APPENDIX 'A'

GEOTECHNICAL REPORT

Stantec Consulting Ltd. 199 Henlow Bay Winnipeg MB R3Y 1G4

February 26, 2024

Project/File: 123316892

Caleb Olfert

Dillon Consulting Ltd. 1558 Willson Place Winnipeg, MB R3T 0Y4

Good day Caleb,

Reference: 24-R-06 Geotechnical Investigation

Stantec Consulting Ltd. (Stantec) was retained to undertake a factual geotechnical investigation for the Local Streets Package 24-R-06 in Winnipeg, Manitoba. Use of this report is subject to the Statement of General Conditions provided in **Appendix A**.

The subsurface coring and drilling sampling program was conducted from January 10, 2024, to January 25, 2024. Pavement coring was performed by our geotechnical field personnel, and drilling services were provided by Maple Leaf Drilling under the supervision of our personnel. The borehole locations are shown on the attached Borehole Location Plan provided in **Appendix B**. When subsurface drilling was required, the pavement cores were sampled with a 150 mm bit and boreholes were drilled with 125 mm solid stem augers. Geotechnical drilling boreholes were terminated at a depth of 2.0 m below the pavement, which resulted in borehole depths ranging from 2.07 m to 2.22 m below the surface. Soil samples were obtained directly from the auger flights at depths of 0.6 m, 0.9 m, 1.2 m, 1.6 m, and 2.0 m from the bottom of the existing pavement. Upon completion of drilling, the testholes were examined for evidence of sloughing and groundwater seepage. The borehole records are provided in **Appendix C**. The soil classification used in the borehole records is as per ASTM D2487 – *Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)*. Core photographs are provided in **Appendix D**.

Reference: 24-R-06 Geotechnical Investigation

EXISTING PAVEMENT THICKNESS

The existing pavement thickness is provided in the following table:

Table 1 – Existing Pavement Thickness

Street	Core ID	Asphalt Thickness (mm)	Concrete Thickness (mm)	Total Pavement Thickness (mm)
-				-
-				_
				-
Lilian Ave	BH-11	110	0	110
Lilian Ave	BH-12	75	100	175
Lilian Ave	BH-13	0	220	220
Champlain St	BH-14	20	150	170
Champlain St	BH-15	0	155	155
Champlain St	BH-16	0	160	160
Champlain St	BH-17	0	165	165
Dumoulin St	BH-18	0	180	180
Dumoulin St	BH-19	0	150	150
Dumoulin St	BH-20	0	170	170
Dumoulin St	BH-21	0	180	180
Dumoulin St	BH-22	0	175	175

Reference: 24-R-06 Geotechnical Investigation

Street	Core ID	Asphalt Thickness (mm)	Concrete Thickness (mm)	Total Pavement Thickness (mm)
				-
Baywater Pl	BH-32	0	180	180
Baywater Pl	BH-33	0	200	200
Courtwood PI	BH-34	0	160	160
Courtwood PI	BH-35	0	100	100
		÷ •	1 × ×	
				-

LABORATORY TESTING

The following laboratory tests were conducted on select soil samples:

- ASTM D2216 Laboratory Determination of Water (Moisture) Content of Soil by Mass
- ASTM D4318 Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- ASTM D7928 Particle-Size Distribution of Fine-Grained Soils Using The Sedimentation Analysis
- ASTM D698 Laboratory Compaction Characteristics of Soil Using Standard Effort
- ASTM D1883 California Bearing Ratio (CBR) of Laboratory-Compacted Soils
- CSA A23.2-14C Obtaining and testing drilled cores for compressive strength testing

The CBR tests were performed at 95% maximum dry density under soaked conditions. Prior to testing the concrete core samples for compressive strength, the cores were conditioned in water at room temperature for 48 hours. The moisture content results are shown on the borehole records, and the laboratory test reports are provided in **Appendix E**.

February 26, 2024 Caleb Olfert Page 4 of 4

Reference: 24-R-06 Geotechnical Investigation

CLOSURE

We appreciate the opportunity to assist you on this project. Please contact the undersigned if you have any questions regarding this report.

Regards,

STANTEC CONSULTING LTD.

fuce

Guillaume Beauce P.Eng. Geotechnical Engineer, Materials Testing Services Phone: 204-928-7618 Mobile: 204-898-8290 guillaume.beauce@stantec.com

Jason Thompson C.E.T. Manager, Materials Testing Services Phone: 204-928-4004 Mobile: 204-981-8445 jason.thompson@stantec.com

Attachment: Appendix A – Statement of General Conditions Appendix B – Borehole Location Plan Appendix C – Borehole Records Appendix D – Core Photographs Appendix E – Laboratory Test Reports • Atterberg Limits Test Reports

- Particle-Size Analysis Reports
- Standard Proctor Test Reports
- CBR Test Reports
- Concrete Core Compressive Strength Test Results

APPENDIX A

Statement of General Conditions

STATEMENT OF GENERAL CONDITIONS

USE OF THIS REPORT: This report has been prepared for the sole benefit of the Client or its agent and may not be used by any third party without the express written consent of Stantec and the Client. Any use which a third party makes of this report is the responsibility of such third party.

BASIS OF THE REPORT: The information, opinions, and/or recommendations made in this report are in accordance with Stantec's present understanding of the site-specific project as described by the Client. The applicability of these is restricted to the site conditions encountered at the time of the investigation or study. If the proposed site-specific project differs or is modified from what is described in this report or if the site conditions are altered, this report is no longer valid unless Stantec is requested by the Client to review and revise the report to reflect the differing or modified project specifics and/or the altered site conditions.

STANDARD OF CARE: Preparation of this report, and all associated work, was carried out in accordance with the normally accepted standard of care in the state or province of execution for the specific professional service provided to the Client. No other warranty is made.

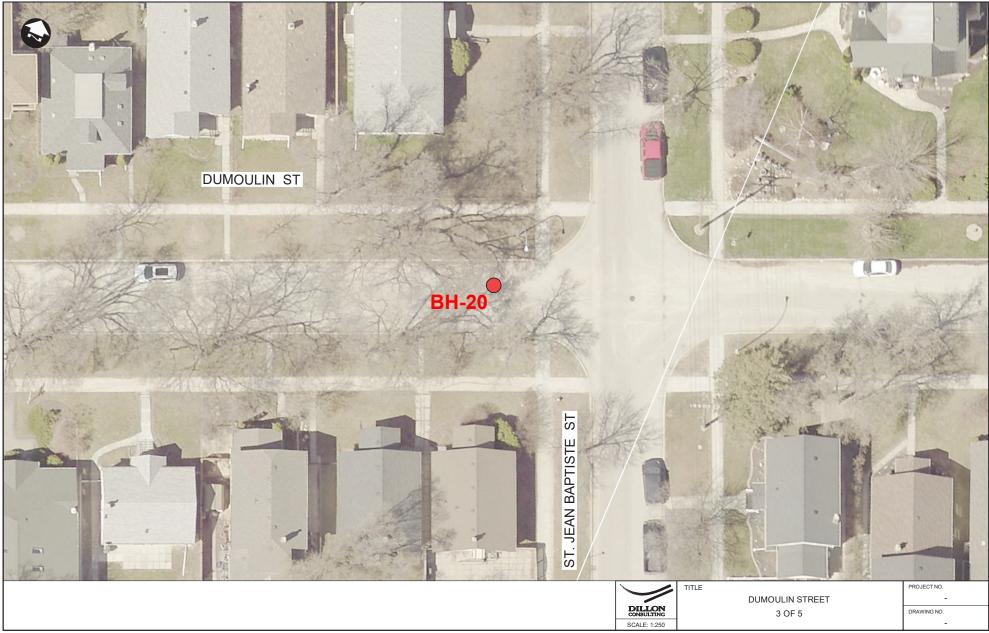
INTERPRETATION OF SITE CONDITIONS: Soil, rock, or other material descriptions, and statements regarding their condition, made in this report are based on site conditions encountered by Stantec at the time of the work and at the specific testing and/or sampling locations. Classifications and statements of condition have been made in accordance with normally accepted practices which are judgmental in nature; no specific description should be considered exact, but rather reflective of the anticipated material behavior. Extrapolation of in situ conditions can only be made to some limited extent beyond the sampling or test points. The extent depends on variability of the soil, rock, and groundwater conditions as influenced by geological processes, construction activity, and site use.

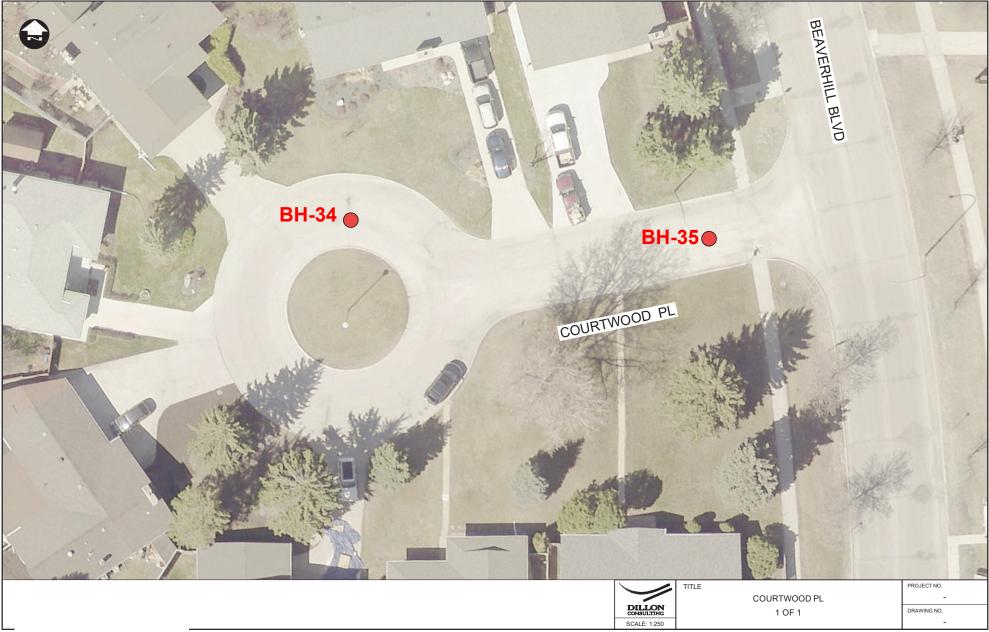
VARYING OR UNEXPECTED CONDITIONS: Should any site or subsurface conditions be encountered that are different from those described in this report or encountered at the test locations, Stantec must be notified immediately to assess if the varying or unexpected conditions are substantial and if reassessments of the report conclusions or recommendations are required. Stantec will not be responsible to any party for damages incurred as a result of failing to notify Stantec that differing site or sub-surface conditions are present upon becoming aware of such conditions.

PLANNING, DESIGN, OR CONSTRUCTION: Development or design plans and specifications should be reviewed by Stantec, sufficiently ahead of initiating the next project stage (property acquisition, tender, construction, etc.), to confirm that this report completely addresses the elaborated project specifics and that the contents of this report have been properly interpreted. Specialty quality assurance services (field observations and testing) during construction are a necessary part of the evaluation of sub-subsurface conditions and site preparation works. Site work relating to the recommendations included in this report should only be carried out in the presence of a qualified geotechnical engineer; Stantec cannot be responsible for site work carried out without being present.

APPENDIX B

Borehole Location Plan





APPENDIX C

Borehole Records

SYMBOLS AND TERMS USED ON BOREHOLE AND TEST PIT RECORDS

SOIL DESCRIPTION

Terminology describing common soil genesis:

Rootmat	 vegetation, roots and moss with organic matter and topsoil typically forming a mattress at the ground surface
Topsoil	- mixture of soil and humus capable of supporting vegetative growth
Peat	- mixture of visible and invisible fragments of decayed organic matter
Till	- unstratified glacial deposit which may range from clay to boulders
Fill	- material below the surface identified as placed by humans (excluding buried services)

Terminology describing soil structure:

Desiccated	- having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.
Fissured	- having cracks, and hence a blocky structure
Varved	- composed of regular alternating layers of silt and clay
Stratified	- composed of alternating successions of different soil types, e.g. silt and sand
Layer	- > 75 mm in thickness
Seam	- 2 mm to 75 mm in thickness
Parting	- < 2 mm in thickness

Terminology describing soil types:

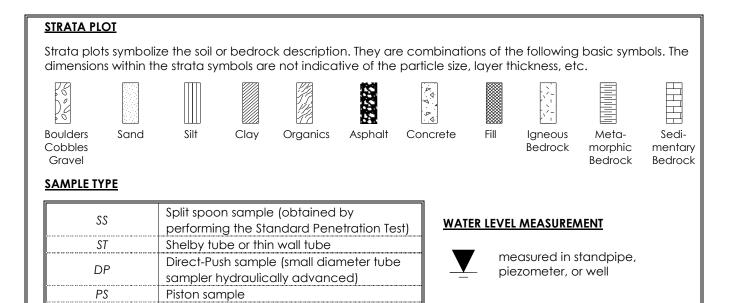
The classification of soil types are made on the basis of grain size and plasticity in accordance with the Unified Soil Classification System (USCS) (ASTM D 2487 or D 2488) which excludes particles larger than 75 mm. For particles larger than 75 mm, and for defining percent clay fraction in hydrometer results, definitions proposed by Canadian Foundation Engineering Manual, 4th Edition are used. The USCS provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification.

Terminology describing cobbles, boulders, and non-matrix materials (organic matter or debris):

Terminology describing materials outside the USCS, (e.g. particles larger than 75 mm, visible organic matter, and construction debris) is based upon the proportion of these materials present:

Trace, or occasional	Less than 10%
Some	10-20%
Frequent	> 20%

Terminology describing compactness of cohesionless soils:


The standard terminology to describe cohesionless soils includes compactness (formerly "relative density"), as determined by the Standard Penetration Test (SPT) N-Value - also known as N-Index. The SPT N-Value is described further on page 3. A relationship between compactness condition and N-Value is shown in the following table.

Compactness Condition	SPT N-Value
Very Loose	<4
Loose	4-10
Compact	10-30
Dense	30-50
Very Dense	>50

Terminology describing consistency of cohesive soils:

The standard terminology to describe cohesive soils includes the consistency, which is based on undrained shear strength as measured by *in situ* vane tests, penetrometer tests, or unconfined compression tests. Consistency may be crudely estimated from SPT N-Value based on the correlation shown in the following table (Terzaghi and Peck, 1967). The correlation to SPT N-Value is used with caution as it is only very approximate.

Consistency	Undrained St	Approximate	
consistency	kips/sq.ft.	kPa	SPT N-Value
Very Soft	<0.25	<12.5	<2
Soft	0.25 - 0.5	12.5 - 25	2-4
Firm	0.5 - 1.0	25 - 50	4-8
Stiff	1.0 - 2.0	50 – 100	8-15
Very Stiff	2.0 - 4.0	100 - 200	15-30
Hard	>4.0	>200	>30

RECOVERY

BS

HQ, NQ, BQ, etc.

For soil samples, the recovery is recorded as the length of the soil sample recovered. For rock core, recovery is defined as the total cumulative length of all core recovered in the core barrel divided by the length drilled and is recorded as a percentage on a per run basis.

N-VALUE

Numbers in this column are the field results of the Standard Penetration Test: the number of blows of a 140 pound (63.5 kg) hammer falling 30 inches (760 mm), required to drive a 2 inch (50.8 mm) O.D. split spoon sampler one foot (300 mm) into the soil. In accordance with ASTM D1586, the N-Value equals the sum of the number of blows (N) required to drive the sampler over the interval of 6 to 18 in. (150 to 450 mm). However, when a 24 in. (610 mm) sampler is used, the number of blows (N) required to drive the sampler over the interval of 6 to 18 in. (150 to 450 mm). However, when a 24 in. (300 to 610 mm) may be reported if this value is lower. For split spoon samples where insufficient penetration was achieved and N-Values cannot be presented, the number of blows are reported over sampler penetration in millimetres (e.g. 50/75). Some design methods make use of N-values corrected for various factors such as overburden pressure, energy ratio, borehole diameter, etc. No corrections have been applied to the N-values presented on the log.

DYNAMIC CONE PENETRATION TEST (DCPT)

Bulk sample

Rock core samples obtained with the use

of standard size diamond coring bits.

Dynamic cone penetration tests are performed using a standard 60 degree apex cone connected to 'A' size drill rods with the same standard fall height and weight as the Standard Penetration Test. The DCPT value is the number of blows of the hammer required to drive the cone one foot (300 mm) into the soil. The DCPT is used as a probe to assess soil variability.

OTHER TESTS

S	Sieve analysis
Н	Hydrometer analysis
k	Laboratory permeability
Y	Unit weight
Gs	Specific gravity of soil particles
CD	Consolidated drained triaxial
СU	Consolidated undrained triaxial with pore
	pressure measurements
UU	Unconsolidated undrained triaxial
DS	Direct Shear
С	Consolidation
Qu	Unconfined compression
	Point Load Index (Ip on Borehole Record equals
Ιp	I_p (50) in which the index is corrected to a
	reference diameter of 50 mm)

Ţ	Single packer permeability test; test interval from depth shown to bottom of borehole
	Double packer permeability test; test interval as indicated
Ŷ	Falling head permeability test using casing
Ĭ	Falling head permeability test using well point or piezometer

inferred

Q		Stantec			E	BOF	REH	IOLE	RECO	R)															BH	
		Dillon Consulting Ltd.																								233168	<u>92</u>
		CT: <u>24-R-06 Geotechnical Inv</u> ON: Lilian Avenue	estigat	ion																						N/A	
		ORED: <u>January 17 2024</u>									WA	٩ΤΕ	R	LE۱	VEI	L:	N	/A		DF	11	JIVI.	-				
2.					SAM	PLES				-								ENG	ΓH,	Cu (kPa	ı)					
(n	(m) M		5					-								TES		TED									E Z
DEPTH (m)	ATIO	SOIL DESCRIPTION	A PLO		~	mm %	ш%	отн	ER TESTS /		★ POCKET PENETROMETER 50 kPa 100 kPa										50 k			200 k			ATIO
DEF	ELEVATION (m)	(MUSCS)	STRATA PLOT	ТҮРЕ	NUMBER	RECOVERY (mm) or TCR %	N-VALUE or RQD %	RE	EMARKS							T & /		ERBI	ERG	G LIN	/ITS	6	W _P	w	WL	BACKFILL	ELEVATION (m)
						R						0		20			r Cont	ent (%) a	and Bk		^{int} 60	-	70	80	h		
- 0 -		ASPHALT												Ī		 		[:		: :						
-		Firm brown fat CLAY (CH) - silty, trace sand																								XXXXX	-
-				(AS				1																			
-				1				Sieve/Hy G S	droat 0.7 m M C % 53% 38%							P			:			ľ					
-				_				0% 9%	% 53% 38%	° :																	
- 1 -				X AS				-		:			::	::	-0) ::	::		:	:::	: :		::	::			<u>}</u>
-																											*
_				(AS																							×
-																											×
																											*
-				X AS				-																			× ×
-				1				1							(×
-																											× ×
- 2 -				(AS				-					::						:		<u>:</u> :					+	*
-				1 10												9 ::				:::	:1:						×
		End of Borehole • Borehole terminated at a depth of 2.1 • No groundwater seepage or soil sloug • Borehole backfilled with auger cutting • Borehole surface backfilled as per Cit	ghing was is and be	ntonit	e chir	DS.			npletion of dr	Irillin	ıg.																-
-																											-
- 3 -																											L
-																											-
-																											-
-																											-
																											_
-																											-
-																											-
-																											-
- 4 -		1						1	Drilling Con	ntrac	ctor	:	Pa	ddc	ock	Dri	lling	g Lto	d.					Lo	gged	By: R	B
		SYMBOL 🔛 ASPHALT	GR				ICRE		Drilling Meth	thod	:	12														ed By:	
	ENTO		SAN	١D		SLO	UGH		Completion	De	pth	:	2	2.11	1 m									Pa	ge	1 of 1	

Printed Feb 8 2024 15:18:03 SOIL 123316892_24-R06-GEOTECHNICALINVESTIGATION.GPJ NEW TEMPLATE TEST PROJECT.GPJ 2/8/24

Q	s	itantec			B	BOR	EH	OLE RECO	RD															BH-	
	IENT:		at = - 1																					233168	92_
		CT: 24-R-06 Geotechnical Inve DN: Lilian Avenue	stigat	ion					_															N/A	
		DRED: January 17 2024							v	٧A	TE	RL	EV	EL:	1	N/A				Olvi.					
					SAM	PLES			-	WATER LEVEL:															
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION	A PLOT				ш%	OTHER TESTS /			CK				OME	ETEF 0 kPa	२	ΠP	OCI			AR V 200	ANE	(FILL	ELEVATION (m)
DEF	ELEV	(MUSCS)	STRATA	ТҮРЕ	NUMBER	RECOVERY (mm) or TCR %	N-VALUE or RQD %	REMARKS						BLO	NS/0).3m		RG LI		S	W _P	w	WL -	BACKFILL	ELEV
- 0 -				1		-			+	1(0	<u>- 20</u>)	30		40		Blow Co	60 60) :::	70	8	0		_
-		ASPHALT CONCRETE	_ R																						-
-		Firm brown fat CLAY (CH) with sand	Ű																						-
-		- silty																						****	-
-																									-
				_																					
				AS				Sieve/Hydro at 0.8 m					-	-0						1					
-								Sieve/Hydro at 0.8 m G S M C 3% 12% 49% 36%						:											-
- 1 -				AS								:: ::	+ + +	:						<u></u>	: : : :	:::: ::::			
-														þ											-
-																									-
-				AS																					-
-																									-
																									-
-				_																					-
				(AS																					
_																									_
- 2 -													<u></u>							<u></u>					_
-				AS																					-
-		End of Borehole		<u>)</u>				<u></u>				::1	:::	:1:	.				::	:::	: :	:::		KXXXX	-
- - - - - - - - - - - -		Borehole terminated at a depth of 2.17 No groundwater seepage or soil slougl Borehole backfilled with auger cuttings Borehole surface backfilled as per City	hing was	ntonite	e chip	s.			rilling	ļ.															-
								Drilling Con	tract	or.		Pad			rillir		td							By: RI	- - - - - -
RACI	(FII I	SYMBOL RASPHALT	GR	דוור	F.]CON									1111	'y L								ed By:	
			SAN			SLO		Completion			. 20		.17 ו											1 of 1	

C		Dillon Consulting Ltd.	RD	PROJECT N	NO.: <u>12</u>	BH- 331689							
		T: 24-R-06 Geotechnical Invest	_	BH ELEVAT									
			_ WATER LEVEL: 		N/A								
Dr		DRED: <u>January 17 2024</u>			SAMF	PLES			UNDRAINED SHEAR STRENGTH	l, Cu (kPa)			
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (MUSCS)	STRATA PLOT	ТҮРЕ	NUMBER		N-VALUE or RQD %	OTHER TESTS / REMARKS	▲ LABORATORY TEST ★ POCKET PENETROMETER 50 kPa 100 kPa WATER CONTENT & ATTERBER ¥ SPT (N-value) BLOWS/0.3m	150 kPa		BACKFILL	ELEVATION (m)
- 0 -		CONCRETE				Ľ			Water Content (%) and	Blow Count 0 60 70	80		-
-		Firm brown fat CLAY (CH) - silty, trace sand		X as									- - -
				0/10					L;;;;l;;;;d;;;;l;;;;l;;;;	1:::: :::			_
- - - 1 –		End of Borehole • Auger refusal at a depth of 0.51 m on sus • No groundwater seepage or soil sloughin • Borehole surface backfilled as per City of	Id wa	is obse	erved	durinc) or up Manua	on completion of dri al.	illing.			-	- - -
-												-	- - - -
-												-	- - -
- 2 - - - -												-	
												-	
- 3 -													-
-													-
 - -													
-												ŀ	-
- 4 - BAC	KEILI	SYMBOL 🔛 ASPHALT	GR	OUT			ICRE	Drilling Cont	ractor: Paddock Drilling Ltd. od: 125 mm SSA		Logged E Reviewed		
	ENTO]SA			SLO	UGH				Page 1		

Printed Feb 8 2024 15:18:05 SOIL 12331 6892_24:R06-GEOTECHNICAL INVESTIGATION.GPJ NEW TEMPLATE TEST PROJECT.GPJ 2/8/24

APPENDIX D

Core Photographs

Figure 11 – Core No. 11 (Lilian Ave)

Figure 13 – Core No. 13 (Lilian Ave)

Figure 15 – Core no. 15 (Champlain St)

Figure 14 – Core No. 14 (Champlain St)

Figure 16 – Core No. 16 (Champlain St)

Figure 17 – Core No.17 (Champlain St)

Figure 19 – Core No. 19 (Dumoulin St)

Figure 18 – Core No. 18 (Dumoulin St)

Figure 20 – Core No. 20 (Dumoulin St)

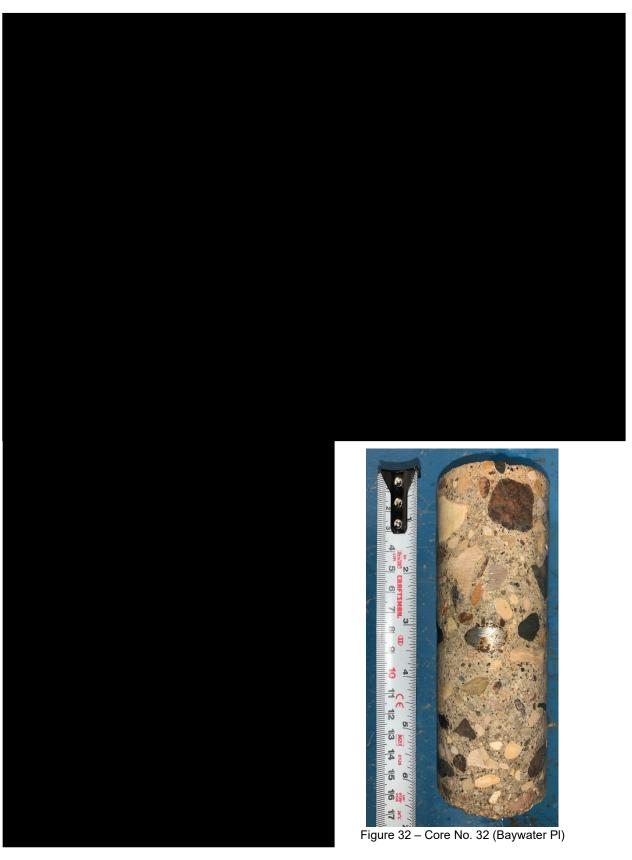


Figure 34 – Core No. 34 (Courtwood PI)

Figure 35 – Core No. 35 (Courtwood PI)

APPENDIX E

Laboratory Test Reports

ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)

TO Dillon Consulting Ltd. 300 - 100 Innovation Drive Winnipeg, Manitoba	PROJECT	24-R-06 - Local Street Package - Geotechnical Investigation
R3T 6A8	PROJECT NO.	123316892
ATTN Caleb Olfert	REPORT NO.	8
DATE SAMPLED: 2024.Jan.17 SAMPLED BY: Stantec Consulting Ltd.	DATE RECEIVED: 2024.Jan.17 SUBMITTED BY: Stantec Consu	DATE TESTED: 2024.Jan.31 Iting Ltd. TESTED BY: Larry Presado
MATERIAL IDENTIFICATION CLIENT FIELD ID BH-11, 710 mm	STANTEC SAMF	PLE NO. 4000
LIQUID LIMIT TRIAL 1 2 BLOWS 27 28 MC (%) 63 71	PLASTIC LI TRIAL 1 MC (%) 22	MIT LIQUID LIMIT, LL 68 2 PLASTIC LIMIT, PL 21 21 PLASTICITY INDEX, PI 46 AS REC'D MC (%) 31.60
	60 50 40 30 40 30 10 0 10 20 10 0 10 20	ML MH 30 40 50 60 70 80 90 100
COMMENTS No comments.		
REPORT DATE 2024.Feb.01	REVIEW	ED BY Guillaume Beauce, P.Eng. Geotechnical Engineer - Materials Testing Services
Reporting of these test results constitutes a testing service only. Er stipulated above. Stantec is not responsible, nor can be held liab		st results is provided on written request. The data presented is for sole use of client with or without the knowledge of Stantec.

ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

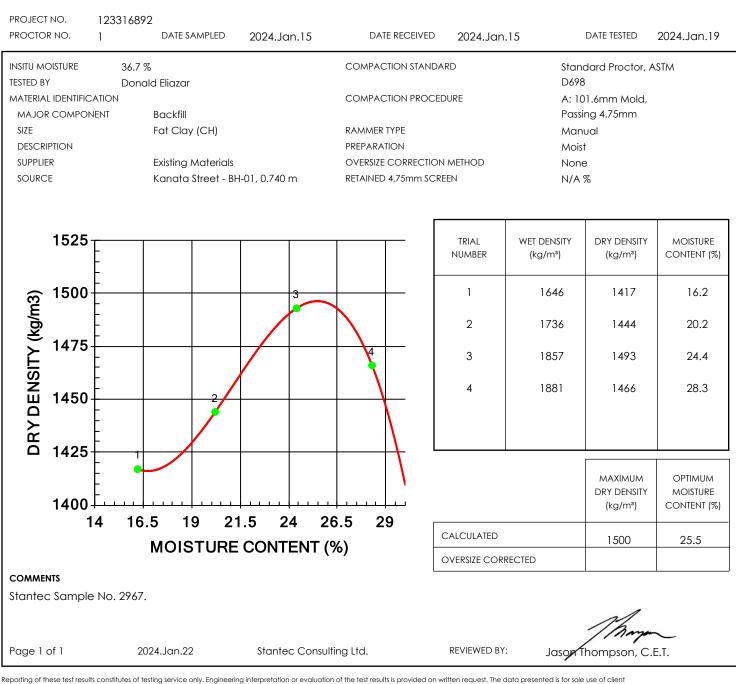
O Dillon Consulting Ltd. 300 - 100 Innovation Drive Winnipeg, Manitoba			PRC	JECT	24-R-06 - Local Streets Package - Geotechnical Investigation					
	R3T 6A8	VICHNODO			PRC	JECT NO.	123316892			
A	ATTN Ca	leb Olfert			REP	ORT NO.	8			
٩MI	PLED BY:		, nsulting Ltd.		CEIVED: 2024 ED BY: Star		lting Ltd.	DATE TES TESTED B	TED: 2024.Jan.2 Y: Larry Presa	
	ERIAL IDENTII ENT FIELD ID		10 mm		ST	antec samf	PLE NO. 400	00		
	100		*** \$\$	≪->==++					Sieve Size (mm)	% Passing
	90								50.0	100.0
									40.0	100.0
	80)				11 N			25.0	100.0
	8 70	> ₩₩₩₩	+ + + + + + + + + + + + + + + + + + +						20.0	100.0
	D 60								16.0	100.0
	Issir								12.5	100.0
	Ö 50)							9.5	100.0
	Lercent Passing (%) 90 - Passing (%) 90)							4.75	100.0
	Ŭ 0 30								2.36	99.9
									2.00	99.8
	20)							1.18	99.4
	10) 							0.600	98.8
	()							0.300	98.3
	· · · · ·	100	10	1	0.1	(0.01	0.001	0.150	97.3
									0.075	91.1
				Particle	Size (mm)				0.005	45.9
									0.002	38.2
_		-						-	0.001	34.1
L	Gravel		Sand		Silt	Clay	Colloids			
L		Coarse	Medium	Fine				4		
L	0.0	0.2	1.3	7.4	52.9	38.2	34.1			
	MENTS omments.							- RBeil	ve	
РО	PRT DATE	2024.Jan.25				REVIEW		illaume Beau		Testing Service

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

TO Dillon Consulting Ltd. 300 - 100 Innovation Drive Winnipeg, Manitoba				PRO			24-R-06 - Local Streets Package - Geotechnical Investigation			
R3T 6A8	Marinoba			PRO	JECT NO.	123316892				
ATTN C	aleb Olfert			REPC	ORT NO.	9				
AMPLED BY:	IFICATION	nsulting Ltd.			tec Consul		TESTED B	TED: 2024.Jan.2 Y: Larry Presa		
CLIENT FIELD I		/5 mm		STA		LE NO. 400		Sieve Size (mm)	% Passing	
		╎╴╴╢┯┯┿┿						50.0	100.0	
9	PO ++++++++++++++++++++++++++++++++++++							40.0	100.0	
3	30 +++++++	+ + + + + + + + + + + + + + + + + + +						25.0	100.0	
	70							20.0	100.0	
								16.0	100.0	
sin e	50 ++++++							12.5	100.0	
ds c	50 ++++++++++++++++++++++++++++++++++++							9.5	100.0	
L H	40 							4.75	97.0	
e -								2.36	96.2	
er 3er	30 +++++++-									
	20 +++++++							2.00	96.0 94.0	
	10							1.18 0.600	94.0	
1										
	0 +							0.300	89.3 86.9	
	100	10	1	0.1	C	0.01	0.001	0.150	84.4	
								0.073	44.3	
			Particles	Size (mm)				0.003	35.8	
								0.002	35.8	
		Sand					7	0.001	31.2	
Gravel	Cograo		Fine	Silt	Clay	Colloids				
3.0	Coarse	Medium 5.7	Fine 5.9	48.6	35.8	31.2	-			
OMMENTS o comments.	1.0			10.0		01.2	1			
						(Ben	ice		

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.


PROCTOR TEST REPORT

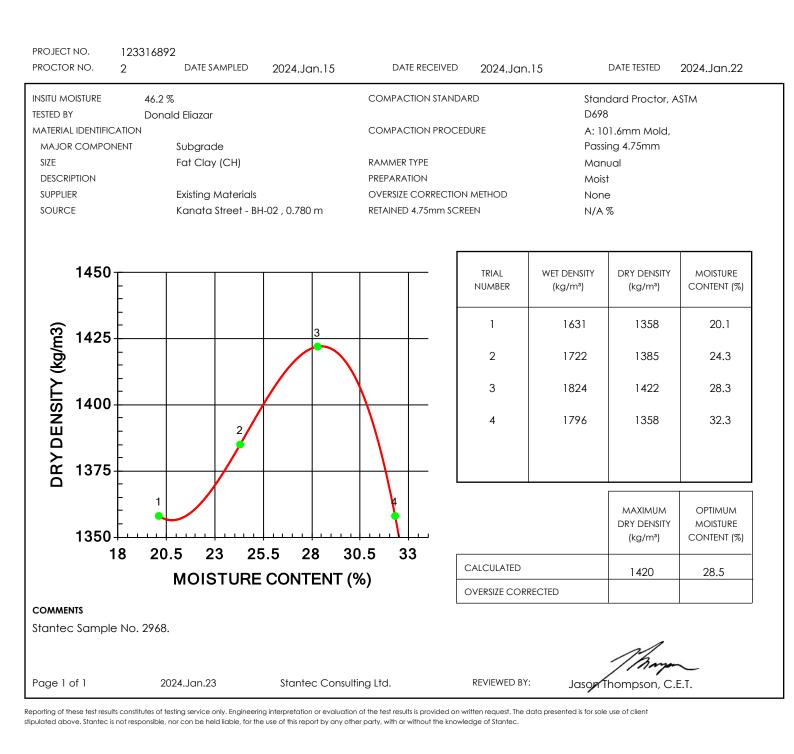
Dillon Consulting Ltd.
 300 - 100 Innovation Dr.
 Winnipeg, MB
 R3T 6A8

ATTN: Ali Campbell

CLIENT Dillon Consulting Ltd. C.C.

PROJECT 24-R-06 - Local Streets Package

Reporting of these test results constitutes of testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use a stipulated above. Stantec is not responsible, nor con be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

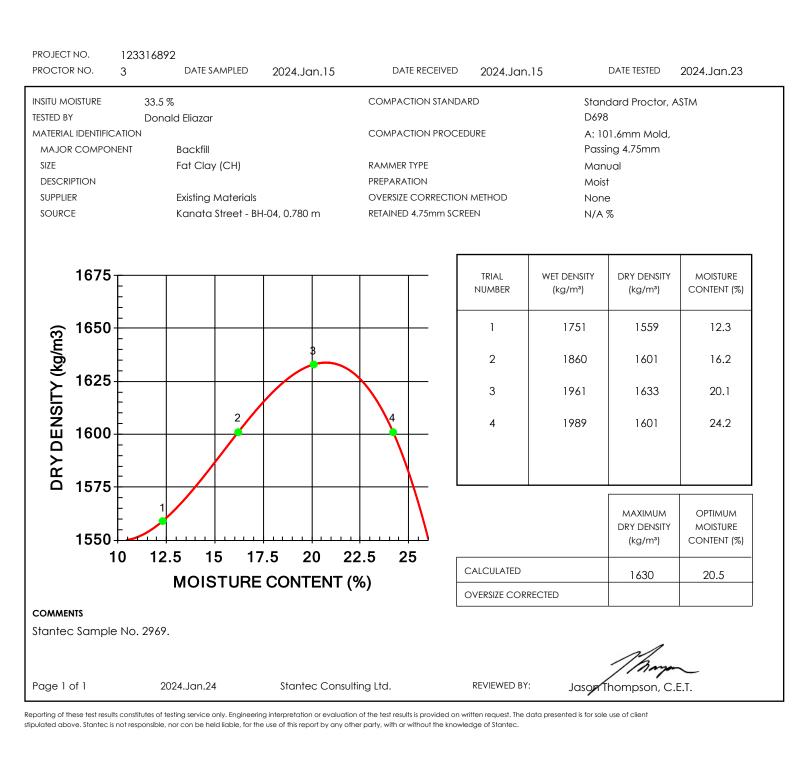

PROCTOR TEST REPORT

Dillon Consulting Ltd.
 300 - 100 Innovation Dr.
 Winnipeg, MB
 R3T 6A8

ATTN: Ali Campbell

C.C.

CLIENT Dillon Consulting Ltd.



PROCTOR TEST REPORT

Dillon Consulting Ltd.
 300 - 100 Innovation Dr.
 Winnipeg, MB
 R3T 6A8

ATTN: Ali Campbell

CLIENT Dillon Consulting Ltd. C.C.

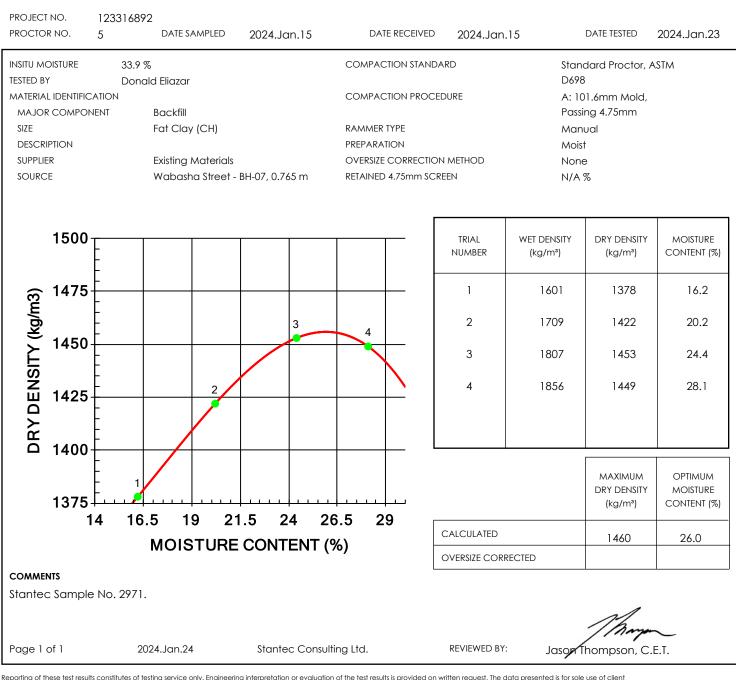
PROCTOR TEST REPORT

Dillon Consulting Ltd.
 300 - 100 Innovation Dr.
 Winnipeg, MB
 R3T 6A8

ATTN: Ali Campbell

CLIENT Dillon Consulting Ltd. C.C.

PROCTOR TEST REPORT


Dillon Consulting Ltd.
 300 - 100 Innovation Dr.
 Winnipeg, MB
 R3T 6A8

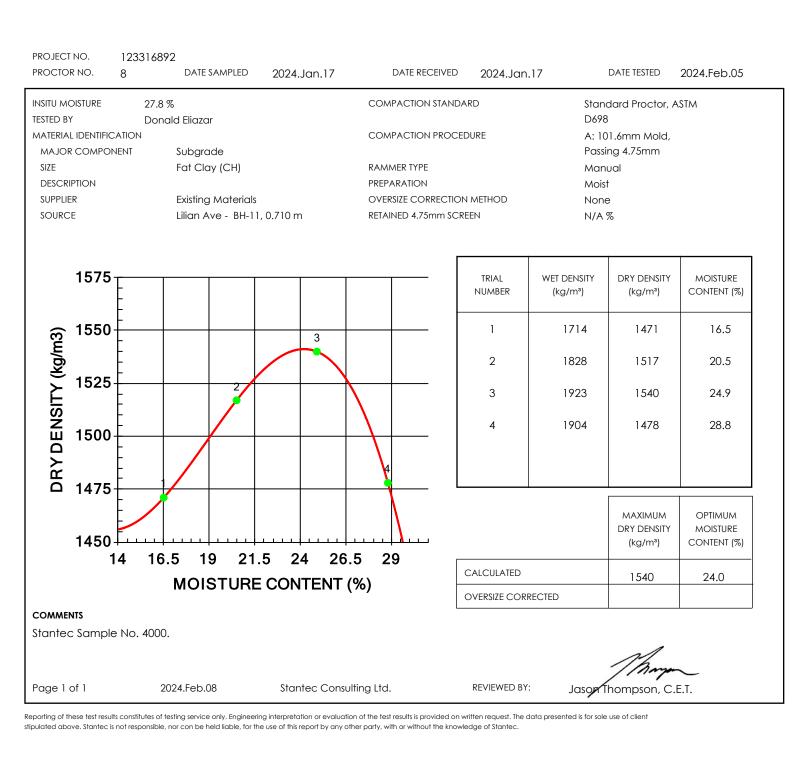
ATTN: Ali Campbell

C.C.

CLIENT Dillon Consulting Ltd.

PROJECT 24-R-06 - Local Streets Package

Reporting of these test results constitutes of testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of clie stipulated above. Stantec is not responsible, nor con be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.


PROCTOR TEST REPORT

Dillon Consulting Ltd.
 300 - 100 Innovation Dr.
 Winnipeg, MB
 R3T 6A8

ATTN: Ali Campbell

C.C.

CLIENT Dillon Consulting Ltd.

PROCTOR TEST REPORT

Dillon Consulting Ltd.
 300 - 100 Innovation Dr.
 Winnipeg, MB
 R3T 6A8

ATTN: Ali Campbell

CLIENT Dillon Consulting Ltd.

C.C.

PROJECT 24-R-06 - Local Streets Package

Reporting of these test results constitutes of testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor con be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

TO Dillon Consulting Ltd. 300 - 100 Innovation Drive Winnipeg, Manitoba		PROJECT		al Streets Package - al Investigation
R3T 6A8		PROJECT NO.	123316892	
ATTN Ali Campbell		REPORT NO.	8	
DATE SAMPLED: 2024.Jan.17 SAMPLED BY: Stantec Consulting Ltd	DATE RECEIVED J. SUBMITTED BY:	: 2024.Jan.17 Stantec Consul	ting Ltd.	DATE TESTED: 2024.Feb.19 TESTED BY: Donald Eliazar
MATERIAL IDENTIFICATION MATERIAL USE Subgrade MAX. NOMINAL SIZE 4.75 mm MATERIAL TYPE Fat Clay (CH) SPECIFICATION ID Not Applicable		SUPPLIER SOURCE SAMPLE LOCAT STANTEC SAMPI	Existin ION BH-11	ng Material ng Material , 0.710 m
IMMERSION PERIOD96 ± 2 hrCONDITION OF SAMPLESoakedSURCHARGE MASS4.54 kg		TARGET MAX. D TARGET OPTIMU		1540 kg/m ³ 24.0 %
+19 mm OVERSIZE SWELL OF SAMPLE POST-TEST MOISTURE	0 % 1.51 % 30.4 %	AS-COMPACTE AS-COMPACTE AS-COMPACTE		1462 kg/m ³ 24.1 % DN 95 %
700 (D) 20 30 500 し 500				CBR VALUE AT 2.54 mm PENETRATION 4.8
				CBR VALUE AT 5.08 mm PENETRATION 4.2
0.0 2.0 4.0	6.0 8.0 Penetration (mm)	10.0 12.0	14.0	
COMMENTS Sample prepared to 95% of the maximum	dry density at the optimu	um moisture conter	nt as determined	d from ASTM D698.
REPORT DATE 2024.Feb.26		REVIEWE		n Thompson, C.E.T. pal - Manager of Materials Testing Services
Reporting of these test results constitutes a testing service stipulated above. Stantec is not responsible, nor can be h				

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

	PROJECT NO.	123316892
ATTN Ali Campbell I	REPORT NO.	9
DATE SAMPLED: 2024.Jan.17 DATE RECEIVED: 2 SAMPLED BY: Stantec Consulting Ltd. SUBMITTED BY: 5		DATE TESTED: 2024.Feb.19 ing Ltd. TESTED BY: Donald Eliazar
MATERIAL IDENTIFICATION MATERIAL USE Subgrade MAX. NOMINAL SIZE 4.75 mm MATERIAL TYPE Fat CLAY with sand (CH) SPECIFICATION ID Not Applicable	SUPPLIER SOURCE SAMPLE LOCATIO STANTEC SAMPLI	
IMMERSION PERIOD96 ± 2 hrCONDITION OF SAMPLESoakedSURCHARGE MASS4.54 kg	TARGET MAX. DR TARGET OPTIMU	M MOISTURE 25.0 %
+19 mm OVERSIZE0 %SWELL OF SAMPLE3.02 %POST-TEST MOISTURE37.1 %	AS-COMPACTED AS-COMPACTED AS-COMPACTED	6
700 (D) 600 400 400		CBR VALUE AT 2.54 mm PENETRATION 3.5
400 400 400 400 400 400 400 400		CBR VALUE AT 5.08 mm PENETRATION 3.1
0.0 2.0 4.0 6.0 8.0 Penetration (mm)	10.0 12.0	14.0
COMMENTS Sample prepared to 95% of the maximum dry density at the optimum	n moisture conten	It as determined from ASTM D698.
REPORT DATE 2024.Feb.26 Reporting of these test results constitutes a testing service only. Engineering interpretation or e stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report t		Principal - Manager of Materials Testing Services

Stantec Consulting Ltd. 199 Henlow Bay, Winnipeg MB R3Y 1G4

Street		Diameter	Length	L/D	Correction	Peak Load (kN)	Compressive Strength (MPa)		
	ID	(mm)	(mm)	Ratio	Factor		Measured	Corrected	
Champlain St	BH-14	75.45	150.50	1.995	0.9996	215.19	48.13	48.11	
Champlain St	BH-16	75.60	171.34	2.266	1.0000	210.35	46.86	46.86	
Dumoulin St	BH-19	76.09	142.27	1.870	0.9896	290.85	63.96	63.30	
Dumoulin St	BH-22	87.98	176.16	2.002	1.0000	313.85	51.63	51.63	
	1								
Baywater Pl	BH-32	75.85	92.35	1.218	0.9223	149.23	33.03	30.46	
Baywater Pl	BH-33	75.82	142.71	1.882	0.9906	133.84	29.64	29.36	
Courtwood Pl	BH-34	75.79	113.32	1.495	0.9594	146.07	32.38	31.06	
Courtwood Pl	BH-35	Concrete core sample crumbled; unsuitable for testing.							
-									

Table 2 - Compressive Strength Test Data