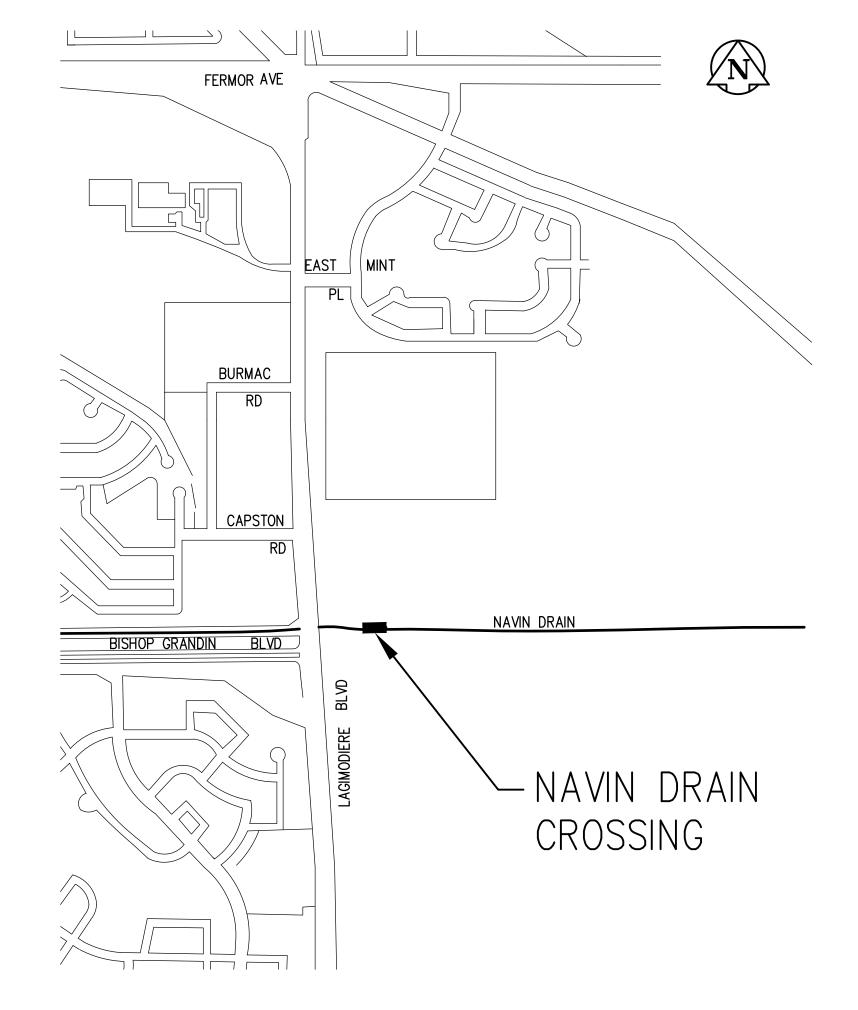
THE CITY OF WINNIPEG THE PUBLIC WORKS DEPARTMENT BID OPPORTUNITY NO. 24-2011

GENIVAR JOB NO. 09-150

2010 ACTIVE TRANSPORTATION INFRASTRUCTURE STIMULUS PROGRAM NAVIN DRAIN CROSSING: LAGIMODIERE MULTI-USE PATH


COVER PAGE C387-11-01 NAVIN DRAIN CROSSING LOCATION AND SITE GRADING PLAN C387-11-02 C387-11-03 **BOX-CULVERT PLANS** C387-11-04 **BOX-CULVERT ELEVATIONS** C387-11-05 **BOX-CULVERT SECTION**

BOX-CULVERT SECTION C387-11-06 **BOX-CULVERT SECTIONS AND DETAILS** C387-11-07

CITY OF WINNIPEG

ABBREVIATIONS LEGEND

CONC. REINF. EL.		CONCRETE REINFORCING ELEVATION	MIN. LG. ALT.	- -	MINIMUM LONG ALTERNATE	
FTG.	_	FOOTING	DWL.	_	DOWEL	
COL.	_	COLUMN	BM.	_	BEAM	
VERT.	_	VERTICAL	SP'S.	-	SPACES	
HOR.	-	HORIZONTAL	GALV.	-	GALVANIZED	
O/C	-	ON CENTER	TYP.	-	TYPICAL	
U/S	-	UNDERSIDE	C/W	-	COMPLETE WITH	
E.W.	-	EACH WAY	R/W	-	REINFORCE WITH	
E.F.	-	EACH FACE	OPNG.	-	OPENING	
I.F.	-	INSIDE FACE	EXIST.	-	EXISTING	
O.F.	-	OUTSIDE FACE	T.U.L.	-	TOP UPPER LEVEL	
T.O.	-	TOP OF	T.L.L.	-	TOP LOWER LEVEL	SECTION/DETAIL NO.
BOT.	-	BOTTOM	B.U.L.	-	BOTTOM UPPER LEVEL	
LONG.	-	LONGITUDINAL	B.L.L.	-	BOTTOM LOWER	()
TRANS.	-	TRANSVERSE			LEVEL	04
T.S.	-	TEMPERATURE AND		-	CENTER LINE	WHERE SECTION/DETAIL IS DRAWN
		SHRINKAGE REINFORCING	T & B	-	TOP AND BOTTOM	SECTION/DETAIL IDENTIFICATION
S.S.	-	STAINLESS STEEL	L.L.V.	-	LONG LEG VERTICAL	
U/N	-	UNLESS NOTED	L.L.H.	-	LONG LEG	
MAX.	-	MAXIMUM			HORIZONTAL	
E.S.	-	EACH SIDE	L.L.	-	LIVE LOAD	
H.K.	-	HOUSEKEEPING	D.L.	-	DEAD LOAD	
TYP.	-	TYPICAL	TEMP.	-	TEMPERATURE	
CONT.	-	CONTINUOUS	MID.	-	MIDDLE	
SIM.	-	SIMILAR	GEOD.	-	GEODETIC	
P.T.	-	PRESSURE TREATED	E.E.	-	EACH END	
TJ.	-	TIE JOISTS	CSP.	-	CORRUGATED STEEL PIPE	
O.W.S.J.	-	OPEN WEB STEEL JOISTS				

lesigned in accordance with and shall be constructed in compliance with the following Codes and Specifica

GENERAL NOTES:

1) Design live loads should not be exceeded at any time during construction.

2) Do not scale the drawings.

Verify all dimensions, elevations, slopes, details, conditions, etc. shown on the structural drawings; with the latest consultant drawings and the site, prior to construction or prefabrication of any bridge component

4) Discrepancies or ambiguities on the drawings and/or the site, which affect the box—culvert structure, shall be reported to the Design Engineer.

Where an overlap or a duplication occurs on the drawings, the more effective solution shall be considered correct, unless approved otherwise by

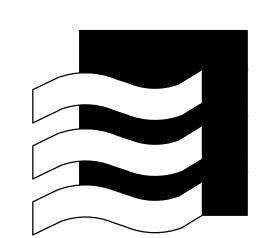
6) Modifications, alterations or substitutions must be authorized in writing by the Design Engineer prior to implementation.

7) The General Contractor shall locate all existing site services prior to start of construction.

8) Location of the construction joints is the responsibility of the General Contractor, but approval must be obtained from the Design Engineer

9) The contractor shall be responsible for the design and installation of all necessary shoring, bracing and formwork. Formwork for new construction shall be bridged over existing services. Procedure must be approved by the Design Engineer.

10) The General Contractor shall notify the Design Engineer at least 48 hours prior to all concrete pours and/or installation of interior sheathing,


- Raft slab has been designed for an allowable bearing capacity of 71.8 kpa, as suggested in the soil report prepared by GENIVAR dated September 2010. The Geotechnical Engineer is to verify bearing capacity prior to pour.
- 2) Soil logs are provided for information only. Examine prevailing conditions at site prior to submitting bid. no extras shall be granted should actual
- 3) Prepare subgrade as follows:

- Within the proposed structure area and at least 1.2m beyond the structure perimeter, remove all heterogeneous fill, organic material, peat moss, softened soil and ponded water to expose the underlying clay layer. Depth of site stripping is expected to be 600mm below existing grade. any additional fill should comprise of either the same material (20mm) or subbase material (50mm down granular fill). Since the anticipated floor is granular fill, the depth of site stripping should cover the entire structure.

- Call for subgrade inspection. The exposed subgrade should be compacted with vibratory roller equivalent to 95% Standard Proctor density. If the exposed subgrade can not be compacted due to saturation, the need for permanent subdrains placed underneath the subgrade should be enforced to attain the required compaction.

- Once the subgrade is approved, place 300mm of 50 to 75mm granular fill (c-base or subbase) followed by 300 mm thickness of 20mm down granular fill (A—base or base course material) across the entire width of the structure area and 1.2m beyond. Both of the subbase and base course material should be placed and uniformly compacted with a heavy vibratory roller to at least 98% Standard Proctor density (ASTM D698)

4) Do not cast raft slab and piers on frozen soil.

GENIVAR

10 PRAIRIE WAY, WINNIPEG, MANITOBA R2J 3J8 PH: (204)-477-6650 FAX: (204)-474-2864

CONSULTANT DRAWING 09-150-18 CITY DRAWING NO. C-378-11-01