement Core Sample at PC22-11



Photo 2: Pavement Core Sample at PC22-12





Photo 3: Pavement Core Sample at PC22-13



Photo 4: Pavement Core Sample at PC22-14





Photo 5: Pavement Core Sample at PC22-15




Photo 6: Pavement Core Sample at PC22-16

Project No. 1000 043 20 January 2022





Photo 7: Pavement Core Sample at PC22-17



Photo 8: Pavement Core Sample at PC22-18



# **Concrete Core Compressive Strength Report**

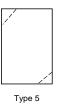
CSA A23.2-14C

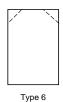
| Project No. | 1000-043-20                         | Date January 28, 2022 |
|-------------|-------------------------------------|-----------------------|
| Project     | 2022 Local Street Package - 22-R-06 | Technician NM         |

Client WSP Group Canada Inc.

|               |         | Date       | Date of    | Age at | Diam. | Length | Moisture    | Compressive S                 |                           | gth (MPa)<br>Break |                  | Correc    | tion Fa         | actors | *                  |
|---------------|---------|------------|------------|--------|-------|--------|-------------|-------------------------------|---------------------------|--------------------|------------------|-----------|-----------------|--------|--------------------|
| Core Location | Core ID | Received   | Break      | Break  | (mm)  | ) (mm) |             | Uncorrected f <sub>conc</sub> | Corrected* f <sub>c</sub> | Туре               | F <sub>I/d</sub> | $F_{dia}$ | F <sub>mc</sub> | $F_D$  | F <sub>reinf</sub> |
| Winona Street | PC14    | 2022-01-13 | 2022-01-27 | -      | 95    | 110    | Soaked 48 h | 44.50                         | 48.05                     | 1                  | 0.93             | 1.00      | 1.09            | 1.06   | 1.00               |
|               |         |            |            |        |       |        |             |                               |                           |                    |                  |           |                 |        |                    |

# Comments


\*Correction factors  $F_{I/d}$ ,  $F_{dia}$ ,  $F_{mc}$ , and  $F_D$  calculated as per ACI 214.4R-03, and correction factor  $F_{reinf}$ calculated as per Khoury et al. (2014):  $f_c = f_{conc}F_{l/d}F_{dia}F_{mc}F_DF_{reinf}$ 














Reviewed by (print):

Angela Fidler-Kliewer, C. Tech. Signature: Angela Fidler-Kliewer

| Table 1 | Factors in | volved in | interpretation | of core | results | by different co | odes.             |
|---------|------------|-----------|----------------|---------|---------|-----------------|-------------------|
|         |            |           |                |         |         |                 | an and the second |

| List | Code/standard                        | Edition | Factors Consi | idered   |             |          |        |           |
|------|--------------------------------------|---------|---------------|----------|-------------|----------|--------|-----------|
|      |                                      |         | Aspect ratio  | Diameter | Reinforcing | Moisture | Damage | Direction |
| 1    | Egyptian Code/Standard Specification | 2008    | <b>√</b>      |          | <b>√</b>    |          |        | <b>√</b>  |
| 2    | British Code/Standard Specification  | 2003    | V             |          | 1           |          |        | 1         |
| 3    | American Concrete Institute ACI      | 1998    | <b>V</b>      |          |             |          |        |           |
|      |                                      | 2012    | 1             | V        |             | 1        | 1      |           |
| 4    | European Standard Specification      | 1998    | 1             | 1        | 1           |          | 1      |           |
|      |                                      | 2009    | 1             |          | J           |          |        |           |
| 5    | Japanese Standard                    | 1998    | 1             |          |             |          |        |           |
| 6    | Concrete Society                     | 1987    | 1             |          | 1           |          | 1      | 1         |

In addition, for core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of  $(\Phi_r * d)$  is considered. If the bars are further apart, their combined effect should be assessed by replacing the term  $(\Phi_r * d)$  by the term  $(\sum \Phi_r * d)$ .

It should be pointed out that above equations used to interpret the core concrete strength to the in-situ concrete cube strength have been developed based on a set of assumptions and through many converting process. It is also of interest to note that the damage effect is considered in the development of the formulas in indirect way. The subject derivation and detailed formulas may be seen elsewhere [14].

# 3.2. American Concrete Institute (ACI)

# 3.2.1. Former ACI Code (2002) & Current ASTM (2009)

The methodology of core interpretation given in the former ACI code was remained without changes for decades and up to Year (2003). The in-place strength of concrete cylinder at the location from which a core test specimen was extracted can be computed using the equation:

$$f_{\rm cy} = F_{l/d} \cdot f_{\rm core} \tag{4}$$

where  $f_{\rm cy}$  is the equivalent in-place concrete cylinder strength,  $f_{\rm core}$  is concrete core strength, and  $F_{l/d}$  is the strength correction factor for aspect ratio.

The former ACI code does not include any equation to calculate the correction factor  $(F_{I/d})$ ; however, the code gives different values for this term that is associated with different aspect ratios (I/d) as given in Table 2. It should also be noted that the approach of current ASTM is similar to that mentioned above. The only considered variable is the aspect ratio (I/d). It should be noted that identical approach to that mentioned above is still effective in ASTM C42/C42M-03 [10].

# 3.2.2. Current ACI Code (2012) [15]

Starting from Year 2003, significant changes have been made to the relevant ACI Code provisions regarding the interpreta-

**Table 2** Mean values for factor  $F_{I/d}$  according to ACI Code (1998) and ASTM.

|           | Specimen | Specimen length-to-diameter ratio, $l/d$ |      |      |  |  |  |  |  |  |
|-----------|----------|------------------------------------------|------|------|--|--|--|--|--|--|
|           | 1.00     | 1.25                                     | 1.50 | 1.75 |  |  |  |  |  |  |
| $F_{l/d}$ | 0.87     | 0.93                                     | 0.96 | 0.98 |  |  |  |  |  |  |

tion of core strength test results. New factors have been considered. These include core diameter, moisture content of core sample, core damage associated with drilling, in addition to the effect of aspect ratio that was previously considered in the former ACI edition (1998). According to the ACI 214.4R-03, the in-place concrete strength can be computed using the equation:

using the equation:
$$f_c = F_{i/d} \cdot F_{dia} \cdot F_{mc} \cdot F_D \cdot f_{core} \cdot F_{$$

where  $f_c$  is the equivalent in-place concrete cylinder strength,  $f_{\rm core}$  is concrete core strength,  $F_{l/d}$  is strength correction factor for aspect ratio,  $F_{\rm dia}$  is strength correction factors for diameter,  $F_{\rm mc}$  is strength correction factor for moisture condition of core sample, and  $F_D$  is the strength correction factor that accounts for effect of damage sustained during core drilling including micro-cracking and undulations at the drilled surface and cutting through coarse-aggregate particles that may subsequently pop out during testing.

The ACI committee considered the correction factors presented in Table 3 for converting core strengths into equivalent in-place strengths based on the work reported by Bartlett and MacGregor [6]. It should be noted that the magnitude of

Table 3 Strength correction factors according to ACI 214.4R-03

| List             | Factors                              | Mean values                                                             |
|------------------|--------------------------------------|-------------------------------------------------------------------------|
| (1) <sup>b</sup> | $F_{l/d}: l/d$ ratio                 |                                                                         |
|                  | As-received                          | $1 - \{0.130 - \alpha f_{\text{core}}\} \left(2 - \frac{l}{d}\right)^2$ |
|                  | Soaked 48 h                          | $1 - \{0.117 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$ |
|                  | Air dried                            | $1 - \{0.144 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$ |
| (2)              | F <sub>dia</sub> : core diameter     |                                                                         |
|                  | 50 mm                                | 1.06                                                                    |
|                  | 100 mm                               | 1.00                                                                    |
|                  | 150 mm                               | 0.98                                                                    |
| (3)              | $F_{\rm mc}$ : core moisture content |                                                                         |
|                  | As-received                          | 1.00                                                                    |
|                  | Soaked 48 h                          | 1.09                                                                    |
|                  | Air dried <sup>a</sup>               | 0.96                                                                    |
| (4)              | $F_D$ : damage due to drilling       | 1.06                                                                    |

<sup>&</sup>lt;sup>a</sup> Standard treatment specified in ASTM C 42/C 42M.

<sup>&</sup>lt;sup>b</sup> Constant  $\alpha$  equals 4.3(10<sup>-4</sup>) 1/MPa for  $f_{core}$  in MPa.

| Table 6    | List of co | omparisor | is betw | een tes | ted cor | es to de | etermin | e.  |        |    |    |       |    |          |          |    |             |   |
|------------|------------|-----------|---------|---------|---------|----------|---------|-----|--------|----|----|-------|----|----------|----------|----|-------------|---|
|            | A18        | A17       | A16     | A15     | A14     | A13      | A12     | A11 | A10    | A9 | A8 | A7    | A6 | A5       | A4       | A3 | A2          | A |
| A1         | +0         | •         | +0      | 10      | 10      |          | •       |     | THE ST |    | •  | # PAR |    | <b>A</b> | $\wedge$ |    | <b>1/18</b> |   |
| A2         |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A3         |            |           |         |         |         | -        |         |     |        | -  |    |       |    |          |          |    |             |   |
| A4         |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A5         |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A6         |            |           |         |         |         |          |         | -AO | HAO    |    |    |       |    |          |          |    |             |   |
| A7         |            |           |         |         |         |          |         | -AO |        |    |    |       |    |          |          |    |             |   |
| A8         |            | •         |         | •       | •       |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A9         |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A10        |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A11        |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A12        |            | •         |         | •       | •       |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A13        |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A14        |            |           |         | •       |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A15        |            | •         |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A16        | ••         |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| <b>A17</b> | •          |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| 418        |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |

• Diameter of steel bar.

▲ Distance of steel bar from nearly end of core.

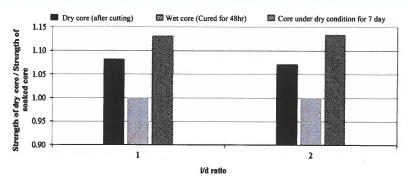
■ Number of steel bars and spacing between bars.

• Distance of steel bar from vertical axis of specimen.

This brief review indicated that the various proposed relationships for correction factors are all nonlinear. It should be noted that the equations given by the Egyptian Code takes into account most variables that may affect the interpretation of the results; however, the code ignores the deterioration of steel-concrete bond that may occur and also the position of the reinforcement from vertical axis of core specimens.

Weighted nonlinear regression analysis has been performed to determine the factor  $(F_{reinf})$  with the use of the software "SAS" package and "Data Fit." This shows that the correction factor for reinforcement  $(F_{reinf})$  is given by the following expression:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\left[\Phi_r \times r + \Phi_r \times (S/10)\right]}{\Phi_c * L} \times \frac{1.13}{f_{\text{core}}^{0.015}}\right]$$


• For core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of  $(\Phi_r * d)$  is considered. If the bars are further apart, their combined effect is assessed by replacing the term  $(\Phi_r * r)$  by  $(\sum \Phi_r * r)$  as follows:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\sum [\Phi_r \times r + \Phi_r \times (S/10)]}{\Phi_r * I_r}\right] \times \frac{1.13}{\rho_{0.015}}$$
(13)

where  $F_{\text{reinf}}$  is the correction factor for reinforcement,  $\Phi_r$  is the diameter of the reinforcement,  $\Phi_c$  is the diameter of the concrete specimen, r is the distance of axis of bar from nearer end of specimen, S is the distance of axis of bar from axis of core specimen, L is the length of the specimen after end preparation by grinding or capping, and  $f_{core}$  is the concrete core strength (kg/cm<sup>2</sup>).

# 6.1.6. Effect of moisture condition of core

Results of about 100 cores indicate that the strength of cores left to dry in air for 7 days is on average 13% greater than that of cores soaked at least 40 h before testing. The strength of cores with negligible moisture gradient and tested after cutting is found to be 7-9% larger than that of soaked cores as shown in Fig. 20. The authors strongly recommend to use a correction factor accounting for moisture condition  $(F_m)$  equals to 1.09 and 0.96, respectively, for cores tested after 48 h soaked in water and for those tested after 7 days dry in air.



Effect of core moisture condition on core strength for different aspect ratios (l/d).



| Αı | pp | en | di | x ( | G |
|----|----|----|----|-----|---|
|    |    |    |    |     |   |

Summary Table, Pavement Core Compressive Strength and Photographs of Pavement Core Samples - Youville Street



# 2022 Local Street Package - 22-R-06

# Youville Street: between Marion Street and Eugenie Street

|                      |                                                                                                                     | Paveme  | ent Surface       |          | Pavement Structure Ma | terial                                     |
|----------------------|---------------------------------------------------------------------------------------------------------------------|---------|-------------------|----------|-----------------------|--------------------------------------------|
| Pavement<br>Core No. | Pavement Core Location                                                                                              | Туре    | Thickness<br>(mm) | Туре     | Thickness (mm)        | Corrected<br>Compressive<br>Strength (Mpa) |
| PC22-07              | UTM: 5527040 m N, 635952 m E; Located 29 m North of Youville St and Eugenie St intersection, Northbound lane, 1.5 m | Asphalt | -                 | Concrete | 160                   | 75.27                                      |
|                      | West of East curb.                                                                                                  |         |                   |          |                       |                                            |
| PC22-08              | UTM: 5527097 m N, 635944 m E; Located 40 m South of Horace St and Youville St intersection, Southbound lane, 1.5 m  | Asphalt | -                 | Concrete | 160                   | 51.20                                      |
| PU22-00              | East of West curb.                                                                                                  |         |                   |          |                       |                                            |
| PC22-09              | UTM: 5527161 m N, 635939 m E; Located 30 m North of Youville St and Horace St intersection, Northbound lane, 1.5 m  | Asphalt | -                 | Concrete | 150                   | 60.49                                      |
| PC22-09              | West of East curb.                                                                                                  |         |                   |          |                       |                                            |
| PC22-10              | UTM: 5527188 m N, 635928 m E; Located 43 m South of Marion St and Youville St intersection, Southbound lane, 1.5 m  | Asphalt | -                 | Concrete | 150                   | -                                          |
| FG22-10              | East of West curb.                                                                                                  |         |                   |          |                       |                                            |





Photo 1: Pavement Core Sample at PC22-07



Photo 2: Pavement Core Sample at PC22-08





Photo 3: Pavement Core Sample at PC22-09



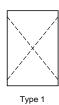
Photo 4: Pavement Core Sample at PC22-10



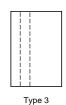
# **Concrete Core Compressive Strength Report**

CSA A23.2-14C

**Project No.** 1000-043-20 **Date** January 28, 2022


Project 2022 Local Street Package - 22-R-06 Technician NM

Client WSP Group Canada Inc.


|                 |         | Date       | Date of    | Age at | Diam. | Length | Moisture     | Compressive S                 | Strength (MPa)            | Break | C                | Correc    | tion Fa  | actors*        | *                  |
|-----------------|---------|------------|------------|--------|-------|--------|--------------|-------------------------------|---------------------------|-------|------------------|-----------|----------|----------------|--------------------|
| Core Location   | Core ID | Received   | Break      | Break  | (mm)  | (mm)   | Conditioning | Uncorrected f <sub>conc</sub> | Corrected* f <sub>c</sub> | Type  | F <sub>I/d</sub> | $F_{dia}$ | $F_{mc}$ | F <sub>D</sub> | F <sub>reinf</sub> |
| Youville Street | PC07    | 2022-01-12 | 2022-01-27 | -      | 95    | 157    | Soaked 48 h  | 65.58                         | 75.27                     | 1     | 0.99             | 1.00      | 1.09     | 1.06           | 1.00               |
| Youville Street | PC08    | 2022-01-12 | 2022-01-27 | -      | 95    | 149    | Soaked 48 h  | 44.95                         | 51.20                     | 1     | 0.98             | 1.00      | 1.09     | 1.06           | 1.00               |
| Youville Street | PC09    | 2022-01-12 | 2022-01-27 | -      | 95    | 135    | Soaked 48 h  | 53.83                         | 60.49                     | 1     | 0.97             | 1.00      | 1.09     | 1.06           | 1.00               |
|                 |         |            |            |        |       |        |              |                               |                           |       |                  |           |          |                |                    |

# Comments

\*Correction factors  $F_{I/d}$ ,  $F_{dia}$ ,  $F_{mc}$ , and  $F_D$  calculated as per ACI 214.4R-03, and correction factor  $F_{reinf}$  calculated as per Khoury et al. (2014):  $f_c = f_{conc}F_{I/d}F_{dia}F_{mc}F_DF_{reinf}$ 













Reviewed by (print): Angela Fidler-Kliewer, C. Tech. Signature: Angela Fidler-Kliewer

| Table 6    | List of co | omparisor | is betw | een tes | ted cor | es to de | etermin | e.  |        |    |    |       |    |          |          |    |             |   |
|------------|------------|-----------|---------|---------|---------|----------|---------|-----|--------|----|----|-------|----|----------|----------|----|-------------|---|
|            | A18        | A17       | A16     | A15     | A14     | A13      | A12     | A11 | A10    | A9 | A8 | A7    | A6 | A5       | A4       | A3 | A2          | A |
| A1         | +0         | •         | +0      | 10      | 10      |          | •       |     | THE ST |    | •  | # PAR |    | <b>A</b> | $\wedge$ |    | <b>1/18</b> |   |
| A2         |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A3         |            |           |         |         |         | -        |         |     |        | -  |    |       |    |          |          |    |             |   |
| A4         |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A5         |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A6         |            |           |         |         |         |          |         | -AO | HAO    |    |    |       |    |          |          |    |             |   |
| A7         |            |           |         |         |         |          |         | -AO |        |    |    |       |    |          |          |    |             |   |
| A8         |            | •         |         | •       | •       |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A9         |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A10        |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A11        |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A12        |            | •         |         | •       | •       |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A13        |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A14        |            |           |         | •       |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A15        |            | •         |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| A16        | ••         |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| <b>A17</b> | •          |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |
| 418        |            |           |         |         |         |          |         |     |        |    |    |       |    |          |          |    |             |   |

• Diameter of steel bar.

▲ Distance of steel bar from nearly end of core.

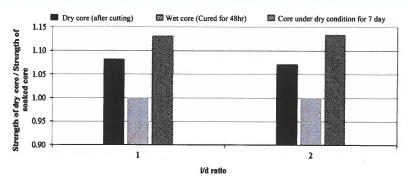
■ Number of steel bars and spacing between bars.

• Distance of steel bar from vertical axis of specimen.

This brief review indicated that the various proposed relationships for correction factors are all nonlinear. It should be noted that the equations given by the Egyptian Code takes into account most variables that may affect the interpretation of the results; however, the code ignores the deterioration of steel-concrete bond that may occur and also the position of the reinforcement from vertical axis of core specimens.

Weighted nonlinear regression analysis has been performed to determine the factor  $(F_{reinf})$  with the use of the software "SAS" package and "Data Fit." This shows that the correction factor for reinforcement  $(F_{reinf})$  is given by the following expression:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\left[\Phi_r \times r + \Phi_r \times (S/10)\right]}{\Phi_c * L} \times \frac{1.13}{f_{\text{core}}^{0.015}}\right]$$


• For core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of  $(\Phi_r * d)$  is considered. If the bars are further apart, their combined effect is assessed by replacing the term  $(\Phi_r * r)$  by  $(\sum \Phi_r * r)$  as follows:

$$F_{\text{reinf}} = \left[1 + 1.5 \frac{\sum [\Phi_r \times r + \Phi_r \times (S/10)]}{\Phi_r * I_r}\right] \times \frac{1.13}{\rho_{0.015}}$$
(13)

where  $F_{\text{reinf}}$  is the correction factor for reinforcement,  $\Phi_r$  is the diameter of the reinforcement,  $\Phi_c$  is the diameter of the concrete specimen, r is the distance of axis of bar from nearer end of specimen, S is the distance of axis of bar from axis of core specimen, L is the length of the specimen after end preparation by grinding or capping, and  $f_{core}$  is the concrete core strength (kg/cm<sup>2</sup>).

# 6.1.6. Effect of moisture condition of core

Results of about 100 cores indicate that the strength of cores left to dry in air for 7 days is on average 13% greater than that of cores soaked at least 40 h before testing. The strength of cores with negligible moisture gradient and tested after cutting is found to be 7-9% larger than that of soaked cores as shown in Fig. 20. The authors strongly recommend to use a correction factor accounting for moisture condition  $(F_m)$  equals to 1.09 and 0.96, respectively, for cores tested after 48 h soaked in water and for those tested after 7 days dry in air.



Effect of core moisture condition on core strength for different aspect ratios (l/d).

| Table 1 | Factors in | volved in | interpretation | of core | results | by different co | odes.             |
|---------|------------|-----------|----------------|---------|---------|-----------------|-------------------|
|         |            |           |                |         |         |                 | an and the second |

| List | Code/standard                        | Edition | Factors Consi | idered   |             |          |        |           |
|------|--------------------------------------|---------|---------------|----------|-------------|----------|--------|-----------|
|      |                                      |         | Aspect ratio  | Diameter | Reinforcing | Moisture | Damage | Direction |
| 1    | Egyptian Code/Standard Specification | 2008    | <b>√</b>      |          | <b>√</b>    |          |        | <b>√</b>  |
| 2    | British Code/Standard Specification  | 2003    | V             |          | 1           |          |        | 1         |
| 3    | American Concrete Institute ACI      | 1998    | <b>V</b>      |          |             |          |        |           |
|      |                                      | 2012    | 1             | V        |             | 1        | 1      |           |
| 4    | European Standard Specification      | 1998    | 1             | 1        | 1           |          | 1      |           |
|      |                                      | 2009    | 1             |          | J           |          |        |           |
| 5    | Japanese Standard                    | 1998    | 1             |          |             |          |        |           |
| 6    | Concrete Society                     | 1987    | 1             |          | 1           |          | 1      | 1         |

In addition, for core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of  $(\Phi_r * d)$  is considered. If the bars are further apart, their combined effect should be assessed by replacing the term  $(\Phi_r * d)$  by the term  $(\sum \Phi_r * d)$ .

It should be pointed out that above equations used to interpret the core concrete strength to the in-situ concrete cube strength have been developed based on a set of assumptions and through many converting process. It is also of interest to note that the damage effect is considered in the development of the formulas in indirect way. The subject derivation and detailed formulas may be seen elsewhere [14].

# 3.2. American Concrete Institute (ACI)

# 3.2.1. Former ACI Code (2002) & Current ASTM (2009)

The methodology of core interpretation given in the former ACI code was remained without changes for decades and up to Year (2003). The in-place strength of concrete cylinder at the location from which a core test specimen was extracted can be computed using the equation:

$$f_{\rm cy} = F_{l/d} \cdot f_{\rm core} \tag{4}$$

where  $f_{\rm cy}$  is the equivalent in-place concrete cylinder strength,  $f_{\rm core}$  is concrete core strength, and  $F_{l/d}$  is the strength correction factor for aspect ratio.

The former ACI code does not include any equation to calculate the correction factor  $(F_{I/d})$ ; however, the code gives different values for this term that is associated with different aspect ratios (I/d) as given in Table 2. It should also be noted that the approach of current ASTM is similar to that mentioned above. The only considered variable is the aspect ratio (I/d). It should be noted that identical approach to that mentioned above is still effective in ASTM C42/C42M-03 [10].

# 3.2.2. Current ACI Code (2012) [15]

Starting from Year 2003, significant changes have been made to the relevant ACI Code provisions regarding the interpreta-

**Table 2** Mean values for factor  $F_{I/d}$  according to ACI Code (1998) and ASTM.

|           | Specimen | Specimen length-to-diameter ratio, $l/d$ |      |      |  |  |  |  |  |  |
|-----------|----------|------------------------------------------|------|------|--|--|--|--|--|--|
|           | 1.00     | 1.25                                     | 1.50 | 1.75 |  |  |  |  |  |  |
| $F_{l/d}$ | 0.87     | 0.93                                     | 0.96 | 0.98 |  |  |  |  |  |  |

tion of core strength test results. New factors have been considered. These include core diameter, moisture content of core sample, core damage associated with drilling, in addition to the effect of aspect ratio that was previously considered in the former ACI edition (1998). According to the ACI 214.4R-03, the in-place concrete strength can be computed using the equation:

using the equation:
$$f_c = F_{i/d} \cdot F_{dia} \cdot F_{mc} \cdot F_D \cdot f_{core} \cdot F_{$$

where  $f_c$  is the equivalent in-place concrete cylinder strength,  $f_{\rm core}$  is concrete core strength,  $F_{l/d}$  is strength correction factor for aspect ratio,  $F_{\rm dia}$  is strength correction factors for diameter,  $F_{\rm mc}$  is strength correction factor for moisture condition of core sample, and  $F_D$  is the strength correction factor that accounts for effect of damage sustained during core drilling including micro-cracking and undulations at the drilled surface and cutting through coarse-aggregate particles that may subsequently pop out during testing.

The ACI committee considered the correction factors presented in Table 3 for converting core strengths into equivalent in-place strengths based on the work reported by Bartlett and MacGregor [6]. It should be noted that the magnitude of

Table 3 Strength correction factors according to ACI 214.4R-03

| List             | Factors                              | Mean values                                                             |
|------------------|--------------------------------------|-------------------------------------------------------------------------|
| (1) <sup>b</sup> | $F_{l/d}: l/d$ ratio                 |                                                                         |
|                  | As-received                          | $1 - \{0.130 - \alpha f_{\text{core}}\} \left(2 - \frac{l}{d}\right)^2$ |
|                  | Soaked 48 h                          | $1 - \{0.117 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$ |
|                  | Air dried                            | $1 - \{0.144 - \alpha f_{\text{core}}\} \left(2 - \frac{1}{d}\right)^2$ |
| (2)              | F <sub>dia</sub> : core diameter     |                                                                         |
|                  | 50 mm                                | 1.06                                                                    |
|                  | 100 mm                               | 1.00                                                                    |
|                  | 150 mm                               | 0.98                                                                    |
| (3)              | $F_{\rm mc}$ : core moisture content |                                                                         |
|                  | As-received                          | 1.00                                                                    |
|                  | Soaked 48 h                          | 1.09                                                                    |
|                  | Air dried <sup>a</sup>               | 0.96                                                                    |
| (4)              | $F_D$ : damage due to drilling       | 1.06                                                                    |

<sup>&</sup>lt;sup>a</sup> Standard treatment specified in ASTM C 42/C 42M.

<sup>&</sup>lt;sup>b</sup> Constant  $\alpha$  equals 4.3(10<sup>-4</sup>) 1/MPa for  $f_{core}$  in MPa.



# WSP Canada Group Ltd.

# **2022 Local Streets Package 22-R-06 Additional Investigation**

# Prepared for:

Lissa Van Dorp WSP Canada Group Ltd. 111-93 Lombard Avenue Winnipeg, MB R3B 3B1

**Project Number:** 1000-043-20

Date: March 18, 2022



# Quality Engineering | Valued Relationships

March 18, 2022

Our File No. 1000-043-20

Lissa Van Dorp WSP Canada Group Ltd. 111-93 Lombard Avenue Winnipeg, MB R3B 3B1

RE:

2022 Local Streets Package 22-R-06 Additional Investigation

TREK Geotechnical Inc. is pleased to submit our Final Report for the additional geotechnical investigation along Victoria avenue for 2022 Local Streets Package (22-R-06) project.

Please contact the undersigned should you have any questions.

Sincerely,

TREK Geotechnical Inc.

Per:

Nelson John Ferreira, Ph.D., P.Eng. Senior Geotechnical Engineer

Encl.



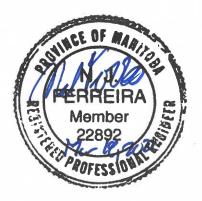
### **Revision History**

| Revision No. | Author | Issue Date     | Description  |
|--------------|--------|----------------|--------------|
| 0            | AD     | March 18, 2022 | Final Report |

### **Authorization Signatures**

Prepared By:

Asad Dustmamatev C.E.T.


Geotechnical Engineering Technologist

Reviewed By:

Angela Fidler-Kliewer, C. Tech Manager of Laboratory and Field

Spllen

Services



Reviewed By:

Nelson John Ferreira, Ph.D., P.Eng. Senior Geotechnical Engineer





### **Table of Contents**

| ı abı  | e of Contents                                  |
|--------|------------------------------------------------|
| Letter | of Transmittal                                 |
| Revisi | on History and Authorization Signatures        |
| 1.0    | Introduction                                   |
| 2.0    | Road Investigation                             |
| 3.0    | Closure                                        |
| Figure | s                                              |
| Sub-Si | urface Logs                                    |
| Appen  | dices                                          |
|        |                                                |
| List   | of Tables                                      |
| Table  | 1: CBR Testing Summary                         |
| List   | of Figures                                     |
| Figure | 01 Test Hole Location Plan – Victoria Avenue E |
|        |                                                |

### **List of Appendices**

Appendix A Test Hole Logs, Summary Table & Lab Testing Results and Pavement Core Photos – Victoria Avenue E



### 1.0 Introduction

This report summarizes the results of the additional road investigation completed for the Local Streets Package 22-R-06 project. The project included collecting pavement cores and drilling test holes along Victoria avenue E. The test hole information collected describes the pavement structure of the existing road as well as the soil stratigraphy beneath the pavement structure. The investigation was carried out following the City of Winnipeg RFP No. 476-2021 (Appendix B – Site Investigation requirement for public works street projects).

### 2.0 Road Investigation

The investigation included coring of pavement and drilling of test holes at 3 locations along Victoria avenue. WSP selected the investigation locations as shown on Figures 01 (attached). The road investigation was conducted on March 7<sup>th</sup>, 2022. The pavement structure (asphalt/concrete) was cored by Asad Dustmamatov of TREK Geotechnical Inc. (TREK) using a portable coring press equipped with a hollow 150 mm diameter diamond core drill bits. The test holes were drilled by Asad Dustmamatov to a depth of 2.3 m below road surface by Maple Leaf Drilling Ltd. using a truck mounted drill rig equipped with 125 mm diameter solid stem augers. The sub-surface conditions were observed during drilling and visually classified by Asad Dustmamatov of TREK. Other pertinent information such as groundwater and drilling conditions were also recorded during the drilling investigation. Disturbed (auger cuttings) samples and bulk samples retrieved during the sub-surface investigation were transported to TREK's material testing laboratory for further testing. Core samples were also retrieved and logged at TREK's material testing laboratory

Pavement core and test hole locations noted on the summary tables and test hole logs are based on UTM coordinates obtained using a hand-held GPS, and their location relative to the nearest address or intersection, measured distance from the edge of pavement, or other permanent features.

The laboratory testing program consisted of moisture content determination on all samples, as well as Atterberg limits, and grain size analysis (hydrometer method) on select samples between 0.6 and 0.9 m below pavement as well as Standard Proctor and CBR testing. Information gathered in Appendix A includes test hole logs, laboratory testing summary tables and results, and photos of the concrete cores.

One CBR was completed on bulk samples of the soil units present below the pavement. Only clay was encountered within the prescribed sample depth for CBR testing and the results are shown in the table below.



**Table 1: CBR Testing Summary** 

| Sample<br>Descriptio<br>n | Street                              | Depth SPMDD (kg/m³) |      | Opt.<br>Moistu<br>re (%) | Moistu Proctor |      | CBR<br>Value<br>at 2.54<br>mm | CBR<br>Value<br>at 5.08<br>mm |
|---------------------------|-------------------------------------|---------------------|------|--------------------------|----------------|------|-------------------------------|-------------------------------|
| Clay                      | Victoria Ave E<br>(TH22-01, 02, 03) | 0.3-1.5             | 1536 | 25.2                     | 95.4           | 25.5 | 3.4%                          | 2.6%                          |

<sup>\*</sup> Testing completed on combining grab samples from the top 1.5 m of each test hole.

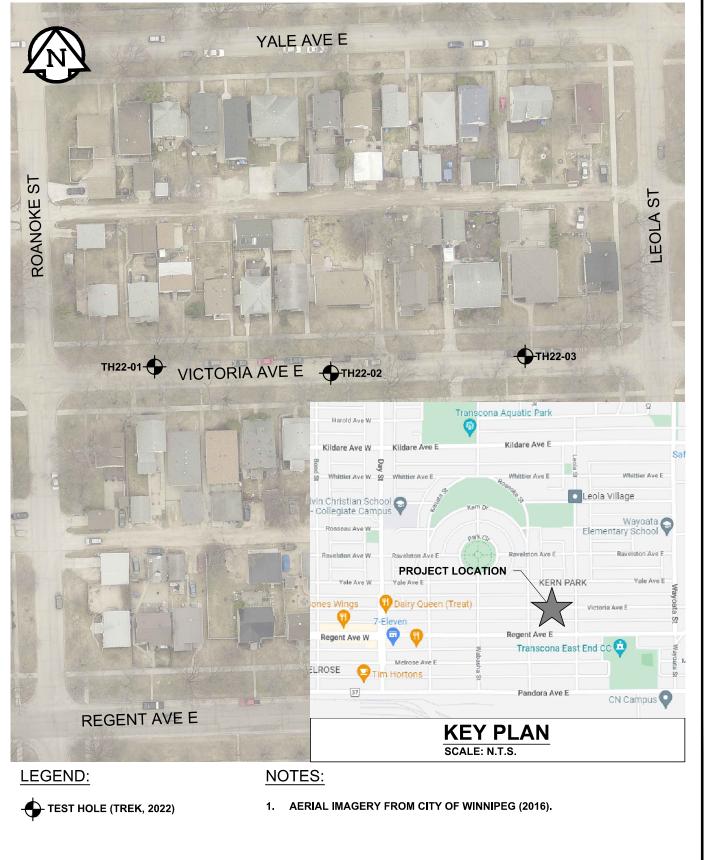
The test hole logs include a description of the soil units encountered during drilling and other pertinent information such as groundwater conditions and a summary of the laboratory testing results. The soils were classified in general accordance with the Unified Soil Classification System (USCS) and the AASHTO soil classification system (American Association of state highway and transportation officials). The AASHTO system classifies soils based on laboratory testing results from Atterberg Limits and grain size testing methods (hydrometer method). Where laboratory testing was not conducted, the AASHTO classification of the soils were interpreted based on a visual assessment as indicated with a (I) on the test hole logs and attached tables. For cohesive soils, the AASHTO system uses a combination of testing results to determine the Group Index of the soils and thus, were only determined where sufficient laboratory test data was available.

### 3.0 Closure

The information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation, laboratory testing, geometries). Soil conditions are natural deposits that can be highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work, or a mutually executed standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of WSP Canada Group Ltd. (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.




**Figures** 



ANSI full bleed A (8.50 x 11.00 Inches)

Z./Projects/1000 Soils LabtLab Projects/1000 Lab Projects/1000 Lab Projects/1000 0-043 WSP/1000-043-20 2022 Local Streets Package (22-R-06)\significates Survey and Dwg\significates ADI\significates ADI\signific







Test Hole Logs, Summary Table & Lab Testing Results and Pavement Core Photos – Victoria Avenue E



### EXPLANATION OF FIELD AND LABORATORY TESTING

#### **GENERAL NOTES**

- 1. Classifications are based on the United Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.
- 2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.
- 3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

| Ma                                                                                   | jor Div                                                                                                                                                        | isions                                                | USCS<br>Classi-<br>fication | Symbols                                                   | Typical Names                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Laboratory Classifica                                  | ation Criteria                                                      |               | တ္               |                 |               |                                   |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|---------------|------------------|-----------------|---------------|-----------------------------------|
|                                                                                      | action                                                                                                                                                         | gravel<br>no fines)                                   | GW                          | 36                                                        | Well-graded gravels, gravel-sand mixtures, little or no fines                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C_U = \frac{D_{60}}{D_{10}}$ greater than 4;          | $C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}}$ between 1 and 3 |               | ASTM Sieve sizes | #10 to #4       | #40 to #10    | #200 to #40<br>< #200             |
| sieve size)                                                                          | Gravels<br>alf of coarse fr                                                                                                                                    | Clean gravel<br>(Little or no fines)                  | GP                          | .A.                                                       | Poorly-graded gravels, gravel-sand mixtures, little or no fines                                                          | urve,<br>200 sieve)<br>1bols*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Not meeting all gradation r                            | requirements for GW                                                 | 0             | STMS             | #10             | #40 t         | #500                              |
| No. 200 s                                                                            | Gravels<br>(More than half of coarse fraction is larger than 4.75 mm)                                                                                          | Gravel with fines<br>(Appreciable<br>amount of fines) | GM                          |                                                           | Silty gravels, gravel-sand-silt mixtures                                                                                 | rain size c<br>r than No.<br>g dual sym                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Atterberg limits below "A" line or P.I. less than 4    | Above "A" line with P.I. between 4 and 7 are border-                | Particle Size | 4                |                 |               |                                   |
| ained soils<br>larger thar                                                           | (More                                                                                                                                                          | Gravel w<br>(Appre<br>amount                          | GC                          |                                                           | Clayey gravels, gravel-sand-silt mixtures                                                                                | wel from g<br>ion smalle<br>illows:<br>W, SP<br>SM, SC<br>ts requirin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Atterberg limits above "A" line or P.I. greater than 7 | line cases requiring use of dual symbols                            | Part          |                  | 2               | 0             | 25                                |
| Coarse-Grained soils (More than half the material is larger than No. 200 sieve size) | action                                                                                                                                                         | sands<br>no fines)                                    | SW                          | ****                                                      | Well-graded sands, gravelly sands, little or no fines                                                                    | Determine percentages of sand and gravel from grain size curve, depending on percentage of fines (fraction snaller than No. 200 sieve) coarse-grained soils are classified as follows:  Less than 5 percent GW, GP, SW, SP  More than 12 percent GM, GC, SM, SC  6 to 12 percent Borderline case4s requiring dual symbols*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $C_U = \frac{D_{60}}{D_{10}}$ greater than 6;          | $C_C = \frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and 3     |               | E                | 2.00 to 4.75    | 0.425 to 2.00 | 0.075 to 0.425<br>< 0.075         |
| half the r                                                                           | Sands<br>If of coarse fr                                                                                                                                       | Clean sands<br>(Little or no fines)                   | SP                          |                                                           | Poorly-graded sands, gravelly sands, little or no fines                                                                  | ages of sar<br>entage of f<br>s are class<br>cent G<br>rcent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Not meeting all gradation i                            | requirements for SW                                                 |               | _                | .,              | 0             | Ö                                 |
| (More than                                                                           | (More than half the material Sands (More than half of Coarse fraction is smaller than 4.75 mm) Sands with fines                                                | Sands with fines<br>(Appreciable<br>amount of fines)  | SM                          |                                                           | Silty sands, sand-silt mixtures                                                                                          | ne percentarion percentarion percentarion percentarion percentarion percentarion 12 percentarion | Atterberg limits below "A" line or P.I. less than 4    | Above "A" line with P.I. between 4 and 7 are border-                | Material      |                  | 40              | ۶             | Clay                              |
|                                                                                      | (More ti<br>is s<br>Sands wi<br>(Apprec<br>amount o                                                                                                            |                                                       | sc                          |                                                           | Clayey sands, sand-clay mixtures                                                                                         | Determir<br>dependir<br>coarse-g<br>Less More<br>6 to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Atterberg limits above "A" line or P.I. greater than 7 |                                                                     |               |                  | Sand            | Medium        | Fine<br>Silt or Clay              |
| e size)                                                                              | ys                                                                                                                                                             | +6                                                    | ML                          |                                                           | Inorganic silts and very fine sands,<br>rock floor, silty or clayey fine sands<br>or clayey silts with slight plasticity | Plasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Plasticity C                                           | Chart                                                               |               | e Sizes          | . i.i           |               | 3 in.                             |
| . 200 sieve                                                                          | Silts and Cla                                                                                                                                                  | (Liquid limit<br>less than 50)                        | CL                          |                                                           | Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays                        | 70 –<br>60 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ano.425 min                                            | "I" "F'LIME                                                         | i i           | ASTM Sieve Sizes | 3 in. to 12 in. |               | 3/4 in. to 3 in.<br>#4 to 3/4 in. |
| soils<br>er than No                                                                  | is.                                                                                                                                                            | <u> </u>                                              | OL                          |                                                           | Organic silts and organic silty clays of low plasticity                                                                  | NDEX (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 550                                                    |                                                                     |               | AS               |                 |               |                                   |
| e-Grained<br>al is small                                                             | iys                                                                                                                                                            | it<br>50)                                             | MH                          | Ш                                                         | Inorganic silts, micaceous or<br>distomaceous fine sandy or silty<br>soils, organic silts                                | PLASTICITY INDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                                     | Particle Size | mm<br>> 300      | 75 to 300       |               | 19 to 75<br>4.75 to 19            |
| Fine<br>the materi                                                                   | (More than half the material is smaller than No. 200 sieve size) ghly Silts and Clays Silts and Clays apanic (Liquid limit oils greater than 50) less than 50) | СН                                                    |                             | Inorganic clays of high plasticity, fat clays             | 20 -                                                                                                                     | 20 MI-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                                     | <u></u>       | 75 to            |                 | 19<br>4.75    |                                   |
| than half                                                                            |                                                                                                                                                                | ОН                                                    |                             | Organic clays of medium to high plasticity, organic silts | 7<br>4<br>0<br>10                                                                                                        | ML or OL<br>16 20 30 40 50 6<br>LIQUID LIMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80 70 80 90 100 110<br>T (%)                           | rial                                                                | 9             | ers              |                 | Φ             |                                   |
| (More                                                                                | Highly                                                                                                                                                         | Organic<br>Soils                                      | Pt                          | Strong colour or adour                                    |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Material                                               | 70                                                                  | Cobbles       | Gravel           | Coarse<br>Fine  |               |                                   |

<sup>\*</sup> Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

#### Other Symbol Types

| Asphalt  | Bedrock (undifferentiated) | Cobbles              |
|----------|----------------------------|----------------------|
| Concrete | Limestone Bedrock          | Boulders and Cobbles |
| Fill     | Cemented Shale             | Silt Till            |
|          | Non-Cemented Shale         | Clay Till            |



### EXPLANATION OF FIELD AND LABORATORY TESTING

### **LEGEND OF ABBREVIATIONS AND SYMBOLS**

PL - Plastic Limit (%)
PI - Plasticity Index (%)

▼ Water Level at End of Drilling

MC - Moisture Content (%)

▼ Water Level After Drilling as Indicated on Test Hole Logs

RQD- Rock Quality Designation

Qu - Unconfined Compression

SI - Slope Inclinometer

Su - Undrained Shear Strength VW - Vibrating Wire Piezometer

### FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

| TERM        | EXAMPLES      | PERCENTAGE       |
|-------------|---------------|------------------|
| and         | and CLAY      | 35 to 50 percent |
| "y" or "ey" | clayey, silty | 20 to 35 percent |
| some        | some silt     | 10 to 20 percent |
| trace       | trace gravel  | 1 to 10 percent  |

#### TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

| Descriptive Terms | <u>SPT (N) (Blows/300 mm)</u> |
|-------------------|-------------------------------|
| Very loose        | < 4                           |
| Loose             | 4 to 10                       |
| Compact           | 10 to 30                      |
| Dense             | 30 to 50                      |
| Very dense        | > 50                          |

The Standard Penetration Test blow count (N) of a cohesive soil can be related to its consistency as follows:

| Descriptive Terms | <u>SPT (N) (Blows/300 mm)</u> |
|-------------------|-------------------------------|
| Very soft         | < 2                           |
| Śoft              | 2 to 4                        |
| Firm              | 4 to 8                        |
| Stiff             | 8 to 15                       |
| Very stiff        | 15 to 30                      |
| Hard              | > 30                          |

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

| Descriptive Terms | Undrained Shear<br><u>Strength (kPa)</u> |
|-------------------|------------------------------------------|
| Very soft         | < 12                                     |
| Soft              | 12 to 25                                 |
| Firm              | 25 to 50                                 |
| Stiff             | 50 to 100                                |
| Very stiff        | 100 to 200                               |
| Hard              | > 200                                    |



1 of 1

# GENTECHNICOL

### **Sub-Surface Log**

| Client:                     | WSP Cana                                                                         | da Inc                                                                                                                   |                                                               | Project Number:                         | 1000-043-20             |                |               |                             |                                                   |                            |           |          |                                                                        |          |
|-----------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|-------------------------|----------------|---------------|-----------------------------|---------------------------------------------------|----------------------------|-----------|----------|------------------------------------------------------------------------|----------|
| Project N                   | ame: Local Stree                                                                 | t Package 22-R-06                                                                                                        |                                                               |                                         | Location:               | UTM            | N-552         | 28990, E                    | -64397                                            | 0 (Victor                  | ia Ave    | e E)     |                                                                        |          |
| Contracto                   | or: Maple Leaf                                                                   | Drilling Ltd.                                                                                                            |                                                               |                                         | <b>Ground Elevation</b> | : <u>Top o</u> | of Pav        | ement                       |                                                   |                            |           |          |                                                                        |          |
| Method:                     | 125mm Solid S                                                                    | Stem Auger, B40 Mobile                                                                                                   | Truck Mount                                                   |                                         | Date Drilled:           | March          | h 7, 2        | 022                         |                                                   |                            |           |          |                                                                        |          |
| San                         | nple Type:                                                                       | Grab (G)                                                                                                                 |                                                               | Shelby Tube (T)                         | Split Spoon (           | SS) / SF       | т             | Split                       | Barrel                                            | (SB) / L                   | PT [      |          | Core (C                                                                | <b>)</b> |
| Part                        | icle Size Legend:                                                                | Fines                                                                                                                    | Clay                                                          | Silt                                    | Sand                    | <b>3</b>       | Gra           | vel                         | <u></u>                                           | obbles                     | 1         | Βοι      | ılders                                                                 |          |
| Depth<br>(m)<br>Soil Symbol |                                                                                  |                                                                                                                          | TERIAL DES                                                    | CRIPTION                                |                         | Sample Type    | Sample Number | 16 17<br>Part<br>0 20<br>PL | Bulk Unii (kN/m³) 18 19 ticle Size 40 60 MC 40 60 | 20 21<br>2 (%)<br>3 80 100 |           | Streng   | ned Sheagth (kPa<br>st Type<br>rvane ∆<br>set Pen.<br>Qu ⊠<br>d Vane ( | )<br>•   |
|                             | CONCRETE -                                                                       |                                                                                                                          |                                                               |                                         |                         |                | PC22-0        | 3                           |                                                   |                            |           |          |                                                                        |          |
| -0.5                        | - grey<br>- frozen, m<br>- high plas<br>- AASHTC                                 | noist and soft to firm<br>ticity<br>): A-7-6 (I)                                                                         | when thawed                                                   | I                                       |                         |                | G01           |                             |                                                   |                            | <b>∆0</b> |          |                                                                        |          |
|                             | SILT and CLAY                                                                    |                                                                                                                          |                                                               |                                         |                         |                | G02           | •                           | )                                                 |                            |           |          |                                                                        |          |
| -1.0-                       | - intermed                                                                       | 1.5 m depth, moist iate plasticity<br>: A-7-6 (35)                                                                       | and soft wher                                                 | n thawed                                |                         |                | G03           |                             | 1                                                 |                            | •         |          |                                                                        |          |
| -1.5-                       | CLAY - silty                                                                     |                                                                                                                          |                                                               |                                         |                         |                | G05           | -                           |                                                   |                            |           | <b>4</b> |                                                                        |          |
|                             | - brown<br>- moist, sti<br>- high plas<br>- AASHTC                               | ticity                                                                                                                   |                                                               |                                         |                         |                | G05           | -                           |                                                   |                            |           | •        |                                                                        |          |
| -2.0                        |                                                                                  |                                                                                                                          |                                                               |                                         |                         |                | G07           | -                           |                                                   |                            |           | <u> </u> |                                                                        |          |
| - <i>-{///</i>              | 1) No seepage<br>2) Test hole op<br>3) Test hole ba<br>4) Test hole loc<br>curb. | HOLE AT 2.3 m IN or sloughing observen to 2.3 m immedia ckfilled with auger cated in front of #403 mple was collected by | red.<br>ately after drill<br>uttings, granu<br>3 Victoria ave | ılar fill and cold p<br>E, Westbound la | ne, 1.5 m South of N    | lorth          |               |                             |                                                   |                            |           | _        |                                                                        |          |
| Logged B                    | sy: _Asad Dustma                                                                 | matov                                                                                                                    | Reviewe                                                       | ed By: _Angela F                        | idler-Kliewer           | F              | Projec        | ct Engine                   | er: N                                             | lelson Fe                  | erreira   |          |                                                                        |          |

### Test Hole TH22-02

1 of 1



### **Sub-Surface Log**

| Client:                     | WSP Canac                                                              |                                                                                                                            |                                                            | Project Number:1000-043-20               |                       |                                                                    |                        |                        |        |             |        |         |    |
|-----------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------|-----------------------|--------------------------------------------------------------------|------------------------|------------------------|--------|-------------|--------|---------|----|
| Project Na                  | me: Local Street                                                       | Package 22-R-06                                                                                                            |                                                            |                                          | Location:             |                                                                    |                        |                        | 644022 | 2 (Victoria | Ave E) |         |    |
| Contractor                  | : Maple Leaf                                                           | Drilling Ltd.                                                                                                              |                                                            |                                          | Ground Elevation:     | : <u>Top o</u>                                                     | f Pave                 | ement                  |        |             |        |         |    |
| Method:                     | 125mm Solid S                                                          | tem Auger, B40 Mobile T                                                                                                    | ruck Mount                                                 |                                          | Date Drilled:         | March                                                              | n 7, 20                | 22                     |        |             |        |         |    |
| Samp                        | ole Type:                                                              | Grab (G)                                                                                                                   |                                                            | Shelby Tube (T)                          | Split Spoon (         | SS) / SF                                                           | т 🔽                    | Split                  | Barrel | (SB) / LP   | Т      | Core (C | ;) |
| Partio                      | cle Size Legend:                                                       | Fines                                                                                                                      | Clay                                                       | Silt                                     | Sand                  |                                                                    | Grav                   |                        |        | obbles      | В      | oulders |    |
| Depth<br>(m)<br>Soil Symbol |                                                                        |                                                                                                                            | Sample Type                                                | ample Nun                                | 16 17<br>Parti        | Rulk Unit<br>(kN/m³)<br>18 19<br>icle Size<br>40 60<br>MC<br>40 60 | 20 21<br>(%)<br>80 100 | ⊠ Qu ⊠<br>⊝ Field Vane |        | )<br>•      |        |         |    |
|                             | CLAY - silty, tra<br>- grey<br>- frozen to<br>- high plasi<br>- AASHTO | ce sand<br>1.5 m depth, moist a                                                                                            | and firm to sti                                            | ff when thawed                           |                       |                                                                    | PC22-02                | •                      |        |             |        |         |    |
| -0.5-                       | 70.01110                                                               | 5 (1)                                                                                                                      |                                                            |                                          |                       |                                                                    | G09                    | •                      |        |             |        |         |    |
| -1.0-                       |                                                                        |                                                                                                                            |                                                            |                                          |                       |                                                                    | G10<br>G11             |                        |        |             |        |         |    |
| -1.5-                       | - brown below 1                                                        | .5 m                                                                                                                       |                                                            |                                          |                       |                                                                    | G12<br>G13             |                        | •      |             | •      |         |    |
| -2.0-                       |                                                                        |                                                                                                                            |                                                            |                                          |                       |                                                                    | G14                    |                        | •      |             | 0      |         |    |
|                             | 1) No seepage 2) Test hole ope 3) Test hole bac 4) Test hole loc curb. | HOLE AT 2.3 m IN 0 or sloughing observen to 2.3 m immedia ckfilled with auger coated in front of #412 nple was collected b | ed.<br>Itely after drill<br>Ittings, granu<br>Victoria ave | lar fill and cold pa<br>E, Eastbound lar | ne, 1.5 m North of So | uth                                                                |                        |                        |        |             |        |         |    |
| Logged By                   | : Asad Dustmar                                                         | matov                                                                                                                      | Reviewe                                                    | d By: Angela F                           | idler-Kliewer         |                                                                    | Proiec                 | t Engine               | er: Ne | elson Fer   | reira  |         |    |

### Test Hole TH22-03

1 of 1



### **Sub-Surface Log**

| Clien                                                        | t:       | WSP Canad                      | da Inc                                 |                  |               |            | Project Number:      | 1000-043-20                |                                       |               |         |                              |  |  |
|--------------------------------------------------------------|----------|--------------------------------|----------------------------------------|------------------|---------------|------------|----------------------|----------------------------|---------------------------------------|---------------|---------|------------------------------|--|--|
| Proje                                                        | ct Name  | : Local Street                 | Package 22-R-0                         | 6                |               |            | Location:            | UTM N-552                  | 28992, E-644069                       | 9 (Victoria A | ve E)   |                              |  |  |
| Cont                                                         | ractor:  | Maple Leaf I                   | Drilling Ltd.                          |                  |               |            | Ground Elevation:    | Top of Pave                | ement                                 |               |         |                              |  |  |
| Meth                                                         | od:      | 125mm Solid S                  | tem Auger, B40 Mobi                    | le Truck Mount   |               |            | Date Drilled:        | March 7, 20                | )22                                   |               |         |                              |  |  |
|                                                              | Sample   | Туре:                          | Grab (G                                | )                | Shelby 1      | Tube (T)   | Split Spoon (S       | SS) / SPT                  | Split Barrel                          | (SB) / LPT    |         | Core (C)                     |  |  |
|                                                              | Particle | Size Legend:                   | Fines                                  | Clay             |               | Silt       | Sand                 | Grav                       | سكا                                   | obbles        | Воц     | ılders                       |  |  |
|                                                              |          |                                |                                        |                  |               |            |                      | e oer                      | □ Bulk Unit<br>(kN/m³)<br>16 17 18 19 | Wt            |         | ned Shear<br>gth (kPa)       |  |  |
| ₽.                                                           | Symbol   |                                |                                        |                  |               |            |                      | Sample Type<br>ample Numbe | 16 17 18 19<br>Particle Size          |               | Tes     | st Type                      |  |  |
| Depth<br>(m)                                                 | Syl      |                                | N                                      | IATERIAL DE      | SCRIPTIO      | N          |                      | ble N                      |                                       | 80 100        | Pock    | rvane ∆<br>ఁet Pen. <b>Ф</b> |  |  |
| -                                                            | Soil     |                                |                                        |                  |               |            |                      |                            | PL MC                                 | LL L          | O Field | Qu ⊠<br>d Vane ⊝             |  |  |
|                                                              | > S 4 7  | CONCRETE - 1                   | 145 mm thick                           |                  |               |            |                      | σ                          | 0 20 40 60                            | 80 100 0      | 50 100  | 150 200 250                  |  |  |
|                                                              | 9 4 9    | CONCRETE - 1                   | 145 IIIII UIICK                        |                  |               |            |                      | PC22-01                    |                                       |               |         |                              |  |  |
|                                                              |          | CLAY - silty, tra              | ce sand                                |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
| -                                                            |          | - grey                         | 1.5 m depth, moi                       | at and atiff wh  | on thousand   |            |                      |                            |                                       |               |         |                              |  |  |
|                                                              |          | <ul> <li>high plast</li> </ul> | ticity                                 | si anu siin wii  | en maweu      |            |                      | G15                        |                                       |               |         |                              |  |  |
| -0.5-                                                        |          | - AASHTO:                      | : A-7-6 (71)                           |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
|                                                              |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
| •                                                            |          |                                |                                        |                  |               |            |                      | G16                        |                                       |               |         |                              |  |  |
|                                                              |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
| ļ. :                                                         |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
| -1.0-                                                        |          |                                |                                        |                  |               |            |                      | G17                        |                                       |               | •       |                              |  |  |
| 2                                                            |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
| 3/14/2                                                       |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
| ğ  -                                                         |          |                                |                                        |                  |               |            |                      | G18                        | •                                     |               | ۰       |                              |  |  |
| Ä                                                            |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
| ≓ <br>≩ -1.5-                                                |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
| AD.G                                                         |          |                                |                                        |                  |               |            |                      | G19                        |                                       |               | ۰       |                              |  |  |
| 1000-043-20_A_AD_GPJ_TREK.GDT_3/14/22<br>                    |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
|                                                              |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
|                                                              |          | brown below 1                  | 1.8 m                                  |                  |               |            |                      | G20                        |                                       |               | •       |                              |  |  |
| 8-<br>4-2.0-                                                 |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
| E 22                                                         |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
| CKA                                                          |          |                                |                                        |                  |               |            |                      | G21                        |                                       |               | 40      |                              |  |  |
|                                                              |          | END OF TEST                    | HOLE AT 2.3 m I                        | N CL AV          |               |            |                      | <u> </u>                   |                                       |               |         |                              |  |  |
| STRE                                                         | •        | 1) No seepage                  | or sloughing obse                      | erved.           | :11:          |            |                      |                            |                                       |               |         |                              |  |  |
| CAL                                                          | 3        | 3) Test hole bac               | en to 2.3 m imme<br>ckfilled with auge | r cuttings, grai | ıular fill an | d cold pat | ch asphalt.          |                            |                                       |               |         |                              |  |  |
| P C                                                          | 4        | 4) Test hole loca<br>curb.     | ated in front of #4                    | 23 Victoria av   | e E, West     | bound lan  | e, 1.5 m South of No | orth                       |                                       |               |         |                              |  |  |
| 2-03-(                                                       |          |                                | nple was collected                     | d between 0.3    | m and 1.5     | m depth.   |                      |                            |                                       |               |         |                              |  |  |
| S 202                                                        |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
| FOG                                                          |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
| 00                                                           |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
| ACE:                                                         |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
| SUB-SURFACE LOG LOGS 2022-03-08_LOCAL STREET PACKAGE 22-R-06 |          |                                |                                        |                  |               |            |                      |                            |                                       |               |         |                              |  |  |
| B Logg                                                       | ed By:   | Asad Dustmar                   | matov                                  | Reviev           | ed By: _/     | Angela Fid | ller-Kliewer         | _ Projec                   | t Engineer: N                         | elson Ferrei  | ra      |                              |  |  |



#### 2022 Local Street Package - 22-R-06 Sub-Surface Investigation

Victoria Avenue East : between Roanoke Street and Leola Street

| Test Hole |                                             | Paveme  | ent Surface       | Pavement Str | ucture Material   |                                   | Sample     | Depth (m)     | Moisture       |             | Grain Siz   | e Analysis  | 6             | At      | terberg Li | mits                |
|-----------|---------------------------------------------|---------|-------------------|--------------|-------------------|-----------------------------------|------------|---------------|----------------|-------------|-------------|-------------|---------------|---------|------------|---------------------|
| No.       | Test Hole Location                          | Туре    | Thickness<br>(mm) | Туре         | Thickness<br>(mm) | Subgrade Description –            | Top<br>(m) | Bottom<br>(m) | Content<br>(%) | Clay<br>(%) | Silt<br>(%) | Sand<br>(%) | Gravel<br>(%) | Plastic | Liquid     | Plasticity<br>Index |
|           |                                             | Asphalt | -                 | Concrete     | 145               | Clay; AASHTO: A-7-6 (I)           | 0.3        | 0.5           | 34             |             |             |             |               |         |            |                     |
|           | UTM : 14U 5528990 N,                        |         |                   |              |                   | Clay; AASHTO: A-7-6 (I)           | 0.6        | 0.8           | 32             |             |             |             |               |         |            |                     |
|           | 643970 E                                    |         |                   |              |                   | Silt and Clay; AASHTO: A-7-6 (35) | 0.9        | 1.1           | 27             | 39          | 60          | 1           |               | 15      | 49         | 33                  |
| TH22-01   | Located in front of #403<br>Victoria Ave E, |         |                   |              |                   | Silt and Clay; AASHTO: A-7-6 (35) | 1.2        | 1.4           | 25             |             |             |             |               |         |            |                     |
|           | Westbound lane, 1.5 m                       |         |                   |              |                   | Clay; AASHTO: A-7-6 (I)           | 1.5        | 1.7           | 40             |             |             |             |               |         |            |                     |
|           | South of North curb.                        |         |                   |              |                   | Clay; AASHTO: A-7-6 (I)           | 1.8        | 2.0           | 43             |             |             |             |               |         |            |                     |
|           |                                             |         |                   |              |                   | Clay; AASHTO: A-7-6 (I)           | 2.1        | 2.3           | 47             |             |             |             |               |         |            |                     |
|           |                                             | Asphalt | -                 | Concrete     | 160               | Clay; AASHTO: A-7-6 (I)           | 0.3        | 0.5           | 32             |             |             |             |               |         |            |                     |
|           | UTM : 14U 5528989 N,                        |         |                   |              |                   | Clay; AASHTO: A-7-6 (I)           | 0.6        | 0.8           | 32             |             |             |             |               |         |            |                     |
|           | 644022 E                                    |         |                   |              |                   | Clay; AASHTO: A-7-6 (I)           | 0.9        | 1.1           | 35             |             |             |             |               |         |            |                     |
| TH22-02   | Located in front of #412<br>Victoria Ave E, |         |                   |              |                   | Clay; AASHTO: A-7-6 (I)           | 1.2        | 1.4           | 38             |             |             |             |               |         |            |                     |
|           | Eastbound lane, 1.5 m                       |         |                   |              |                   | Clay; AASHTO: A-7-6 (I)           | 1.5        | 1.7           | 41             |             |             |             |               |         |            |                     |
|           | North of South curb.                        |         |                   |              |                   | Clay; AASHTO: A-7-6 (I)           | 1.8        | 2.0           | 42             |             |             |             |               |         |            |                     |
|           |                                             |         |                   |              |                   | Clay; AASHTO: A-7-6 (I)           | 2.1        | 2.3           | 44             |             |             |             |               |         |            |                     |
|           |                                             | Asphalt | -                 | Concrete     | 155               | Clay; AASHTO: A-7-6 (71)          | 0.3        | 0.5           | 35             |             |             |             |               |         |            |                     |
|           | UTM : 14U 5528992 N,                        |         |                   |              |                   | Clay; AASHTO: A-7-6 (71)          | 0.6        | 0.8           | 35             |             |             |             |               |         |            |                     |
|           | 644069 E                                    |         |                   |              |                   | Clay; AASHTO: A-7-6 (71)          | 0.9        | 1.1           | 34             | 78          | 21          | 1           |               | 24      | 86         | 62                  |
| TH22-03   | Located in front of #423<br>Victoria Ave E, |         |                   |              |                   | Clay; AASHTO: A-7-6 (71)          | 1.2        | 1.4           | 37             |             |             |             |               |         |            |                     |
|           | Westbound lane, 1.5 m                       |         |                   |              |                   | Clay; AASHTO: A-7-6 (71)          | 1.5        | 1.7           | 36             |             |             |             |               |         |            |                     |
|           | South of North curb.                        |         |                   |              |                   | Clay; AASHTO: A-7-6 (71)          | 1.8        | 2.0           | 33             |             |             |             |               |         |            |                     |
|           |                                             |         |                   |              |                   | Clay; AASHTO: A-7-6 (71)          | 2.1        | 2.3           | 44             |             |             |             |               |         |            |                     |

<sup>(</sup>I) - AASHTO classification was interpreted based on visual classification.



Project No. 1000-043-20
Client WSP Canada Inc.

Project Local Street Package 22-R-06

Sample Date07-Mar-22Test Date08-Mar-22TechnicianAD

| Test Hole       | TH22-01   | TH22-01   | TH22-01   | TH22-01   | TH22-01   | TH22-01   |
|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Depth (m)       | 0.3 - 0.5 | 0.6 - 0.8 | 0.9 - 1.1 | 1.2 - 1.4 | 1.5 - 1.7 | 1.8 - 2.0 |
| Sample #        | G01       | G02       | G03       | G04       | G05       | G06       |
| Tare ID         | AC25      | P28       | W08       | AC16      | E94       | A103      |
| Mass of tare    | 6.8       | 8.7       | 8.5       | 7.0       | 8.6       | 8.7       |
| Mass wet + tare | 222.1     | 251.1     | 397.6     | 230.3     | 235.2     | 233.8     |
| Mass dry + tare | 168.0     | 192.6     | 315.3     | 185.2     | 170.8     | 165.9     |
| Mass water      | 54.1      | 58.5      | 82.3      | 45.1      | 64.4      | 67.9      |
| Mass dry soil   | 161.2     | 183.9     | 306.8     | 178.2     | 162.2     | 157.2     |
| Moisture %      | 33.6%     | 31.8%     | 26.8%     | 25.3%     | 39.7%     | 43.2%     |

| Test Hole       | TH22-01   | TH22-02   | TH22-02   | TH22-02   | TH22-02   | TH22-02   |
|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Depth (m)       | 2.1 - 2.3 | 0.3 - 0.5 | 0.6 - 0.8 | 0.9 - 1.1 | 1.2 - 1.4 | 1.5 - 1.7 |
| Sample #        | G07       | G08       | G09       | G10       | G11       | G12       |
| Tare ID         | H41       | N28       | D17       | AB01      | E69       | N07       |
| Mass of tare    | 8.8       | 8.5       | 8.7       | 6.9       | 8.7       | 8.7       |
| Mass wet + tare | 213.9     | 225.6     | 251.5     | 260.0     | 236.8     | 266.5     |
| Mass dry + tare | 147.9     | 172.6     | 192.1     | 193.9     | 174.0     | 191.4     |
| Mass water      | 66.0      | 53.0      | 59.4      | 66.1      | 62.8      | 75.1      |
| Mass dry soil   | 139.1     | 164.1     | 183.4     | 187.0     | 165.3     | 182.7     |
| Moisture %      | 47.4%     | 32.3%     | 32.4%     | 35.3%     | 38.0%     | 41.1%     |

| Test Hole       | TH22-02   | TH22-02   | TH22-03   | TH22-03   | TH22-03   | TH22-03   |
|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Depth (m)       | 1.8 - 2.0 | 2.1 - 2.3 | 0.3 - 0.5 | 0.6 - 0.8 | 0.9 - 1.1 | 1.2 - 1.4 |
| Sample #        | G13       | G14       | G15       | G16       | G17       | G18       |
| Tare ID         | AB10      | W80       | A19       | F41       | E88       | AB33      |
| Mass of tare    | 6.9       | 8.6       | 8.6       | 8.5       | 8.5       | 6.7       |
| Mass wet + tare | 197.1     | 229.7     | 240.9     | 168.5     | 406.3     | 161.7     |
| Mass dry + tare | 141.0     | 162.6     | 181.3     | 126.9     | 304.6     | 119.9     |
| Mass water      | 56.1      | 67.1      | 59.6      | 41.6      | 101.7     | 41.8      |
| Mass dry soil   | 134.1     | 154.0     | 172.7     | 118.4     | 296.1     | 113.2     |
| Moisture %      | 41.8%     | 43.6%     | 34.5%     | 35.1%     | 34.3%     | 36.9%     |



Project No. 1000-043-20
Client WSP Canada Inc.

Project Local Street Package 22-R-06

Sample Date07-Mar-22Test Date08-Mar-22

Technician AD

| Test Hole       | TH22-03   | TH22-03   | TH22-03   |  |  |
|-----------------|-----------|-----------|-----------|--|--|
| Depth (m)       | 1.5 - 1.7 | 1.8 - 2.0 | 2.1 - 2.3 |  |  |
| Sample #        | G19       | G20       | G21       |  |  |
| Tare ID         | A105      | W55       | F21       |  |  |
| Mass of tare    | 8.5       | 8.5       | 8.9       |  |  |
| Mass wet + tare | 195.2     | 157.7     | 224.1     |  |  |
| Mass dry + tare | 146.1     | 121.0     | 158.8     |  |  |
| Mass water      | 49.1      | 36.7      | 65.3      |  |  |
| Mass dry soil   | 137.6     | 112.5     | 149.9     |  |  |
| Moisture %      | 35.7%     | 32.6%     | 43.6%     |  |  |



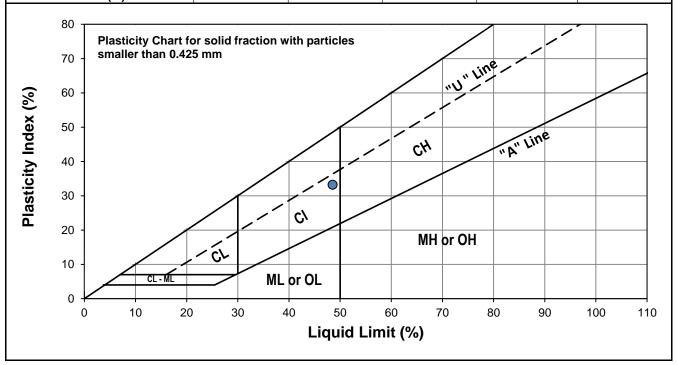
www.trekgeotechnical.ca WWW.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

### **Atterberg Limits ASTM D4318-10e1**

Project No. 1000-043-20 Client WSP Canada Inc.

Project Local Street Package 22-R-06

**Test Hole** TH22-01 Sample # G03 Depth (m) 0.9 - 1.1 07-Mar-22 Sample Date


**Test Date** 10-Mar-22 Technician ΑD



**Liquid Limit** 49 **Plastic Limit** 15 **Plasticity Index** 33

### Liquid Limit

| Liquia Littiit           |        |        |        |  |  |
|--------------------------|--------|--------|--------|--|--|
| Trial #                  | 1      | 2      | 3      |  |  |
| Number of Blows (N)      | 17     | 24     | 30     |  |  |
| Mass Tare (g)            | 14.108 | 14.316 | 14.086 |  |  |
| Mass Wet Soil + Tare (g) | 25.955 | 25.152 | 24.486 |  |  |
| Mass Dry Soil + Tare (g) | 21.968 | 21.599 | 21.139 |  |  |
| Mass Water (g)           | 3.987  | 3.553  | 3.347  |  |  |
| Mass Dry Soil (g)        | 7.860  | 7.283  | 7.053  |  |  |
| Moisture Content (%)     | 50.725 | 48.785 | 47.455 |  |  |



### Plastic Limit

| Trial #                  | 1      | 2      | 3 | 4 | 5 |
|--------------------------|--------|--------|---|---|---|
| Mass Tare (g)            | 14.006 | 14.089 |   |   |   |
| Mass Wet Soil + Tare (g) | 21.525 | 20.530 |   |   |   |
| Mass Dry Soil + Tare (g) | 20.541 | 19.663 |   |   |   |
| Mass Water (g)           | 0.984  | 0.867  |   |   |   |
| Mass Dry Soil (g)        | 6.535  | 5.574  |   |   |   |
| Moisture Content (%)     | 15.057 | 15.554 |   |   |   |



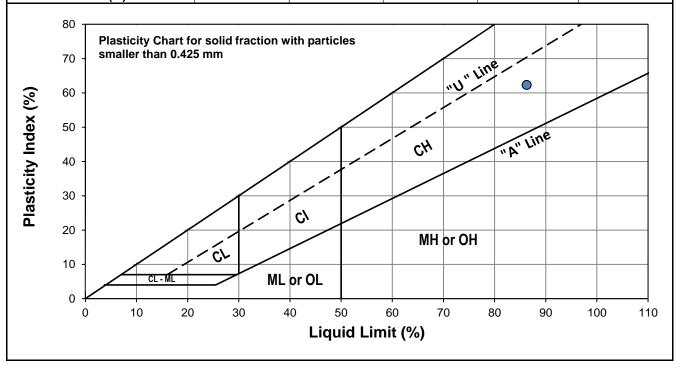
www.trekgeotechnical.ca WWW.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

### **Atterberg Limits ASTM D4318-10e1**

Project No. 1000-043-20 Client WSP Canada Inc.

**Project** Local Street Package 22-R-06

**Test Hole** TH22-03 Sample # G17 Depth (m) 0.9 - 1.1 07-Mar-22 Sample Date


**Test Date** 10-Mar-22 Technician ΑD



**Liquid Limit** 86 **Plastic Limit** 24 **Plasticity Index** 62

### I jauid Limit

| Liquid Limit             |        |        |        |  |  |
|--------------------------|--------|--------|--------|--|--|
| Trial #                  | 1      | 2      | 3      |  |  |
| Number of Blows (N)      | 24     | 29     | 32     |  |  |
| Mass Tare (g)            | 14.060 | 13.940 | 14.058 |  |  |
| Mass Wet Soil + Tare (g) | 26.231 | 23.984 | 23.647 |  |  |
| Mass Dry Soil + Tare (g) | 20.581 | 19.371 | 19.271 |  |  |
| Mass Water (g)           | 5.650  | 4.613  | 4.376  |  |  |
| Mass Dry Soil (g)        | 6.521  | 5.431  | 5.213  |  |  |
| Moisture Content (%)     | 86.643 | 84.938 | 83.944 |  |  |



### Plastic Limit

| Trial #                  | 1      | 2      | 3 | 4 | 5 |
|--------------------------|--------|--------|---|---|---|
| Mass Tare (g)            | 13.871 | 13.944 |   |   |   |
| Mass Wet Soil + Tare (g) | 20.515 | 20.186 |   |   |   |
| Mass Dry Soil + Tare (g) | 19.233 | 18.974 |   |   |   |
| Mass Water (g)           | 1.282  | 1.212  |   |   |   |
| Mass Dry Soil (g)        | 5.362  | 5.030  |   |   |   |
| Moisture Content (%)     | 23.909 | 24.095 |   |   |   |



Project No. 1000-043-20
Client WSP Canada Inc

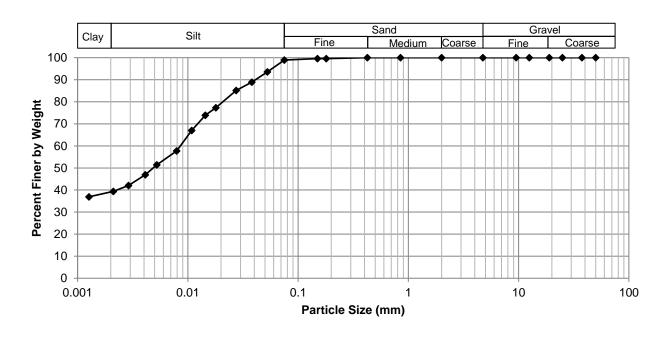
**Project** Local Street Package 22-R-06

 Test Hole
 TH22-01

 Sample #
 G03

 Depth (m)
 0.9 - 1.1

 Sample Date
 7-Mar-22


 Test Date
 10-Mar-22

 Technician
 AD



| Gravel | 0.0%  |
|--------|-------|
| Sand   | 1.1%  |
| Silt   | 59.8% |
| Clay   | 39.1% |

### **Particle Size Distribution Curve**



| Gra                | avel            | Sa                 | ınd             | Silt and Clay      |                 |  |
|--------------------|-----------------|--------------------|-----------------|--------------------|-----------------|--|
| Particle Size (mm) | Percent Passing | Particle Size (mm) | Percent Passing | Particle Size (mm) | Percent Passing |  |
| 50.0               | 100.00          | 4.75               | 100.00          | 0.0750             | 98.92           |  |
| 37.5               | 100.00          | 2.00               | 100.00          | 0.0527             | 93.58           |  |
| 25.0               | 100.00          | 0.850              | 100.00          | 0.0381             | 88.89           |  |
| 19.0               | 100.00          | 0.425              | 100.00          | 0.0274             | 85.13           |  |
| 12.5               | 100.00          | 0.180              | 99.61           | 0.0180             | 77.32           |  |
| 9.50               | 100.00          | 0.150              | 99.61           | 0.0144             | 73.88           |  |
| 4.75               | 100.00          | 0.075              | 98.92           | 0.0108             | 67.00           |  |
|                    |                 |                    |                 | 0.0079             | 57.69           |  |
|                    |                 |                    |                 | 0.0052             | 51.44           |  |
|                    |                 |                    |                 | 0.0041             | 46.90           |  |
|                    |                 |                    |                 | 0.0029             | 42.06           |  |
|                    |                 |                    |                 | 0.0021             | 39.40           |  |
|                    |                 |                    |                 | 0.0013             | 36.93           |  |



Project No. 1000-043-20
Client WSP Canada Inc

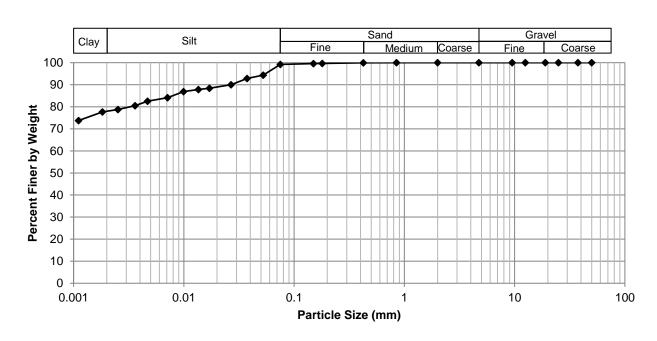
**Project** Local Street Package 22-R-06

 Test Hole
 TH22-03

 Sample #
 G17

 Depth (m)
 0.9 - 1.1

 Sample Date
 7-Mar-22


 Test Date
 10-Mar-22

 Technician
 AD



| Gravel | 0.0%  |
|--------|-------|
| Sand   | 0.8%  |
| Silt   | 21.3% |
| Clay   | 77.9% |

### **Particle Size Distribution Curve**



| Gravel             |                 | Sand               |                 | Silt and Clay      |                 |
|--------------------|-----------------|--------------------|-----------------|--------------------|-----------------|
| Particle Size (mm) | Percent Passing | Particle Size (mm) | Percent Passing | Particle Size (mm) | Percent Passing |
| 50.0               | 100.00          | 4.75               | 100.00          | 0.0750             | 99.24           |
| 37.5               | 100.00          | 2.00               | 100.00          | 0.0525             | 94.37           |
| 25.0               | 100.00          | 0.850              | 100.00          | 0.0374             | 92.81           |
| 19.0               | 100.00          | 0.425              | 99.98           | 0.0268             | 89.99           |
| 12.5               | 100.00          | 0.180              | 99.63           | 0.0171             | 88.43           |
| 9.50               | 100.00          | 0.150              | 99.55           | 0.0135             | 87.80           |
| 4.75               | 100.00          | 0.075              | 99.24           | 0.0099             | 86.87           |
|                    |                 |                    |                 | 0.0071             | 84.11           |
|                    |                 |                    |                 | 0.0047             | 82.55           |
|                    |                 |                    |                 | 0.0036             | 80.48           |
|                    |                 |                    |                 | 0.0025             | 78.79           |
|                    |                 |                    |                 | 0.0018             | 77.66           |
|                    |                 |                    |                 | 0.0011             | 73.77           |



Project No. 1000-043-20
Client WSP Canada Inc.

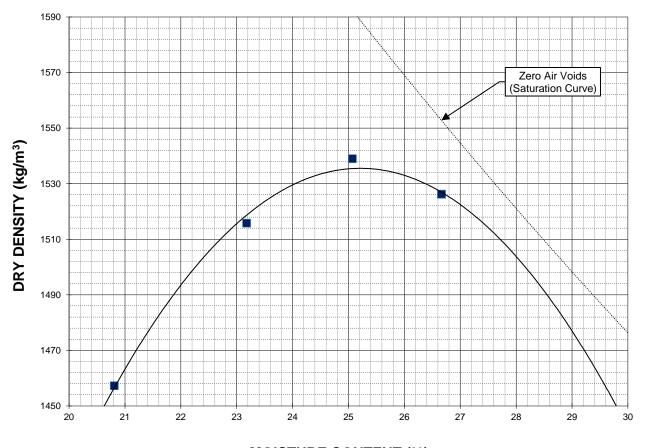
Project Local Street Package 22-R-06

Sample # Combined bulk samples

AD

**Source** TH22-01, 02, 03

Material Clay


**Technician** 

Sample Date 07-Mar-22 Test Date 09-Mar-22



| Maximum Dry Density (kg/m3) | 1536 |
|-----------------------------|------|
| Optimum Moisture (%)        | 25.2 |
|                             |      |

| Trial Number                     | 1    | 2    | 3    | 4    |  |
|----------------------------------|------|------|------|------|--|
| Wet Density (kg/m <sup>3</sup> ) | 1761 | 1867 | 1925 | 1933 |  |
| Dry Density (kg/m <sup>3</sup> ) | 1457 | 1516 | 1539 | 1526 |  |
| Moisture Content (%)             | 20.8 | 23.2 | 25.1 | 26.7 |  |



**MOISTURE CONTENT (%)** 



### California Bearing Ratio Test Data Sheet ASTM D1883-16

**Project No.** 1000-043-20 **Source** TH22-01, 02, 03

Client WSP Canada Inc. Material Clay

ProjectLocal Street Package 22-R-06Sample Date2022-03-07Sample #Combined bulk samplesTest Date2022-03-10

Technician AD

#### Proctor Results (ASTM D698) CBR Sample Compaction

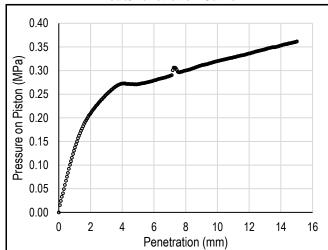
Maximum Dry Density 1536 kg/m3 Dry Density 1465 kg/m3
Optimum Moisture Content 25.2 % Initial Moisture Content 25.5 %

Material Retained on 19 mm Sieve 0.0 % Relative Density 95.4 % SPMDD

### Soaking Results CBR Results

 Surcharge
 4.54 kg
 CBR at 2.54 mm
 3.4 %

 Swell
 1.6 %
 CBR at 5.08 mm
 2.6 %


 Moisture Content in top 25 mm
 33.7 %
 Zero Correction
 0 mm

Immersion Period 96 h

#### **Test Data**

| Penetration (mm) | Measured<br>Pressure (MPa) | Corrected<br>Pressure (MPa) |  |
|------------------|----------------------------|-----------------------------|--|
| 0.64             | 0.09                       | 0.09                        |  |
| 1.27             | 0.16                       | 0.16                        |  |
| 1.91             | 0.21                       | 0.21                        |  |
| 2.54             | 0.23                       | 0.23                        |  |
| 3.18             | 0.26                       | 0.26                        |  |
| 3.81             | 0.27                       | 0.27                        |  |
| 4.45             | 0.27                       | 0.27                        |  |
| 5.08             | 0.27                       | 0.27                        |  |
| 7.62             | 0.30                       | 0.30                        |  |
| 10.16            | 0.32                       | 0.32                        |  |
| 12.70            | 0.34                       | 0.34                        |  |

### **Load/Penetration Curve**



## Comments:





Photo 1: Pavement Core Sample at TH22-01



Photo 2: Pavement Core Sample at TH22-02

Project No. 1000 043 20 March 2022





Photo 3: Pavement Core Sample at TH22-03