$$
R+5 \# 200 / 75
$$

|  | $\sqrt{ } \operatorname{ly} 24,1973$ |
| :---: | :---: |
|  | $\text { Tatary } y^{2}$ |
| TITLE: | REPORT ON SOILS INVESTIGATION OSBORNE STREET BRIDGE |
| LOCATION: | WINNIPEG, MANITOBA |
| CLIENT: | REID CROWTHER \& PARTNERS |
| JOB NO: | W-823 |
| DATE: | July 24, 1973 |

New Address: 1288 Pembine Hwy Winnipeg, Man. R3T 282

## Ripley, Kiohn \& Leonoff Intemetional Lid

## CONSULTING ENGINEERS | SOIL MECHANICS \&FOUNDATIONE

 665 STAFFORD STREET - WINNIFEG Q, MANITOBA • CANADA TELEPHONE: (204) 284-4045 CAELE: "RIPSOIL WPG" TELEX: 07-5E7744MAILING ADDRESS: F.O. EOX NO. GE, STATION "C" WINNIPEG S, MANITOEA

July 24, 1973
Our File W-823

REPORT ON
SOILS INVESTIGATION
OSBORNE STREET BRIDGE
WINNIPEG, MANITOBA
FOR
REID CROWTHER \& PARTNERS
BY
RIPLEY, KLOHN \& LEONOFF INTERNATIONAL LTD. CONSULTING GEOTECHNICAL ENGINEERS

WINNIPEG, MANITOBA

## $1=$ INTRODUCTION

This report gives the results of a soils investigation carried out for the proposed new Osborne Street Bridge which will cross the Assiniboine River in Winnipeg, Manitoba.

Conclusions and recommendations are given herein concerning foundation support for the new structure and stability of the riverbank in addition to other pertinent items.

This investigation was authorized by Mr. G. Langman of Reid Crowther \& Partners in his letter dated the 11 th of May, 1973.

CONCIUSIONS \& RECOMMENDATIONS
$\qquad$
I
 fres the ton of tho bank. This will diminate the necessity of placino fill on

the bank for approaches which would lower the factor of safety of the bank to loss than 1.5 using a shear strength of 500 lbs per 59 ft.

The banks should be graded back from summer water level to the abutment locations so that lower bank movements will not affect nearby piers. Slope protection will be required on these graded banks from winter water level fo flood wator level.

Every attempt should be made to minimize the amount of clearing done around the site to facilitate construction operations, as in our opinion, the trees in the area tend to contribute to the stability of the banks.

We should be given the opportunity to review the final grading plan around the banks prior to tender.

### 2.2. Foundation Support

The limestone bedrock formation is recommended as the bearing strata for foundation support of piers and abutments.

Because of the possible occurrence of shattered rock and clay/silt infilled crevices or cavities in the bedrock, we recommend a maximum design bearing pressure of $15,000 \mathrm{lb}$ per sq ft for direct bearing of piers placed a minimum of 12 inches below the bedrock surface. Driven end-bearing piles should be spaced so that the recommended design pressure of $15,000 \mathrm{lb}$ per sq ft is not exceeded at the level of the pile tips.

We recommend the use of steel driven piles to achieve some penetration of the bedrock formation. Strengthening of the tips of piles may be necessary to achieve penetration. Piles should be driven to practical refusal with a hammer capable of delivering at least $20,000 \mathrm{ft}$ lb per blow.

Measures should be taken to resist corrosion of steel piles.
$\qquad$
the deston booring pressure for caissons placed a minimum of 12 inchoo into somb tock not excead 00,000 ib per sqft. Socket friction may aloo bo combind with end-bearing if the caisson is socketed into sound rock. A decign friction value not exceeding 150 ib per sq in is recommended.

Wo recommend that river piers be founded directly on bedrock. The choice betweon direct bearing on bedrock and driven end-bearing piles or calsons for riverbank piors is a matter of economics. End-bearing piles or calssons are recommended for abutment support.

Foundations will have to be designed to resist any hor izontal loads that may be acting.

The foundation installation must be inspected by qualified geotechnical personnel to assess the bedrock surface for direct bearing footings, to inspect the driving of driven piles, or to inspect the rock for caisson installations. For direct bearing piers or calssons, the bearing surface should be drilled by several test holes in order that a proper assessment of the rock can be made. The minimum depth of these test holes should be 6 feet below the bearing surface. Adjustments in design bearing pressures or excavation to greater depths may be requircd as a result of the inspection of bearing surfaces.

Foundations, excavated or socketed into rock, should not be considered as capable of acting like anchors.

### 2.3. Construction

Excavation for piers and abutments in the riverbanks and in the river should be done along neat lines and fightly shored or cofferdammed. Shoring diagrams for riverbank excavations are given in Appendix $D$.

Mousures should be taken to ensure that excavations are completely dewatered.
$\qquad$



No boqorey fill or stockpiles of meterials should be alloved on tho riverbenk forwar of o hypothetical slopo of a horizontal to vartical cmindirg Wack from the toes of the rivorbanks.

Duo to tho possible non-conformitios that can be ancountored in tho bedrock, wo anticipate that thore could bo construction problems with the installation of caissons as follows:
a) Caving alluvial soils encountered while drilling down to bedrock.
b) Excavation in decomposed rock and in clay/silt.
c) Heavy water inflow that may necessitate the use of special procedures to pour concrete.
2.4. Bockfill

Backfill between piers/abutments and the sides of excavations should be placed and compacted prior to removal of shoring support. Backfill should be clean granular material compacted to a minimum of $97 \%$ of Standard Proctor Maximum Dry Density. The abutment backfill should be drained. The lateral earth pressure on the abutment may be computed using a fiuid pressure distribution with a unit weight of 40 ib per cu ft.

The top of the backfill around piers and on the river side of abutments should be sealed with 2 feet of compacted clay.

### 2.5. Sulphates

All concrete in contact with soils should be made with Sulphate Resisting cement

### 2.6. Future Work

We recommend that a caisson test be carried out in order to assess the problems that may be encountered during the construction of caissons through the alluvial riverbank soils.

 For the molnod of installingriver piers.


A minimum of I fost holo should be dr illed at each abutment as their locations bebne a hypothotical stope of 6 hor izontal to 1 vertical places them at some dislance from our closest test holes. Basically. these holos would be drilled to assess the quality of overburden soils directly below the abutments as these may differ from those encountered in the other test holes.

### 2.7. Demolition

As sections of the new bridge will be constructed prior to demolishing the old bridge, it is necessary to ensure that demolition methods do not endanger the new structure. In particular, any techniques that use blasting must be carefully reviewed by both the structural and geotechnical engineer to assess their feasibility and to review the manner in which they would be conducted.
3. DESCRIPTION OF SITE

The existing Osborne Street Bridge is a four span structure with the distance from abutment to abutment in the order of 420 feet. The north approach fill to the abutment has a maximum height of approximately 10 feet, whereas on the south bank, the approach fill is not as high and is in the order of about 5 or 6 feet.

The riverbanks on both sides are covered with fairly large trees. The north bank is steep at the river's edge and then it flattens out to form a ledge for some distance back from the river where it steepened again to the top of the bank. The average existing slope of the north bank is approximately 6 horizontal to 1 vertical.

The south bank rises fairly steeply from the river to an elevation not too much lower than the top of the bank and the average slope is about $2 \frac{1}{2}$ hor izontal to | vertical.

There are visual signs of instability on the north bank just downstream from the existing bridge which take the form of old landslide scars and ledges. There
 the mon trioge will bo locatco, but such signs may have boon mosked by the comeruction agivily for the existing brigge. On the south benk, upstremm



```
OmFibve-3%3 -0- July%4, 107%
```

Other pertinent data with regard to the site is as follows:

```
a) Approximalo water widin at summer water lovel: 205 ft.
b) Approximate width at the top of the banks: 500 ft.
c) The approximate elevation of summer water level:. 735 ft.geodetic
d) The approximate elevation of winter water level: }727\textrm{ft}\cdotg\mp@code{guetic
c) The approximate elevalion of the top of the north bank: 759 ft. geadetic
f) The approximate elevation of the top of the south bank: 757 ft. geodetic
```

4. DESCRIPTION OF NEW BRIDGE

It is proposed to construct the new bridge immediately upstream of the existing bridge. The new bridge will be precast-prestressed concrete with an overall width of 90 feet and the elevation of the new bridge will approximately be the same as the old. A three span or four span structure is under consideration with a curving alignment to meet the existing approach streets.

It is proposed to build and open one-half of the width of the new structure prior to demolishing the existing bridge in order to alleviate traffic conjestion.

## 5. FIEID AND LABORATORY INVESTIGATION

A total of 5 test holes were drilled using a skid mounted diamond drill rig. Two test holes were located on each bank and one was drilled from the existing bridge. The locations of the test holes are shown on the sketch of the site at Appendix A.

Overburden soils were sampled using shelby tubes and split spoon samplers. Cores were recovered from the bedrock. Standpipe piezometers were installed in some of the test holes. We also made one line of soundings of the river bottom along the upstream side of the existing bridge.

Samples were visually classified in our laboratory and were tested for uncon-
 S.aer ano ligula limit.

## G. SUBSURFACE DATA

Dotails of the solls encountered in the test holes are presented in the tost hole logs af Appendix B.

Essentially, three soil types were observed in the test holes drillod. These were:
a) Alluvium (clays and silty clays)-

- this was found in all test holes drilled and the formation extended down to bedrock in Test Holes 101, 103 and 105. The alluvium was generally highly plastic with the upper 10 feet or so precompressed by dessication. Strengths generally decreased with depth down to elevation 730 ft geodetic below which they exhibited an increasing trend except in Test Hole 104. It is believed that in Test Holes 102 and 104 , glacial Lake Agassiz clay separated the alluvium and bedrock. Sand and silt seams were found in the alluvium down to about elevation 725 ft geodet ic.
D) Lake Agassiz Clay -
- this deposit was found in Test Hales 102 and 104 at about elevation 715 ft and 725 ft geodetic respectively. This clay is highly plastic and appears to be somewhat weaker than the alluvial clay and silt deposits at the same elevation.
c) Bedrock -
- limestone, at elevation 710 which was observed to exist in various physical states in the holes drilled. For example, the rock appeared to become softer towards the end of Test Hole 102, it was found to be shattered in the top 5 to 10 ft in Test Hole 105, and it was. found to contain layers of stiff clay or dense silt in Test Hole 103.

It is normal to find a glacial till formation directly overlying limestone in the

-... $\quad$. in ion hele oliled.

Wo have taken a fow reddings of the installed piezometers since the time of their installation and the results of our observations are given in the Teble below. It should be noted that plezometers are reflecting water levels in the bedrock whereas some are reflecting water levels in tho overburden. The standpipe type of piezometor requires the movement of a large volume of water before closely rogistoring the change in soil pore water pressures. Therefore these piezometers connot be considered to be accurately recording the water pressures in a soil of low permeability on the date of observation, as they are lagging behind the time of the actual pore pressure change.

| PIEZONETER | TIP ELEVATION (ft) | DATE | WATER ELEVATION $(f t)$ | REMAEKS |
| :---: | :---: | :---: | :---: | :---: |
| P 201 | 736 | May $23 / 73$ | 739 |  |
|  |  | May 24/73 | 738 |  |
|  |  | May 28/73 | 737 |  |
|  |  | June 18/73 | 736 | No Water |
|  |  | July $27 / 73$ |  | No Water |
| P 202 | 725 | May 24/73 | 738 |  |
|  |  | May 28/73 | 738 |  |
|  |  | June 18/73 | 738 |  |
|  | . | July $27 / 73$ | 736 | . |
| P 203 | 701 | May $31 / 73$ | 731 |  |
|  |  | June 18/73 | 725 | In rock |
|  |  | July 27.73 | 721 | In rock |
| P 204 | 710 | June 18/73 | 724 | Just above bedrock |
|  |  | July 27/73 | 720 | Jont comove |


7.1. $\quad$ Piverberis $510 b 111 y$

The tollowing are the major points to be considered with regard to the developmont of this sile:
a) Stability of the riverbanks,
b) The lack of competent soil strata overlying the bedrock formation, such as glaciul till,
c) The nature of the bedrock and its bearing capacity.

The stability of the riverbank was analysed using the so-called $0=0$ method. The problem with respect to the use of this method is the selection of the correct value of undrained shear strength considered to be acting on the potential fallure plain. The following points were considered prior to selection of this shear strength:
a) The lowest value of undrained shear strength from strength tests was in the order of 600 lb per sq ft , although the shear strength ranged as high as 1500 lb per sq ft.
b) An analysis of the old fallure slips immediately downstream of the north abutment of the existing bridge gave a shear stress of about 500 lb per sq ft. It is thought that these slips are at a factor of safety slightly greater than unity as there are no obvious signs of recent movements.
c) Crack patterns in the walls of the north and south abutments as well as the observation that the lower chords of the steel trusses of the old bridge have penetrated approximately 4 to 6 inches into the north abutment wall, indicate that the abutments have moved towards the river. These movements may be the result of high lateral earth pressures of the abutment backfill and/or deep seated bank instability beneath the abutments. We are concerned about the possibility that the high forces required to push the steel chords
 mond the oto brioge as il appears.
$-10-$
waly an, 10\%3
a) Local practice, for structures on riverbanks in the Wimipog area, calls for setting back structuros from the toe of the bank for such a distance That the factor of safety of the intervening bank is not less than 1.5 using a shear strength of 500 lb per sq ft. This practice has evolved from the fact that the undrained shear strengths determined by teots in the laboratory do not accurately reflect the long term strength prevalling in the Winnipeg riverbanks. Many fallures have been observed where computed stresses were far lower than the undrained shear strength obtained by tests, ie, the factor of safety based on laboratory strengths was much greater than unity at fallure which is not possible.

Based on the above considerations, we feel that the riverbanks in question should have a factor of safety of 1.5 using a shear strength of 500 Ib per sq ft in order to reduce the risk of bank instability affecting the bridge structure.

The results of our stability analyses on the existing banks using the above criterla are given in the following table (see Cross-sections of the banks at Appendix C).

EXLSTING BANK STABILITY $(O)=0$ METHOD $)$

| Bank <br> Helaht $(f t)$ | Slope <br> Angle $\left({ }^{\circ}\right)$ | Shear <br> Stress $($ psf $)$ | Factor of Safety*. |
| :--- | :---: | :---: | :---: |
| 40 | $9.8^{\circ}$ | 334 | 1.5 |
| 26 | $24.5^{\circ}$ | 415 | 1.2 |
| 34 | $24.0^{\circ}$ | 541 | $<1.0$ |

* Shear Strength $=500$ lbs per sq ft.

Net her the existing north and south banks have a factor of safety in excess of 1.5 using a shear strength of 500 ib per sq fi. The placment of approch

Tho doutments should then be set back a sufficient distance so that approach fills aro not reguired.

Furthormore, the analyses show that there is an apparently high risk of fallure at the loes of the banks because of their steep slopes: These potential fallures could cause movement of piers located nearby. Therefore banks should be graded back to the abutment locations in order to reduce this risk and to increase overall stability.

### 7.2. Foundations

Due to the lack of competent strata immediately overlying the bedrock formation, driven end-bearing piles can be expected to refuse directly in bedrock. As there is the possibility of some lateral creep forces developing on piles driven through the riverbank as well as lateral forces exerted by live loads, we feel that there should be some penetration of piles into the bedrock to provide lateral resistance at the pile tip. This penetration cannot be achieved with a driven concrete pile and this type of pile is therefore not recommended. This leads us to the use of a steel driven pile or alternatively, a large diameter bored cast-in-place pile icaissonl excavated into rock.

The quality of the decomposed rock and the silts and clays found in rock cavities and layers are the ruling factor with regard to the bearing capacity of the bedrock. Although the silt and clay was observed only in Tost Hole 103, we find in our experience that the quality of bedrock may be quite erratic over a particular site and therefore we should not rule out the possibility of occurrences of this silt/clay material elsewhere. Therefore the design bearing pressures of a pier bearing directly on the bedrock surface will be low compared to that used for a considerable depth of sound rock. The design bearing pressure should not be exceeded by the average bearing pressure at the level of the tips of a group of driven end-bearing piles.

Calssons, which are designed for high bearing pressures, will have to be ex-


The thickness of the overburden on the bedrock in the river was oboerved to be as thin as 7 or 3 feet as recorded by our soundings. It is possible that this overburdon could in fact be thinner. The thicknoss and strongin of inis overburdon material has fo be taken into considerafion for the design of cofferdams required for the conetruction of river piers directly on bedrock in the dry. The design of cofferdams and the method of excavating and dewatering for piers in the river should be carefully reviewed by a Geotechnical Consultant prior to acceptance of Tender.




## CLASETICATION DY PARTICLESIZE

Boulders--larger than 8 inches
Cobbles- 3 inches to 8 inches

Gravel- $\$ 4$ sieve to 3 inches
Sand- $\# 200$ sieve to $\# 4$ sieve

Silt- 0.002 nm . to t 200 sieve
Clay-finer than 0.002 mm .

## DENSITY OR SANDS AND GRAVELS

| Descriptive Term | Relative Density | Standard Penetration Test |
| :--- | :---: | :---: |
| Very loose | $0-20 \%$ | $0-4$ blows per ft. |
| Loose | $20-40 \%$ | $4-10$ blows per ft. |
| Medium dense | $40-70 \%$ | $10-30$ blows per ft |
| Dense | $70-90 \%$ | $30-50$ blows per ft |
| Very dense | $90-100 \%$ | Over 50 blows per ft |

## NOTES

1. Relative density determined by laboratory tests.
2. Standard Penetration Test uses 140 lb . weight, 30 inch drop, $2^{\prime \prime}$ O.D. sampler.
3. The "R.K.L." Penctration Test uses 50 lb . weight, 30 inch drop, $11 / 4$ " O.D. drive cone attached to a single line of I " diameter rods. The penetration diagram is a measure of skin friction plus point resistance. An approximate relationship between the Standard Penctration Test and the "R.K.L." Penetration Test exists for sands. This is shown in the following table.

| Depth-Ft. | $0-20$ | $20-40$ | $40-60$ |
| :--- | :---: | :---: | :---: |
| $\frac{\text { Std. Pen. Test }}{\text { "R.K.L." Test }}$ | 0.7 | 0.5 | 0.3 |

## CONSISTENCY OF CLAYS AND SILTS

| Descriptive Term | Unconfined Compressive <br> Strength-Tons Sq. Ht | Remarks |
| :---: | :---: | :--- |
| Very soft | less than 0.25 | Can penctrate with fist |
| Soft | 0.25 to 0.50 | Can indent with fist |
| Firm | 0.50 to 1.0 | Can penetrate with thumb |
| Stifl | 1.0 to 2.0 | Can indent with thumb |
| Very stiff | 2.0 to 4.0 | Can indent with thumb-nail |
| Hard | 4.0 and greater | Cannot indent with thumb-nail |

## DESCRIPTIVE SOIL TERMS

Well graded . . . . having wide range of grain sizes and substantial amounts of all intermediate sizes.
Poorly graded . . . predominantly of one grain size.
Slickensided . . . . refers to a clay that has planes that are slick and glossy in appearance; slickensides are caused by shear movements.

Sensitive . . . . . . exhibiting loss of strength on remolding.
Fissured . . . . . . containing cracks, usually attibutable to shrinkage. Fissured clays are sometimes described as having a nugget structure.
Stratifed . . . . . containing layers of different soil types.















