

February 17, 2015

File No. 0015 010 00

Jeff Brooks, C.E.T. Project Coordinator Water and Waste Department City of Winnipeg 110-1199 Pacific Avenue Winnipeg, MB. R3E 3S8

RE Geotechnical Investigation for Shoal lake Intake Fuel Storage and Delivery System Rehabilitation

Introduction

This letter provides design values and recommendations for the construction of shallow foundations for the Fuel Storage and Delivery System Rehabilitation works planned at the Shoal Lake Aqueduct Intake. The proposed facility consists of a concrete pad on the east and west side of the existing rail line to support above ground fuel storage tanks and ancillary equipment.

Field Investigation

Test holes 15-02 and 15-01 were drilled on the east and west sides of the track at the locations shown on Drawing 01. The holes were drilled by Maple Leaf Drilling using an Acker MP-5 track mounted drill rig under the supervision of TREK Geotechnical. Disturbed samples were collected and taken to TREK's soils laboratory in Winnipeg for additional visual classification and testing. Standard Penetration tests (SPT) were conducted in the non-cohesive soils. The test holes were backfilled with auger cuttings upon completion. The attached test hole logs provide a description of the soil units encountered, the results of field testing (Torvane, pocket penetrometer and SPT blow counts) and observations made during drilling. Additional interpretation on the engineering properties of the soil units, in particular the clay layer encountered at depth, were made based on other test holes drilled in the vicinity previously by UMA Engineering and in 2015 by TREK. All interpretations of soil stratigraphy for the purposes of design should refer to the detailed information provided on the attached test hole logs.

Subsurface Conditions

The soil stratigraphy west of the rail line (TH 15-01) consists of topsoil overlying sand (fill), peat, silt and highly plastic clay at a depth of 2.3 m. The soil stratigraphy east of the rail line (TH 15-02) consists of topsoil overlying compact sand, silt and sand and highly plastic clay. The absence of peat in this test hole suggests it has been removed previously and replaced with sand fill. A copy of the draft test hole logs are attached for reference. No seepage was encountered in either test hole.

Recommendations for Shallow Foundations

Shallow foundations should be placed on undisturbed clay soil or granular fill overlying undisturbed clay. In this regard, all unsuitable soil including topsoil, peat, silt, or any other deleterious material within the foundation footprint should be removed. Based on TH 15-01, the excavation of unsuitable soils to a depth of about 2.3 m below surface will be required on the west side of the rail line. A minimum of 0.5 m of compacted granular fill (as recommended below) should be placed below the slab, above the sand encountered on the east side of the rail line (TH 15-02). Additionally, the native sand should be compacted prior to placement of any fill materials. It is important to note that the lateral extent and depth of these soil units will vary and the final excavation limits (horizontal and vertical) need to be determined in the field during construction.

Recommendations provided herein for the design of shallow foundations are in accordance with the National Building Code of Canada (NBCC). Shallow footings founded on undisturbed clay can be designed using a Serviceability Limit State (SLS) bearing resistance of 100 kPa and an Ultimate Limit State (ULS) bearing resistance of 125 kPa, which is based on a resistance factor of 0.4. Shallow footings founded on undisturbed sand (for example east of the rail line) can be designed using an SLS bearing resistance of 130 kPa and a ULS bearing resistance of 160 kPa. If increased bearing capacity is required beneath the foundations, compacted granular fill used to replace unsuitable soils can be accounted for in distributing the contact load on the clay (or sand) to the design values. In this regard, the contact stress at depth should be made based on a 0.5 horizontal to 1 vertical (0.5H:1V) linear decreasing stress distribution. Furthermore, the distributed stresses below the sand east of the rail line should be calculated at depth to ensure the design values provided above for the clay are not exceeded.

The SLS values provided are intended to limit total settlement to 25 mm and differential settlement (for individual foundation units) to about 12 mm. Differential settlement between shallow foundations on either side of the track should be expected. Shallow foundations may also be subject to additional vertical movement associated with seasonal shrinkage and swelling of the clay subgrade.

The soil response (sub-grade reaction) to vertical loads can be modeled in a manner that assumes the soil beneath a shallow foundation can be simulated by a series of vertical springs. The soil behaviour can be estimated using an equivalent spring constant referred to as the vertical sub-grade reaction modulus (k_v). It is expected that the tributary stress area (below the base of the foundation) will extend into the clay layer, and therefore the k_v value for design should be largely reflective of this clay layer. A k_v value ranging between 12,000 and 24,000 kN/m³ for clay is suggested for use as an estimated boundary condition for analysis.

Additional considerations for the design and construction of shallow footings are provided below:

- 1. The sub-grade should be protected from freezing, drying, or inundation with water. As such, it may be necessary for the contractor to sequence construction so that only a small portion of the subgrade remains open at a given time and that excavations are backfilled as soon as possible.
- 2. Excavations should be completed with a backhoe equipped with a smooth bladed bucket operating from the edge of the excavation. Care should be taken not to over-excavate and to minimize the subgrade disturbance at all times.
- 3. After excavation, the subgrade should be reviewed by qualified geotechnical personnel.
- 4. Where soft or weak areas are identified by the geotechnical personnel, these areas should be over-excavated and replaced with compacted granular fill or repaired as directed by the geotechnical engineer.
- 5. Fill required to raise grades or for levelling should consist of 20 mm down crushed limestone placed in maximum 150 mm thick lifts and compacted to 98% SPMDD.

Closure

The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field inspections, photographs). If conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work, or a mutually executed standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

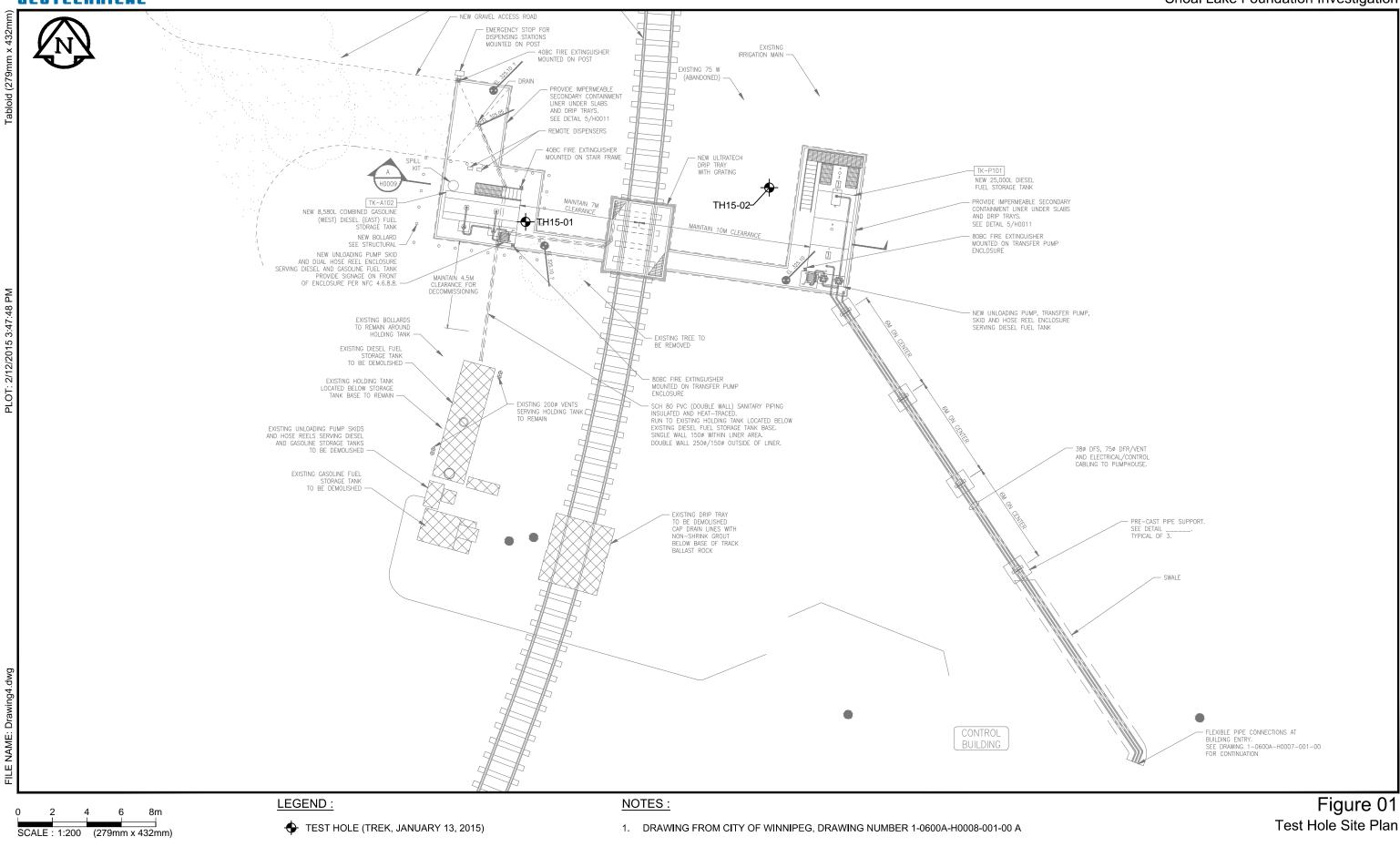
This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of The City of Winnipeg (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

Attention: Mr. Jeff Brooks Geotechnical investigation For Shoal Lake Intake Fuel Storage and Delivery System Rehabilitation Page 4 of 4 February 17, 2015

Kind Regards,

TREK Geotechnical Per:

Reviewed By:


Brent Hay, P.Eng. Geotechnical Engineer

BSH/ks Attach.

Michael Van Helden

Ken Skaftfeld, M.Sc., P.Eng., Senior Geotechnical Engineer

Σ 3:47:48 2/12/2015 PLOT:

È

Ξ

0015 010 00

City of Winnipeg Shoal Lake Foundation Investigation

Sub-Surface Log

Test	Hole	TH15-	·01
------	------	-------	-----

1 of 1

UE	UT	EĽ		CAL																		
Clien	t:	Cit	y of Winn	ipeg					Pr	oject N	Numb	oer:	0015	010 0	0							
Proje	ct Nam	e: _Sh	oal Lake I	ntake Fu	el Storage	and Deliv	ery Syste	em Rehabilita	tion Lo	cation	n:		Fuel	Storag	e - w	est of	Rail Li	ne (see	DW	G 01)		
Contr	actor:	Ma	aple Leaf [Drilling					Gr	ound l	Eleva	ation:	324.9	1 m E	xistin	g Grou	und					
Meth	od:	125	5 mm Solid \$	Stem Auge	er, Acker MF	5-T Track M	ount		Da	te Dri	lled:		Janua	ary 13,	201	5 - Jan	nuary 1	3, 201	5			
	Sample	Type			Grab (G)		Sh	elby Tube (T)		Solit	t Sno	on (S	s)	Sr	lit Ba	rrel (S	(B)		ore (0	<u>_)</u>		
	-																_		., .,			
	Particle	e Size I	_egend:		Fines		Clay	Silt		••••••	San	d		Gra	vel	62	CO k Unit \	bbles			ulders	
Elevation (m)	Depth (m)	Soil Symbol			MAT	ERIAL DE	SCRIPT	ION			Sample Type	Sample Number	RQD (%)	(N) TAS		(k 7 18 Particle 0 40	N/m ³) 19 e Size (60 MC	20 2 ⁴ (%) 80 100		Stre △ T ● Poo ○ Fie	ained S ngth (k est Typ forvane cket Pe 2 Qu E eld Var 00 15	Pa) <u>e</u> e∩. ♠]
<u>324.6</u> 324.1	0.5-		moist and SAND (F - bro	d firm wh ill) - traco own, froz	en thawed e clay, trac en, moist	l, high plas e silt, trace when thaw	e gravel	ace gravel, b	lack, fr	ozen,		G01 G02	-		•							
323.4				C SILT - ick, mois	trace fine t	sand						G03	-			•						
323.4			- ligt - mo	nt brown		e clay																
322.6	2.5-		CLAY - s - brc - mc	own		h plasticity	1					G04	-			•						
321.9	-3.0-											G05				•						
321.9 Logg			Notes: 1) No slo 2) Test he	ughing o ole open	r seepage to 3.0 m ι	m in CLA observed. ipon comp pentonite to	letion.															
Logg	ed By:	Bren	t Hay			Rev	/iewed E	by: Ken Ska	aftfeld					Projec	t Eng	gineer	:: _Ke	n Skaft	feld			

Sub-Surface Log

1 of 1

Project Name: Shoal Lake Intake Fuel Storage and Delivery System Rehabilitation Location: Fuel Storage - east of Rail Line (seel Contractor: Contractor: Maple Leaf Drilling Ground Elevation: 324.99 m Existing Ground Method: 125 mm Solid Stem Auger, Acker MP5-T Track Mount Date Drillid: January 13, 2015 - January 13, 2015 Sample Type: Image Grab (G) Shelby Tube (T) Split Spoon (SS) Split Barrel (SB) C cobles Particle Size Legend: Fines Clay Silt Sand Image Grabe (G) Split Barrel (SB) C cobles Sign B Image Grab (G) MATERIAL DESCRIPTION Image Grab (G) Image Grabe (G)	DWG 01)		
Method: 125 mm Solid Stem Auger, Acker MP5-T Track Mount Date Drilled: January 13, 2015 - January 13, 2015 - January 13, 2015 Sample Type: Image: Grab (G) Image: Shelby Tube (T) Split Spoon (SS) Split Barrel (SB) Image: Colored Split Spoon (SC) Particle Size Legend: Image: Split Spoon (SC) Split Spoon (SC) Split Barrel (SB) Image: Colored Split Spoon (SC) Image: Split Spoon (SC) Image: Split Spoon (SC) Image: Split Spoon (SC) Image: Split Spoon (SC) Split Spoon (SC) Split Spoon (SC) Split Spoon (SC) Image: Split Spoon (SC) Image: Split Spoon (SC) Image: Split Spoon (SC) Image: Split Split Spoon (SC) Image: Split			
Sample Type: Grab (G) Shelby Tube (T) Split Spoon (SS) Split Barrel (SB) Cc Particle Size Legend: Fines Clay Sand Sand Sand Sand Split Barrel (SB) Cobles understand Image: Split Spoon (SS) Sand Sand Sand Split Barrel (SB) Cobles understand Image: Split Spoon (SS) Sand Sand Sand Split Spoon (SS) Split Split Spoon (SS) Split Split Split Spoon (SS) Split Spli			
Particle Size Legend: Fines Clay Silt Sand Gravel Cobles 50 <			
Particle Size Legend: Fines Clay Silt Sand Gravel Cobles Sign 2 Image: Silt Ima	re (C)		
Since in the second	Boulders		
324.8 324.8 ORGANIC CLAY (Topsoil) - silty, trace sand, trace gravel, black, frozen, moist and firm when thawed, high plasticity SAND - brown - frozen, moist when thawed - compact, poorly graded fine to medium grained sand - non-frozen below 0.8 m	Undrained Shear		
324.8 324.8 ORGANIC CLAY (Topsoil) - silty, trace sand, trace gravel, black, frozen, moist and firm when thawed, high plasticity SAND - brown - frozen, moist when thawed - compact, poorly graded fine to medium grained sand - non-frozen below 0.8 m	Strength (kPa) <u>Test Type</u>		
324.8 324.8 ORGANIC CLAY (Topsoil) - silty, trace sand, trace gravel, black, frozen, moist and firm when thawed, high plasticity SAND - brown - frozen, moist when thawed - compact, poorly graded fine to medium grained sand - non-frozen below 0.8 m	\triangle Torvane \triangle		
324.8 ORGANIC CLAY (Topsoil) - silty, trace sand, trace gravel, black, frozen, moist and firm when thawed, high plasticity SAND - brown - frozen, moist when thawed - compact, poorly graded fine to medium grained sand - 0.5 - - 1.0 -			
324.8 7 with and firm when thawed, high plasticity SAND - brown - frozen, moist when thawed - compact, poorly graded fine to medium grained sand -0.5 - non-frozen below 0.8 m			
SAND - brown - frozen, moist when thawed - compact, poorly graded fine to medium grained sand - non-frozen below 0.8 m - 1.0			
- frozen, moist when thawed - compact, poorly graded fine to medium grained sand - non-frozen below 0.8 m - 1.0			
- compact, poorly graded fine to medium grained sand -0.5 0.5 			
-non-frozen below 0.8 m			
-1.0-			
-1.0			
- Tester 1 go7 14 ●			
323.3			
L _ SILT and SAND - brown			
- moist to wet - compact, fine grained sand			
-2.0- G08			
322.6 27			
-2.5-CLAY - silty - brown			
- moist, firm to stiff, high plasticity			
321.9 -3.0 -			
END OF TESTHOLE @ 3.0 m in CLAY. Notes:			
 No sloughing or seepage observed. Test hole open to 3.0 m upon completion. 			
3) Test hole backfilled with bentonite to surface.			
Logged By: _Brent Hay Reviewed By: Ken Skaftfeld Project Engineer: Ken Skaftf			