The City of Winnipeg Tender No.188-2024 Template Version: 2024 02 01- Const Road Works Appendix 'A' Page 1 of 1

APPENDIX 'A' GEOTECHNICAL INVESTIGATION REPORT

Stantec Consulting Ltd. 199 Henlow Bay Winnipeg MB R3Y 1G4

February 26, 2024

Project/File: 123316892

Caleb Olfert

Dillon Consulting Ltd. 1558 Willson Place Winnipeg, MB R3T 0Y4

Good day Caleb,

Reference: 24-R-06 Geotechnical Investigation

Stantec Consulting Ltd. (Stantec) was retained to undertake a factual geotechnical investigation for the Local Streets Package 24-R-06 in Winnipeg, Manitoba. Use of this report is subject to the Statement of General Conditions provided in **Appendix A**.

The subsurface coring and drilling sampling program was conducted from January 10, 2024, to January 25, 2024. Pavement coring was performed by our geotechnical field personnel, and drilling services were provided by Maple Leaf Drilling under the supervision of our personnel. The borehole locations are shown on the attached Borehole Location Plan provided in **Appendix B**. When subsurface drilling was required, the pavement cores were sampled with a 150 mm bit and boreholes were drilled with 125 mm solid stem augers. Geotechnical drilling boreholes were terminated at a depth of 2.0 m below the pavement, which resulted in borehole depths ranging from 2.07 m to 2.22 m below the surface. Soil samples were obtained directly from the auger flights at depths of 0.6 m, 0.9 m, 1.2 m, 1.6 m, and 2.0 m from the bottom of the existing pavement. Upon completion of drilling, the testholes were examined for evidence of sloughing and groundwater seepage. The borehole records are provided in **Appendix C**. The soil classification used in the borehole records is as per ASTM D2487 – *Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)*. Core photographs are provided in **Appendix D**.

Reference: 24-R-06 Geotechnical Investigation

EXISTING PAVEMENT THICKNESS

The existing pavement thickness is provided in the following table:

Table 1 – Existing Pavement Thickness

Street	Core ID	Asphalt Thickness (mm)	Concrete Thickness (mm)	Total Pavement Thickness (mm)
Kanata St	BH-01	0	140	140
Kanata St	BH-02	15	165	180
Kanata St	BH-03	0	165	165
Kanata St	BH-04	0	180	180
Wabasha St	BH-05	0	145	145
Wabasha St	BH-06	0	160	160
Wabasha St	BH-07	0	165	165
Wynford Backlane	BH-08	0	155	155
Wynford Backlane	BH-09	30	140	170
Wynford Backlane	BH-10	10	125	135
Lilian Ave	BH-11	110	0	110
Lilian Ave	BH-12	75	100	175
Lilian Ave	BH-13	0	220	220
Champlain St	BH-14	20	150	170
Champlain St	BH-15	0	155	155
Champlain St	BH-16	0	160	160
Champlain St	BH-17	0	165	165
Dumoulin St	BH-18	0	180	180
Dumoulin St	BH-19	0	150	150
Dumoulin St	BH-20	0	170	170
Dumoulin St	BH-21	0	180	180
Dumoulin St	BH-22	0	175	175
McMahon Pl	BH-23	0	180	180
McMahon Pl	BH-24	0	160	160
Howard Kendel Pl	BH-25	0	130	130
Howard Kendel Pl	BH-26	0	145	145
Kern Dr	BH-27	0	155	155
Kern Dr	BH-28	0	170	170

Reference: 24-R-06 Geotechnical Investigation

Street	Core ID	Asphalt Thickness (mm)	Concrete Thickness (mm)	Total Pavement Thickness (mm)
Kern Dr	BH-29	0	190	190
Kern Dr	BH-30	0	160	160
Kern Dr	BH-31	0	150	150
Baywater PI	BH-32	0	180	180
Baywater Pl	BH-33	0	200	200
Courtwood PI	BH-34	0	160	160
Courtwood PI	BH-35	0	100	100
Roanoke St	BH-36	30	100	130
Roanoke St	BH-37	0	140	140
Melrose Ave	BH-38	20	150	170
Melrose Ave	BH-39	0	175	175

LABORATORY TESTING

The following laboratory tests were conducted on select soil samples:

- ASTM D2216 Laboratory Determination of Water (Moisture) Content of Soil by Mass
- ASTM D4318 Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- ASTM D7928 Particle-Size Distribution of Fine-Grained Soils Using The Sedimentation Analysis
- ASTM D698 Laboratory Compaction Characteristics of Soil Using Standard Effort
- ASTM D1883 California Bearing Ratio (CBR) of Laboratory-Compacted Soils
- CSA A23.2-14C Obtaining and testing drilled cores for compressive strength testing

The CBR tests were performed at 95% maximum dry density under soaked conditions. Prior to testing the concrete core samples for compressive strength, the cores were conditioned in water at room temperature for 48 hours. The moisture content results are shown on the borehole records, and the laboratory test reports are provided in **Appendix E**.

February 26, 2024 Caleb Olfert Page 4 of 4

Reference: 24-R-06 Geotechnical Investigation

CLOSURE

We appreciate the opportunity to assist you on this project. Please contact the undersigned if you have any questions regarding this report.

Regards,

STANTEC CONSULTING LTD.

Guillaume Beauce P.Eng.

Geotechnical Engineer, Materials Testing Services

Phone: 204-928-7618 Mobile: 204-898-8290

guillaume.beauce@stantec.com

Jason Thompson C.E.T.

Manager, Materials Testing Services

Phone: 204-928-4004 Mobile: 204-981-8445 jason.thompson@stantec.com

Attachment: Appendix A – Statement of General Conditions

Appendix B – Borehole Location Plan Appendix C – Borehole Records Appendix D – Core Photographs Appendix E – Laboratory Test Reports

- Atterberg Limits Test ReportsParticle-Size Analysis Reports
- Standard Proctor Test Reports
- CBR Test Reports
- Concrete Core Compressive Strength Test Results

APPENDIX A

Statement of General Conditions

STATEMENT OF GENERAL CONDITIONS

USE OF THIS REPORT: This report has been prepared for the sole benefit of the Client or its agent and may not be used by any third party without the express written consent of Stantec and the Client. Any use which a third party makes of this report is the responsibility of such third party.

BASIS OF THE REPORT: The information, opinions, and/or recommendations made in this report are in accordance with Stantec's present understanding of the site-specific project as described by the Client. The applicability of these is restricted to the site conditions encountered at the time of the investigation or study. If the proposed site-specific project differs or is modified from what is described in this report or if the site conditions are altered, this report is no longer valid unless Stantec is requested by the Client to review and revise the report to reflect the differing or modified project specifics and/or the altered site conditions.

STANDARD OF CARE: Preparation of this report, and all associated work, was carried out in accordance with the normally accepted standard of care in the state or province of execution for the specific professional service provided to the Client. No other warranty is made.

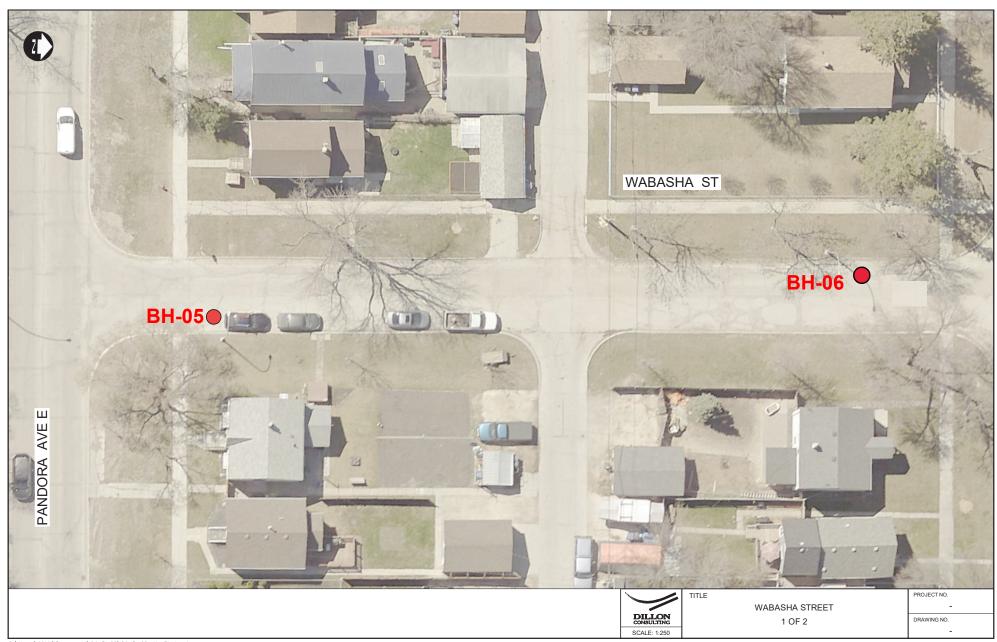
INTERPRETATION OF SITE CONDITIONS: Soil, rock, or other material descriptions, and statements regarding their condition, made in this report are based on site conditions encountered by Stantec at the time of the work and at the specific testing and/or sampling locations. Classifications and statements of condition have been made in accordance with normally accepted practices which are judgmental in nature; no specific description should be considered exact, but rather reflective of the anticipated material behavior. Extrapolation of in situ conditions can only be made to some limited extent beyond the sampling or test points. The extent depends on variability of the soil, rock, and groundwater conditions as influenced by geological processes, construction activity, and site use.

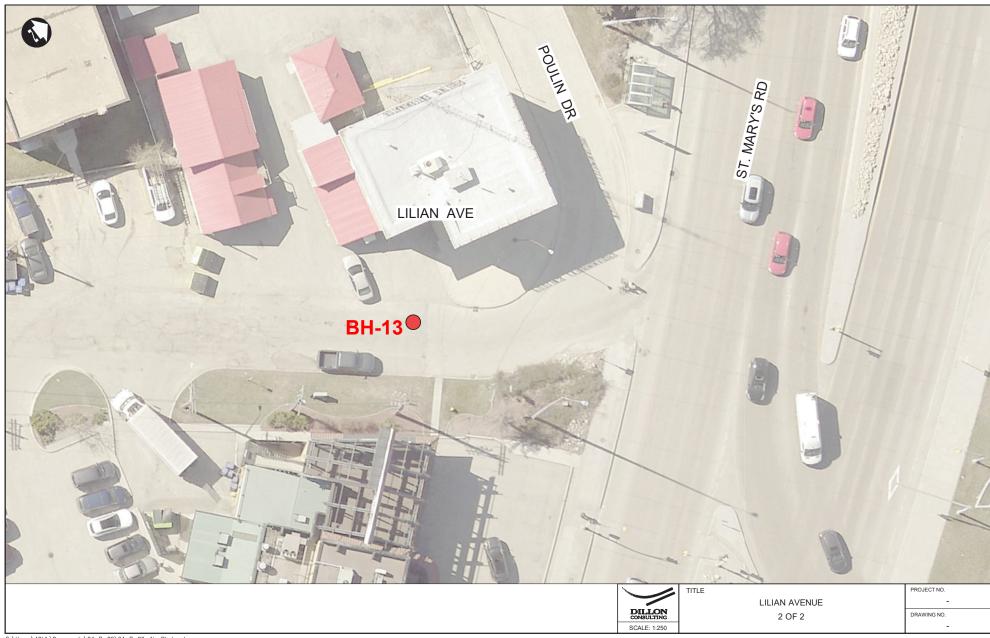
VARYING OR UNEXPECTED CONDITIONS: Should any site or subsurface conditions be encountered that are different from those described in this report or encountered at the test locations, Stantec must be notified immediately to assess if the varying or unexpected conditions are substantial and if reassessments of the report conclusions or recommendations are required. Stantec will not be responsible to any party for damages incurred as a result of failing to notify Stantec that differing site or sub-surface conditions are present upon becoming aware of such conditions.

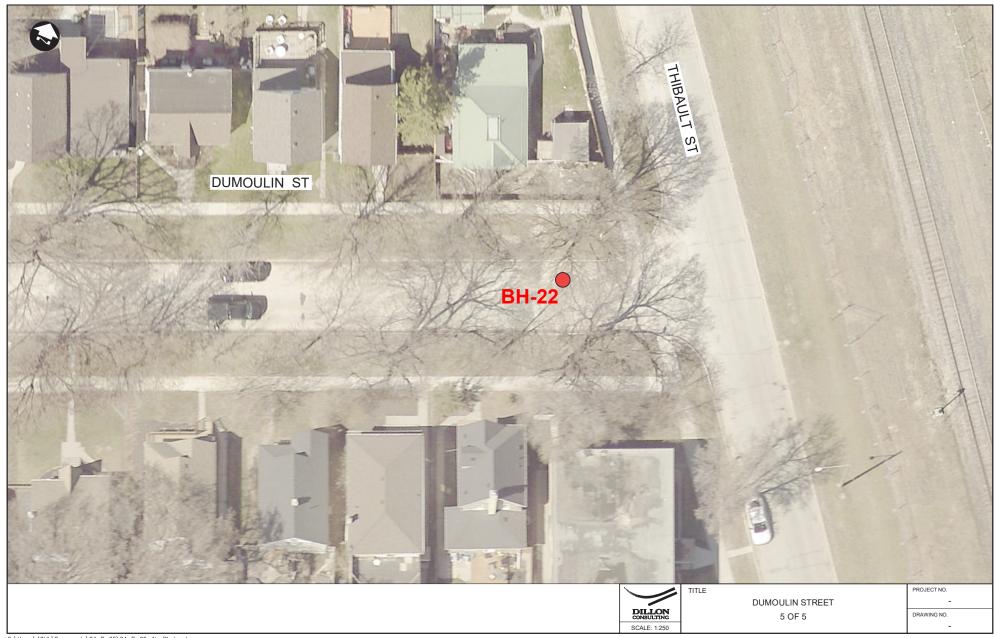
PLANNING, DESIGN, OR CONSTRUCTION: Development or design plans and specifications should be reviewed by Stantec, sufficiently ahead of initiating the next project stage (property acquisition, tender, construction, etc.), to confirm that this report completely addresses the elaborated project specifics and that the contents of this report have been properly interpreted. Specialty quality assurance services (field observations and testing) during construction are a necessary part of the evaluation of sub-subsurface conditions and site preparation works. Site work relating to the recommendations included in this report should only be carried out in the presence of a qualified geotechnical engineer; Stantec cannot be responsible for site work carried out without being present.

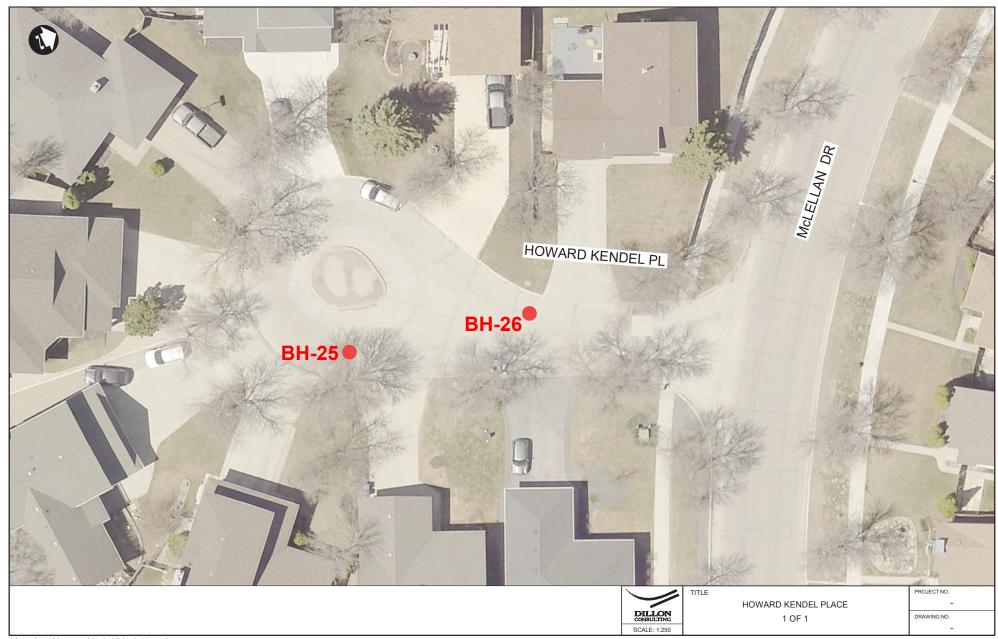
APPENDIX B

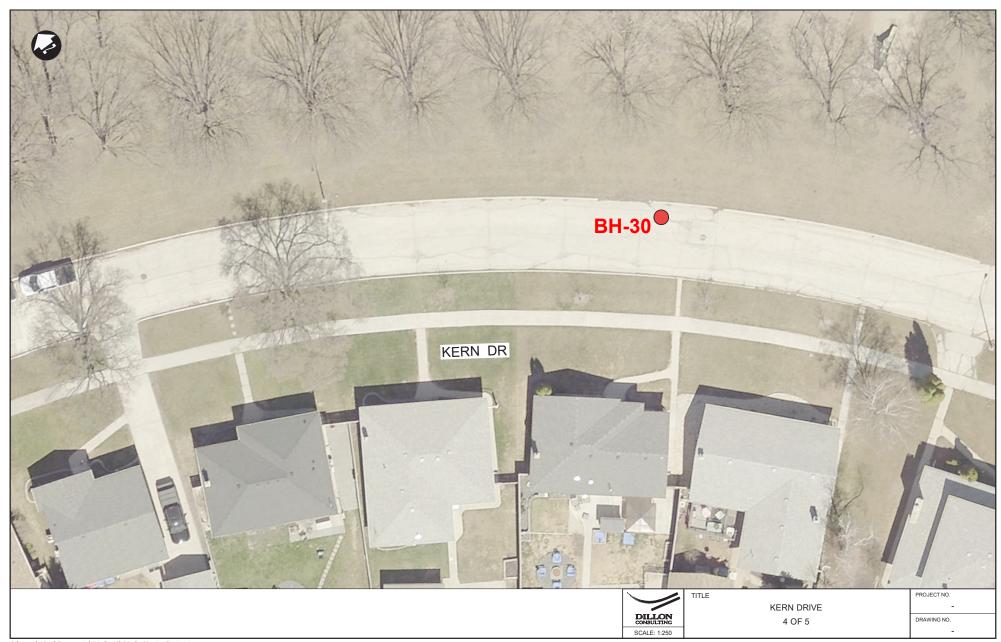
Borehole Location Plan

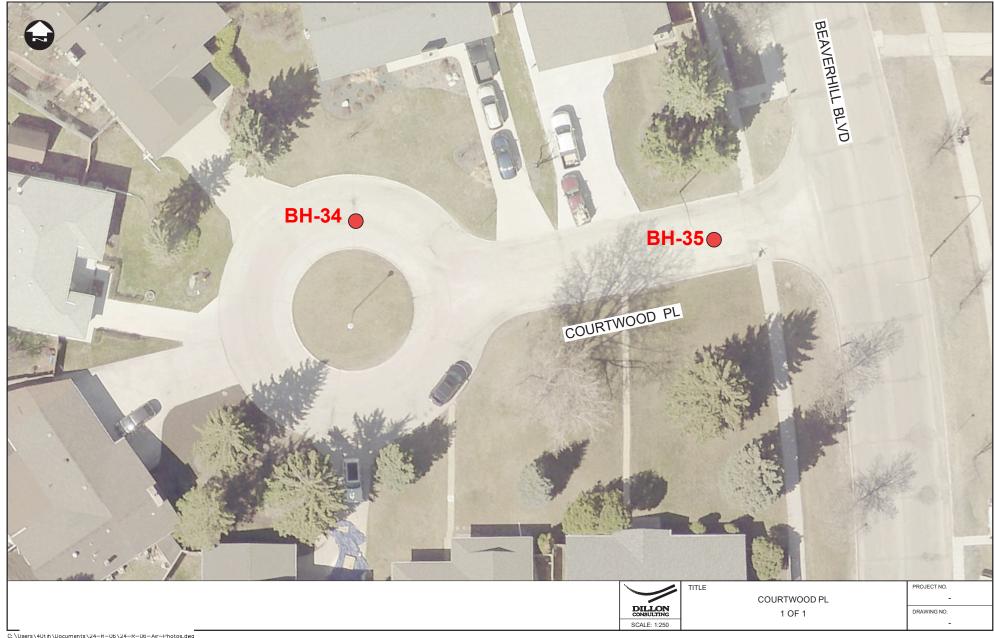












APPENDIX C

Borehole Records

SYMBOLS AND TERMS USED ON BOREHOLE AND TEST PIT RECORDS

SOIL DESCRIPTION

Terminology describing common soil genesis:

Rootmat	 vegetation, roots and moss with organic matter and topsoil typically forming a mattress at the ground surface
Topsoil	- mixture of soil and humus capable of supporting vegetative growth
Peat	- mixture of visible and invisible fragments of decayed organic matter
Till	- unstratified glacial deposit which may range from clay to boulders
Fill	- material below the surface identified as placed by humans (excluding buried services)

Terminology describing soil structure:

Desiccated	- having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.
Fissured	- having cracks, and hence a blocky structure
Varved	- composed of regular alternating layers of silt and clay
Stratified	- composed of alternating successions of different soil types, e.g. silt and sand
Layer	- > 75 mm in thickness
Seam	- 2 mm to 75 mm in thickness
Parting	- < 2 mm in thickness

Terminology describing soil types:

The classification of soil types are made on the basis of grain size and plasticity in accordance with the Unified Soil Classification System (USCS) (ASTM D 2487 or D 2488) which excludes particles larger than 75 mm. For particles larger than 75 mm, and for defining percent clay fraction in hydrometer results, definitions proposed by Canadian Foundation Engineering Manual, 4th Edition are used. The USCS provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification.

Terminology describing cobbles, boulders, and non-matrix materials (organic matter or debris):

Terminology describing materials outside the USCS, (e.g. particles larger than 75 mm, visible organic matter, and construction debris) is based upon the proportion of these materials present:

Trace, or occasional	Less than 10%
Some	10-20%
Frequent	> 20%

Terminology describing compactness of cohesionless soils:

The standard terminology to describe cohesionless soils includes compactness (formerly "relative density"), as determined by the Standard Penetration Test (SPT) N-Value - also known as N-Index. The SPT N-Value is described further on page 3. A relationship between compactness condition and N-Value is shown in the following table.

Compactness Condition	SPT N-Value
Very Loose	<4
Loose	4-10
Compact	10-30
Dense	30-50
Very Dense	>50

Terminology describing consistency of cohesive soils:

The standard terminology to describe cohesive soils includes the consistency, which is based on undrained shear strength as measured by *in situ* vane tests, penetrometer tests, or unconfined compression tests. Consistency may be crudely estimated from SPT N-Value based on the correlation shown in the following table (Terzaghi and Peck, 1967). The correlation to SPT N-Value is used with caution as it is only very approximate.

Consistency	Undrained Sh	ear Strength	Approximate
Consistency	kips/sq.ft.	kPa	SPT N-Value
Very Soft	<0.25	<12.5	<2
Soft	0.25 - 0.5	12.5 - 25	2-4
Firm	0.5 - 1.0	25 - 50	4-8
Stiff	1.0 - 2.0	50 – 100	8-15
Very Stiff	2.0 - 4.0	100 - 200	15-30
Hard	>4.0	>200	>30

STRATA PLOT

Strata plots symbolize the soil or bedrock description. They are combinations of the following basic symbols. The dimensions within the strata symbols are not indicative of the particle size, layer thickness, etc.

Boulders Cobbles Gravel

Clay

Igneous Bedrock

morphic

Bedrock

Sedimentary Bedrock

SAMPLE TYPE

SS	Split spoon sample (obtained by
	performing the Standard Penetration Test)
ST	Shelby tube or thin wall tube
D.D.	Direct-Push sample (small diameter tube
DF	sampler hydraulically advanced)
PS	Piston sample
BS	Bulk sample
HQ. NQ. BQ. etc.	Rock core samples obtained with the use
na, Na, ba, etc.	of standard size diamond coring bits.

WATER LEVEL MEASUREMENT

measured in standpipe, piezometer, or well

inferred

RECOVERY

For soil samples, the recovery is recorded as the length of the soil sample recovered. For rock core, recovery is defined as the total cumulative length of all core recovered in the core barrel divided by the length drilled and is recorded as a percentage on a per run basis.

N-VALUE

Numbers in this column are the field results of the Standard Penetration Test: the number of blows of a 140 pound (63.5 kg) hammer falling 30 inches (760 mm), required to drive a 2 inch (50.8 mm) O.D. split spoon sampler one foot (300 mm) into the soil. In accordance with ASTM D1586, the N-Value equals the sum of the number of blows (N) required to drive the sampler over the interval of 6 to 18 in. (150 to 450 mm). However, when a 24 in. (610 mm) sampler is used, the number of blows (N) required to drive the sampler over the interval of 12 to 24 in. (300 to 610 mm) may be reported if this value is lower. For split spoon samples where insufficient penetration was achieved and N-Values cannot be presented, the number of blows are reported over sampler penetration in millimetres (e.g. 50/75). Some design methods make use of N-values corrected for various factors such as overburden pressure, energy ratio, borehole diameter, etc. No corrections have been applied to the N-values presented on the log.

DYNAMIC CONE PENETRATION TEST (DCPT)

Dynamic cone penetration tests are performed using a standard 60 degree apex cone connected to 'A' size drill rods with the same standard fall height and weight as the Standard Penetration Test. The DCPT value is the number of blows of the hammer required to drive the cone one foot (300 mm) into the soil. The DCPT is used as a probe to assess soil variability.

OTHER TESTS

S	Sieve analysis
Н	Hydrometer analysis
k	Laboratory permeability
Υ	Unit weight
Gs	Specific gravity of soil particles
CD	Consolidated drained triaxial
CU	Consolidated undrained triaxial with pore
CU	pressure measurements
UU	Unconsolidated undrained triaxial
DS	Direct Shear
С	Consolidation
Qυ	Unconfined compression
	Point Load Index (Ip on Borehole Record equals
Ιp	I_p (50) in which the index is corrected to a
	reference diameter of 50 mm)

Ţ	Single packer permeability test; test interval from depth shown to bottom of borehole
	Double packer permeability test; test interval as indicated
, o	Falling head permeability test using casing
	Falling head permeability test using well point or piezometer

LOCAT	CONCRETE FILL: compact tan crushed limestone, 19 mm maximum aggregate size	STRATA PLOT		NUMBER	PLES			DATUM:
ELEVATION (m)	SORED: January 15 2024 SOIL DESCRIPTION (MUSCS) CONCRETE FILL: compact tan crushed limestone, 19 mm maximum aggregate size	STRATA						WATER LEVEL: N/A UNDRAINED SHEAR STRENGTH, Cu (kPa) A LABORATORY TEST FIELD VANE TEST
ELEVATION (m)	SOIL DESCRIPTION (MUSCS) CONCRETE FILL: compact tan crushed limestone, 19 mm maximum aggregate size	STRATA						UNDRAINED SHEAR STRENGTH, Cu (kPa) ▲ LABORATORY TEST
	(MUSCS) CONCRETE FILL: compact tan crushed limestone, 19 mm maximum aggregate size	STRATA						
	FILL: compact tan crushed limestone, 19 mm maximum aggregate size	D		Ž	RECOVERY or TCR	N-VALUE or RQD %	OTHER TESTS / REMARKS	★ POCKET PENETROMETER □ POCKET SHEAR VANE 50 kPa 100 kPa 150 kPa 200 kPa WATER CONTENT & ATTERBERG LIMITS WP W W LIMIT WITH WATER CONTENT & WP W W LIMIT WATER CONTENT &
	FILL: compact tan crushed limestone, 19 mm maximum aggregate size	P	1					10 20 30 40 50 60 70 80
1	Firm to stiff black fat CLAY (CH) - silty, trace sand							
			X AS				Sieve/Hydro at 0.7 m G S M C 0% 1% 34% 65%	, <u>, , , , , , , , , , , , , , , , , , </u>
1 -			AS					
			Ă AS					
			AS					
2 -			X AS					
3 -	End of Borehole Borehole terminated at a depth of 2.140 r No groundwater seepage or soil sloughin Borehole backfilled with auger cuttings at Borehole surface backfilled as per City of	ng wa nd be	ntonite	e chip	S.			ling.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							Drilling Con	actor: Maple Leaf Drilling Ltd. Logged By:

LC	ROJE	Stantec :	_	tion				OLE RECOI	_								BH	l El	LEV	ΆΤΙ	ON:		BH 23316 N/A
DA	ATE B	ORED: January 15 2024							_ w	ATE	ER L	.EVI	EL:	_N	/A								
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (MUSCS)	STRATA PLOT	TYPE	NUMBER	RECOVERY (mm) TO SO TO S		OTHER TESTS / REMARKS	▲ L ★ F	ABC	ORAT KET I 50 I	ORY PENE (Pa	TESETRO	OME 100 ATT	TER kPa H	ERG	◆ FIE □ PC 15	ELD OCKI 50 KF H	VAN ET S			Pa	BACKFILL
0 -		ASPHALT	/						-	10	20) ::::	30		0	50		60	-	70 :::	_80 ::) : : : :	
-		CONCRETE																					
- - -		Firm to stiff black fat CLAY (CH) - silty, trace sand																					
-				AS																			
-								Sieve/Hydro at 0.8 m G S M C 0% 1% 41% 58%						7									
1 -		Soft tan lean CLAY (CL)		X as									/	<u> </u>			<u> </u>		<u> </u>				
-				<u> </u>																			
-																							
-				X as										b :									
_																							
-														 									
-		Firm brown fat CLAY (CH)		X AS	1	+																	
-														\									
2 -														:: <u>\</u>			: : : : : :		:::				\bowtie
				V ^2																			
-	-	End of Borehole		Ă AS	1		1		1:::	:1:		:::	:1:		L	. /	:::	:1:	:::	1:::	: :L		
-		 Borehole terminated at a depth of 2. No groundwater seepage or soil slou Borehole backfilled with auger cuttin Borehole surface backfilled as per C 	ighing wa	entonit	e chip	s.	-	•	illing.														
3 -																							
3 -																							
3 -																							
3																							
3								Drilling Conf	tracto	r:	Мар	ole L	eaf	Drill	ling	Ltc	i				Log	gged	By: k

LOCA DATE	CON	SOIL DESCRIPTION (MUSCS) NCRETE In to stiff black to brown fat CLAY	STRATA PLOT	HAPE	NUMBER				W.	ORAI ABO	NED RAT	SHE	AR TES	STR ST	RENG	STH,		ATU kPa)	JM:)		N/A		N/A
DEPTH (m)	E BORE (w) CON Firm (CI	SOIL DESCRIPTION (MUSCS) NCRETE In to stiff black to brown fat CLAY	STRATA	ТҮРЕ		1	-VALUE r RQD %	OTHER TESTS /	UNE	ORAI ABO	NED RAT	SHE	AR TES	STR ST	RENG	STH,	, Cu (I	kPa))				
0	CON Firm (CI	(MUSCS) NCRETE In to stiff black to brown fat CLAY CH)	STRATA	ТҮРЕ		1	-VALUE r RQD %	OTHER TESTS / REMARKS	▲ L	ABO	RAT ŒT F	ORY	TES	ST					-	ΕT	EST		
0	CON Firm (CI	(MUSCS) NCRETE In to stiff black to brown fat CLAY CH)	STRATA	TYPE	NUMBER	(ECOVERY (mm) or TCR %	-VALUE r RQD %	OTHER TESTS / REMARKS			ŒT F					•	♦ FIE	ELD	VAN	F T	EST		
	Firm (CI	n to stiff black to brown fat CLAY	Δ. Δ.			lin ,	uz ol					NTE	NT &	100 ATT) kPa 	BERG	□ PC	OCKE 50 KF	ET S Pa	HEA:	200 I	kPa W _L	BACKFILL
	Firm (CI	n to stiff black to brown fat CLAY	Δ			100			X S	PT (I	N-val	ue) E).3m ntent (%)		Blow Cou	unt					
1 -	Firm (CI	n to stiff black to brown fat CLAY								10	20) :::	30		40 :::	50		60 : :	<i>.</i> _7	70 : :	80	<u>)</u> ::::	
1 -																							×××
1 -																							
'] 				AS AS									φ										
-	- gre	ey below 1.2 m		Ä AS									Φ										
													0										
-				AS										\									
2 -				X as																			
	• Bo • No • Bo	d of Borehole prehole terminated at a depth of 2.16: proundwater seepage or soil slough prehole backfilled with auger cuttings prehole surface backfilled as per City	hing wa	ntonit	e chip	s.		•			•••				* •	•••		•1•	•••		•••	•••	
3 -																							
-																							
₄														_		_		_		\neg	_		
		MBOL 📆 ASPHALT					NCRE	Drilling Con Drilling Meth			Map 5 mr			Dri	illing	Ltc	<u>.k</u>			\dashv			d By: k ved By:

DATION: MAA DATUM DATE BORED: January 15 2024 SAMPLES SOIL DESCRIPTION (MUSCS) WATER LEVEL: NIA A ABOUT OF THE TESTS FIELD VANE TEST POCKET PENETROMETER DEPOCRETE SHEAR VANE SOIL DESCRIPTION (MUSCS) WATER LEVEL: NIA A ABOUT OF THE TESTS POCKET PENETROMETER DEPOCRETE SHEAR VANE SOIL DESCRIPTION (MUSCS) WATER LEVEL: NIA A ABOUT OF THE TESTS POCKET PENETROMETER DEPOCRETE SHEAR VANE SOIL DESCRIPTION WATER LEVEL: NIA A ABOUT OF THE TESTS POCKET PENETROMETER DEPOCRETE SHEAR VANE SOIL DESCRIPTION WATER LEVEL: NIA A ABOUT OF THE TESTS POCKET PENETROMETER DEPOCRETE SHEAR VANE SOIL DESCRIPTION WATER LEVEL: NIA A ABOUT OF THE TESTS POCKET PENETROMETER DEPOCRETE SHEAR VANE SOIL DESCRIPTION WATER LEVEL: NIA A ABOUT OF THE TESTS POCKET PENETROMETER DEPOCKET SHEAR VANE SOIL DESCRIPTION WATER LEVEL: NIA A ABOUT OF THE TESTS POCKET PENETROMETER DEPOCKET SHEAR VANE SOIL DESCRIPTION A SOIL	PR	IENT	Stantec Dillon Consulting Ltd. CT: 24-R-06 Geotechnical Inve ON: Kanata Street	estiga					OLE RECOI	- -								вн	ELE	VA	TION	l:	BH 23316 N/A
SOIL DESCRIPTION (MUSCS) WATER CONTENT & ATTERBERS ILIMITS (Multiple Addressed on the Content is set all sold in the Con										_ 	ATE	RL	EVE	L:	N/	Ά		DA	IUIV	I:	IN/A	\	
CONCRETE Firm to stiff black to brown fat CLAY (CH) - silty, trace sand Soft brown lean CLAY (CL) Soft brown lean CLAY (CL) AS VAS End of Borehole - Borehole terminated at a depth of 2.18 m No groundwater seepage or soil sloughing was observed during or upon completion of drilling Borehole backfilled with suger cuttings and bentonite chips.			SOIL DESCRIPTION		TYPE		T	N-VALUE or RQD %	OTHER TESTS / REMARKS	UNI	DRAI ABO POCK	NED RATO ET F 50 k	SHE/ DRY ENE Pa	T & A	TRE MET 100 I ATTE S/0.3	ER KPa ERBE	TH, C	FIEL POC 150	D VA CKET KPa H	W _F	200 - W	/ANE kPa	BACKFILL
Soft brown lean CLAY (CL) AS AS AS End of Borehole Borehole terminated at a depth of 2.18 m. No groundwater seepage or soil sloughing was observed during or upon completion of drilling. Borehole backfilled with auger cuttings and bentonite chips.	0 -		Firm to stiff black to brown fat CLAY (CH)		AS						10	20		30	40)	50	6	50	70	8	0	
End of Borehole Borehole terminated at a depth of 2.18 m. No groundwater seepage or soil sloughing was observed during or upon completion of drilling. Borehole backfilled with auger cuttings and bentonite chips.	1 -		Soft brown lean CLAY (CL)						Sieve/Hydro at 0.8 m G S M C 0% 3% 46% 51%				<i>f</i>) : : : : : : : : : : : : : : : : : : :									
	2 -		 Borehole terminated at a depth of 2.18 No groundwater seepage or soil sloug Borehole backfilled with auger cuttings 	hing wa	AS as obsentonit	e chip	S.						1			\							
	-																						
				GR SA]CON	NCRE NUGH	Drilling Cont TE Drilling Meth Completion	hod:	125	5 mr	le Le n SS 18 m		Drilli	ing l	Ltd.						By: k ed By: 1 of 1

PF	LIENT ROJE(Stantec : Dillon Consulting Ltd. CT: 24-R-06 Geotechnical Inv ON: Wabasha Street	_	tion				OLE RECOI	_										Е	ВН	EL	ΕV	ΆΤΙ	ION	l:	1233 N	N/A
		ORED: <u>January 15 2024</u>							v	/A	ER	R L	ΕV	EL		N	/A		L	ж	ı Ui	IVI.		W//			
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (MUSCS)	STRATA PLOT	TYPE	NUMBER	RECOVERY (mm) TO OT TO OT TO STATE OF TERMS	N-VALUE or RQD %	OTHER TESTS / REMARKS	▲ ★ W/	LAE PO(AINE SOR 5 ER C	ATO	ORN PEN Pa	Y TE ETF NT BLC	ST ROM 1 & A	/IET 00 TTE 5/0.3	ERE kPa	BER	◆ F	IEL POC 150	D\ KP: H	/AN	:	AR V 200	'ANE kPa W _L		BACKFILL
- 0 -		CONCRETE Firm to stiff black fat CLAY (CH) - silty, trace sand	B. 3							10		20		30)	40	0	5	0	6	60	- 7	70	8	0		
- - - 1 –				X as				Sieve/Hydro at 0.7 m G S M C 0% 3% 44% 53%				-		/	7												
- - - -		Soft tan lean CLAY (CL)		AS AS									O	©													
2 -		Firm brown fat CLAY (CH)		X AS													\ \ \	<u> </u>									
		Firm brown fat CLAY (CH) End of Borehole Borehole terminated at a depth of 2. No groundwater seepage or soil slou Borehole backfilled with auger cutting Borehole surface backfilled as per C	ighing wa	as obse	e chip	S.												· · · · · · · · · · · · · · · · · · ·									
- - - -																											

	LIENT	Stantec :	_	tion				DLE RECO	_								BH	I EL	_EV	ATIC	N: _	1233 N	l/A
D	ATE B	ORED: January 15 2024							_ W	ATE	RL	.EVI	EL:	_N	l/A								
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (MUSCS)	STRATA PLOT	ТҮРЕ	NUMBER	RECOVERY (mm) TO SOLUTION TO S	N-VALUE or RQD %	OTHER TESTS / REMARKS	▲ L ★ P	ABOI OCK	RAT ET F 50 k	ORY PENE (Pa	YTES ETRO NT 8	OME 100 ATT	TER) kPa ERB .3m	BERG	⊐ PC	ELD V OCKE 60 kP	VAN ET S Pa	20	ST VANE 00 kPa + W _I 0 J		BACKFILL
0 -		CONCRETE	<i>P</i> .							10	20) ::::	30		10 `´	50		60 : :	<u>7</u>	0	80		
-	-	Firm to stiff black fat CLAY (CH) - silty, trace sand		X AS										9									
														/									\bowtie
1 -	-	Soft tan lean CLAY (CL)		AS AS								8											
- - - - 2 -	-	Firm brown fat CLAY (CH)		X AS																			
- - -	-	End of Borehole Borehole terminated at a depth of 2. No groundwater seepage or soil slou Borehole backfilled with auger cuttin Borehole surface backfilled as per C	ighing wa	entonit	e chip	S.				1	; ;]		:11:		IS :	<u>; </u>		:1:		I i i i i	:[
3 -	- - - -																						
	ı																						
- - -	-																						
- - - - - - - -	-							Drilling Con	tractor	r:	 Mar	ole L	_eaf	· Dril	lling	Ltc	.				Logge	ed By:	K\

PR	IENT:	Dillon Consulting Ltd. CT: 24-R-06 Geotechnical Inventor: Wabasha Street	estigat	tion				OLE RECOI	- -							В	ΗE	LEV	ATIC	N:	BH 23316 N/A
		ORED: <u>January 15 2024</u>							_ _ W	ATE	RL	.EVEI	L: _	N/A	۸		ΛI	OIVI.		•	
DEРТН (m)	ELEVATION (m)	SOIL DESCRIPTION (MUSCS)	STRATA PLOT	TYPE	NUMBER	1	N-VALUE or RQD %	OTHER TESTS / REMARKS	▲ L ★ P	ABO OCK	RAT ET F 50 k	SHEATORY TO SHEATO	TEST TROM 1 T & A	METE 00 kF	:R Pa RBEF	◆ FI	IELE OCK 50 k	VAN (ET S	20	VANE 0 kPa	BACKFILL
0 -		CONCRETE Firm to stiff black to brown fat CLAY (CH) - silty, trace sand								10	20	O 3	30	40	<i>E</i>	50	60) 7	70	80	
- -1 - -				X AS				Sieve/Hydro at 0.8 m G S M C 0% 2% 37% 61%				1	Φ								
				X as																	
-		End of Borehole Borehole terminated at a depth of 2.16 No groundwater seepage or soil sloug Borehole backfilled with auger cutting Borehole surface backfilled as per City	hing wa	entonit	e chip	S.															
3 -																					
-																					
4 -1	/FII.1	SYMBOL ASPHALT	∭GR		···]CON		Drilling Conf				ole Le m SS		rillir	ng Lt	td.					I By: K

	LIENT:	Stantec Dillon Consulting Ltd. CT: 24-R-06 Geotechnical Inve ON: Wynford Alley		ion				OLE RECO	_							BH	l EL	_EV	ATIO	ON:	-	BH: 233168 N/A
		ORED: <u>January 16 2024</u>							W.	ATEI	R LI	EVEL	.: _	N/A								
DЕРТН (m)	ELEVATION (m)	SOIL DESCRIPTION (MUSCS)	STRATA PLOT	TYPE	NUMBER	1	N-VALUE or RQD %	OTHER TESTS / REMARKS	▲ L ★ P	ABOF OCKE	RATO ET P 50 kl	TENT	EST ROMI 10 & AT DWS/	ETEF 00 kP 	R a BER	◆ FIE □ PC 15	ELD 'DCKE	VAN ET S Pa	HEAI 2 W _P	R VA 100 kF	Pa	BACKFILL
0 -		CONCRETE Firm to stiff black fat CLAY (CH) with sand - silty								10	20	3		40	5		60	7	70	80		
- - 1 -				AS AS				Sieve/Hydro at 0.8 m G S M C 0% 25% 40% 35%				±) 						1			
- - -		Soft grey lean CLAY (CL)		X as)									
- - 2 -		Firm brown fat CLAY (CH) - silty		X AS								d	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									
3 -		End of Borehole • Borehole terminated at a depth of 2.15 • No groundwater seepage or soil sloug • Borehole backfilled with auger cuttings • Borehole surface backfilled as per City	hing wa	s obsentonit	e chip	S.				1;;	::1	::::	· : : :	:1:	· 189:	:::	:1:	:::	1:::	::1:	:::	××××
	1																					
- - - -																						
- - - - - - 4 -								Drilling Cont	racto	-:_ <u>N</u>	Мар	le Le	af Dr	rilling	g Ltd	d				Log	ged	 By: K

	ROJEC	Dillon Consulting Ltd. 24-R-06 Geotechnical Inv ON: Wynford Alley	<u>/estiga</u> 1					OLE RECO	_							ВН	ELEV	/ATIC	ON:		BH- 233168 N/A
DA	ATE B	ORED: January 16 2024							_ W	ATER	R LE	/EL:	N	l/A							
DЕРТН (m)	ELEVATION (m)	SOIL DESCRIPTION (MUSCS)	STRATA PLOT	ТҮРЕ		RECOVERY (mm) THE Or TCR %	N-VALUE or RQD %	OTHER TESTS / REMARKS	★ P	ABOR OCKE 5	ATOR T PEI 0 kPa 	Y TES NETR ENT 8 BLOV	ST OME 100 k ATT WS/0 ater Con	kPa 	RG I	FIEL POC 150	D VAN CKET S kPa	SHEAF 2' W _P	R VAI	Pa	BACKFILL
0 -		ASPHALT		Т		-				0 ::::	20 : ::	30	4	0	<u>50</u>	. 6	0	70 : : :	80		
-		CONCRETE																			
-		Soft grey lean CLAY (CL)																			
-				X as																	XXX
+				1																	\bowtie
-		Firm brown fat CLAY (CH)		_		_															\ggg
1 -				Ă AS		+							: \	\$::::							
-																					\bowtie
+				AS		1															
+				1										9:::							
-																					
				W		1															
]				Ă AS		+-								\d							\bowtie
-				.										\							
-														! ! \							
2 -				X as											1						
1		End of Borehole	70																		
3 -		End of Borehole Borehole terminated at a depth of 2.0 No groundwater seepage or soil slou Borehole backfilled with auger cutting Borehole surface backfilled as per Ci	ghing wa gs and be	is obsi	erved e chip Stree	durinç os. t Cuts	g or up	n completion of di	rilling.												
3		 Borehole terminated at a depth of 2.0 No groundwater seepage or soil slou Borehole backfilled with auger cutting 	ghing wa gs and be	s obsi	erved e chip Stree	during	g or up	n completion of di	rilling.												
3		 Borehole terminated at a depth of 2.0 No groundwater seepage or soil slou Borehole backfilled with auger cutting 	ghing wa gs and be	s obsi	erved e chippi Stree	during	g or up	n completion of di		: M	laple	Lea	f Dril	iling L	.td.				Log	ged	ву: К

PF	LIENT:	Dillon Consulting Ltd. 24-R-06 Geotechnical Involutions: Wynford Alley	estigat	ion				OLE RECO	_								ВІ	ΗE	LEV	ΆΤΙ	ON:		BH: 33168 N/A
		ORED: January 16 2024							— 	/ATI	=R	LEV	FI ·	N	J/Δ		Di	AIC	JIVI:		<i>I</i> A		
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (MUSCS)	STRATA PLOT	ТУРЕ	NUMBER	1	N-VALUE or RQD %	OTHER TESTS / REMARKS	UN A I * I	DRA LABO POCI	INEI DRA KET 50	D SH TORY PEN kPa UNTE	EAR / TES ETR	STR ST OME 100	ENC TER) kPa 	GTH, R a BER	◆ FII □ PC	ELD OCK 50 kl	VAN ET S Pa	2	ST R VAI 00 kF 	Pa Pa	BACKFILL
0 -		ASPHALT CONCRETE Firm brown fat CLAY (CH) - silty, trace sand								10	2	20	30		10 10	5) and E	Blow Cor	60		70	80		
1 -				AS AS				Sieve/Hydro at 0.7 m G S M C D% 8% 36% 56%					0										
- - -				X AS):									
2 -		Soft grey lean CLAY (CL)		AS AS): : :									
-		End of Borehole Borehole terminated at a depth of 2.1 No groundwater seepage or soil sloue Borehole backfilled with auger cutting Borehole surface backfilled as per Cit	ghing wa	ntonit	e chip	s.																	
3																							
-	ł																						
4 -								Drilling Con	ntracto	or:	Ma	ple	Leaf	Dri	lling	g Lte	d.				Log	ged	Ву: К

PF	LIENT:	Dillon Consulting Ltd. 24-R-06 Geotechnical In	vestigat					OLE RECOI	_						BH	I ELE	ΞVΑ	OITA	N:	BH 233168 N/A
		ON: Lilian Avenue ORED: January 17 2024							— Wate	FRI	F\/F	•	N/A		DA	ATUN	/l: _	N/A	١	
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (MUSCS)	STRATA PLOT	TYPE	NUMBER	1	N-VALUE or RQD %	OTHER TESTS / REMARKS	UNDRAI ▲ LABC ★ POCK	INED DRAT KET F 50 k	SHEA ORY 1 PENET	AR ST TEST TROM	TREN	GTH,	◆ FIE □ PC 15	ELD V OCKET 60 kPa	ΓSH	ETEST	/ANE kPa 	BACKFILL
	=		STI	Ĺ	Ŋ	RECOVI or T	o A		WATER X SPT (ue) BL	.ows	5/0.3m	l %) and E	Blow Cou	nt	•		—ï⁻	m
- 0 - - -		ASPHALT Firm brown fat CLAY (CH) - silty, trace sand							10)	30	40	5		60	70	J	30	
-				X AS				Sieve/Hydro at 0.7 m G S M C 0% 9% 53% 38%				Q					÷.			
1 -				X AS																
-				X as) : : : : : : : : : : : : : : : : : : :								
2 -				X AS																
- - - - - 3 -		End of Borehole Borehole terminated at a depth of 2. No groundwater seepage or soil slou Borehole backfilled with auger cuttin Borehole surface backfilled as per C	ughing wa	entonit	e chip	s.			rilling.											
-																				
- - -																				
- - - 4 -		SYMBOL MASPHALT	⊡GR]CON		Drilling Cont TE Drilling Meth			dock n SS		ing l	_td.						By: F

	LIENT:	Stantec Dillon Consulting Ltd. CT: 24-R-06 Geotechnical Inv ON: Lilian Avenue	estigat	tion				OLE RECO	KD _ _									BH	1 E	LE	/A7	TION	N:	BH 23316 N/A
		ORED: January 17 2024							— v	۲A۷	FR	ΙF	VEL		N/	Δ		DA	410	UIVI:	_	<u> 11/ /</u>	`	
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (MUSCS)	STRATA PLOT	TYPE	NUMBER	ECOVERY (mm) The or TCR %	N-VALUE or RQD %	OTHER TESTS / REMARKS	UN ★ W	IDR LAE POO	ORA OKET 50	T PE	HEA RY T	R ST EST RON 1	MET	NG ⁻ ER (Pa	TH,	PC	ELD OCK 50 k	VAI (ET (SHE	200	/ANE kPa W _L	BACKFILL
0 -						~			<u> </u>	10	:	20	3	Water	Conte		and Bl	ow Cou	^{int} 60)	<u>70</u>	8	30	
-		ASPHALT CONCRETE Firm brown fat CLAY (CH) with sand - silty																						
-				AS				Sieve/Hydro at 0.8 m G S M C 3% 12% 49% 36%				3) :										
1 -				AS):):										
-				AS										0										
2 -				X as														<u>: : :</u> : : : : : : : :						
3 —		End of Borehole Borehole terminated at a depth of 2.1 No groundwater seepage or soil sloug Borehole backfilled with auger cutting Borehole surface backfilled as per Cit	ghing wa s and be	entonit	e chip	S.			Irilling															
- - - - -																								
								Drilling Con	ntracto	or:	Pá	add	ock	 Drill	ling	Lto						Lo	ogge	I By: F

CI		Stantec Dillon Consulting Ltd.						OLE RECO	_	PROJECT NO.: 1	BH-1 2331689
		CT: 24-R-06 Geotechnical Inv	estiga/	tion						BH ELEVATION:	N/A
LC	CATI	ON: Lilian Avenue							_	DATUM: N/A	
DA	TE B	ORED: <u>January 17 2024</u>							WATER LEVEL: N/A		
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION (MUSCS)	STRATA PLOT	TYPE	NUMBER	RECOVERY (mm)	N-VALUE or RQD %	OTHER TESTS / REMARKS		◆ FIELD VANE TEST □ POCKET SHEAR VANE 150 kPa 200 kPa □ G LIMITS WP W WL	BACKFILL
0 -		CONCRETE	· D.	-						0 60 70 80	
-		Firm brown fat CLAY (CH) - silty, trace sand									
-				X AS							
1											
3 -											
		1									

APPENDIX D

Core Photographs

Stantec

Figure 1 – Core No. 1 (Kanata St)

Figure 2 – Core No. 2 (Kanata St)

Figure 3 – Core no. 3 (Kanata St)

Figure 4 – Core No. 4 (Kanata St)

Figure 5 – Core No. 5 (Wabasha St)

Figure 6 – Core No. 6 (Wabasha St)

Figure 7 – Core No. 7 (Wabasha St)

Figure 8 – Core No. 8 (Wynford Alley)

Stantec

Figure 9 – Core No. 9 (Wynford Alley)

Figure 10 – Core No. 10 (Wynford Alley)

Figure 11 – Core No. 11 (Lilian Ave)

Figure 13 – Core No. 13 (Lilian Ave)

Figure 15 – Core no. 15 (Champlain St)

Figure 16 – Core No. 16 (Champlain St)

Figure 17 – Core No.17 (Champlain St)

Figure 19 – Core No. 19 (Dumoulin St)

Figure 18 – Core No. 18 (Dumoulin St)

Figure 20 – Core No. 20 (Dumoulin St)

Figure 23 - Core no. 23 (McMahon PI)

Figure 22 – Core No. 22 (Dumoulin St)

Figure 24 – Core No. 24 (McMahon Pl)

Stantec

Figure 25 – Core No.25 (Howard Kendel PI)

Figure 26 - Core No. 26 (Howard Kendel PI)

Figure 27 – Core No. 27 (Kern Dr)

Figure 28 – Core No. 28 (Kern Dr)

Figure 31 – Core No. 31 (Kern Dr)

Figure 30 – Core No. 30 (Kern Dr)

Figure 32 – Core No. 32 (Baywater PI)

Figure 33 – Core No. 33 (Baywater Pl)

Figure 34 – Core No. 34 (Courtwood PI)

Figure 35 – Core No. 35 (Courtwood PI)

Figure 4 – Core No. 36 (Roanoke St)

Figure 2 – Core No.37 (Roanoke St)

Figure 2 – Core No. 38 (Melrose Ave)

Figure 3 – Core no. 39 (Melrose Ave)

APPENDIX E

Laboratory Test Reports

199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)

TO Dillon Consulting Ltd.

300 - 100 Innovation Drive Winnipea, Manitoba

R3T 6A8

Caleb Olfert **ATTN**

PROJECT

24-R-06 - Local Street Package - Geotechnical

Investigation

2967

123316892 PROJECT NO.

REPORT NO. 1

DATE SAMPLED: 2024.Jan.15

LIQUID LIMIT

DATE RECEIVED: 2024. Jan. 15

DATE TESTED: 2024.Jan.26

2

24

SAMPLED BY:

Stantec Consulting Ltd.

TRIAL

MC (%)

SUBMITTED BY: Stantec Consulting Ltd.

TESTED BY:

Carson Cockwell

MATERIAL IDENTIFICATION

CLIENT FIELD ID

TRIAL

BLOWS

MC (%)

BH-01, 740 mm

26

75

STANTEC SAMPLE NO.

PLASTIC LIMIT

2

LIQUID LIMIT, LL PLASTIC LIMIT, PL

PLASTICITY INDEX, PI AS REC'D MC (%)

76 27 49 36.23

COMMENTS No comments.

REPORT DATE 2024.Jan.29 **REVIEWED BY**

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)

PROJECT

TO Dillon Consulting Ltd.

300 - 100 Innovation Drive Winnipea, Manitoba

R3T 6A8

SAMPLED BY:

TRIAL

BLOWS

MC (%)

123316892 PROJECT NO.

Investigation

Caleb Olfert **ATTN**

REPORT NO.

DATE SAMPLED: 2024.Jan.15

Stantec Consulting Ltd.

2

27

75

DATE RECEIVED: 2024. Jan. 15

SUBMITTED BY: Stantec Consulting Ltd.

DATE TESTED: 2024.Jan.26

24-R-06 - Local Street Package - Geotechnical

Carson Cockwell TESTED BY:

MATERIAL IDENTIFICATION

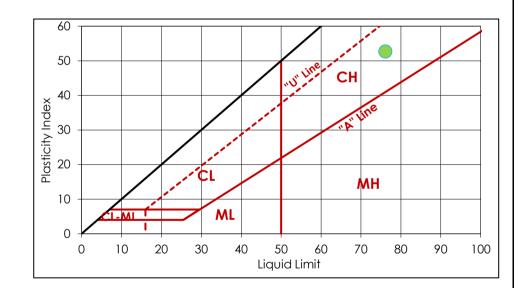
CLIENT FIELD ID

BH-02, 780 mm

LIQUID LIMIT

25

76


2968 STANTEC SAMPLE NO.

2

PLASTIC LIMIT TRIAL MC (%)

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)

76 23 53 36.02

COMMENTS No comments.

REPORT DATE 2024.Jan.29 **REVIEWED BY**

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)

PROJECT

TO Dillon Consulting Ltd.

300 - 100 Innovation Drive Winnipeg, Manitoba

willingeg, Marinobe

R3T 6A8

SAMPLED BY:

TRIAL

BLOWS

MC (%)

PROJECT NO. 123316892

Investigation

ATTN Caleb Olfert

REPORT NO. 3

DATE SAMPLED: 2024.Jan.15

Stantec Consulting Ltd.

2

24

DATE RECEIVED: 2024.Jan.15

SUBMITTED BY: Stantec Consulting Ltd.

DATE TESTED: 2024.Jan.26

24-R-06 - Local Street Package - Geotechnical

TESTED BY: Carson Cockwell

MATERIAL IDENTIFICATION

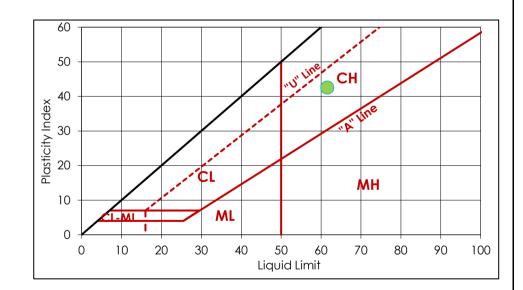
CLIENT FIELD ID BH

BH-04, 780 mm

LIQUID LIMIT

22

62


STANTEC SAMPLE NO. 2969

 PLASTIC LIMIT

 TRIAL
 1
 2

 MC (%)
 19
 19

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%) 62 19 43 30.68

COMMENTS
No comments.

REPORT DATE 2024.Jan.29

REVIEWED BY

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)

TO Dillon Consulting Ltd.

300 - 100 Innovation Drive Winnipea, Manitoba

R3T 6A8

Caleb Olfert **ATTN**

PROJECT

24-R-06 - Local Street Package - Geotechnical

Investigation

123316892 PROJECT NO.

REPORT NO.

28

65

DATE SAMPLED: 2024.Jan.15

Stantec Consulting Ltd.

2

27

DATE RECEIVED: 2024. Jan. 15

DATE TESTED: 2024.Jan.26

SUBMITTED BY: Stantec Consulting Ltd.

TESTED BY:

Carson Cockwell

MATERIAL IDENTIFICATION

CLIENT FIELD ID

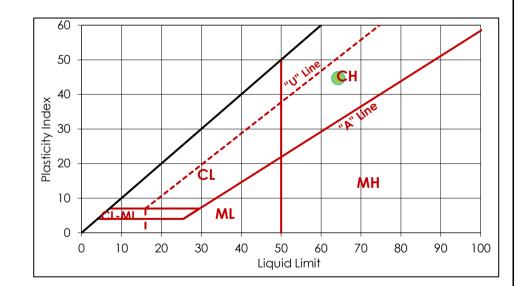
SAMPLED BY:

TRIAL

BLOWS

MC (%)

BH-05, 745 mm


LIQUID LIMIT

2970 STANTEC SAMPLE NO.

PLASTIC LIMIT TRIAL 2 MC (%)

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)

64 20 45 34.60

COMMENTS No comments.

REPORT DATE 2024.Jan.29

REVIEWED BY

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)

TO Dillon Consulting Ltd.

300 - 100 Innovation Drive Winnipea, Manitoba

R3T 6A8

Caleb Olfert **ATTN**

PROJECT

24-R-06 - Local Street Package - Geotechnical

Investigation

123316892

REPORT NO.

PROJECT NO.

DATE SAMPLED: 2024.Jan.15

SAMPLED BY:

TRIAL

BLOWS

MC (%)

Stantec Consulting Ltd.

2

22

LIQUID LIMIT

DATE RECEIVED: 2024. Jan. 15

SUBMITTED BY: Stantec Consulting Ltd.

DATE TESTED: 2024.Jan.26

TESTED BY:

Carson Cockwell

MATERIAL IDENTIFICATION

CLIENT FIELD ID

BH-07, 765 mm

23

80

2971 STANTEC SAMPLE NO.

PLASTIC LIMIT

TRIAL 2 MC (%)

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)

23 56 30.88

COMMENTS No comments.

REPORT DATE 2024.Jan.29

REVIEWED BY

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)

TO Dillon Consulting Ltd.

300 - 100 Innovation Drive Winnipea, Manitoba

R3T 6A8

Caleb Olfert **ATTN**

PROJECT

24-R-06 - Local Street Package - Geotechnical

Investigation

123316892 PROJECT NO.

REPORT NO.

DATE SAMPLED: 2024.Jan.16

SAMPLED BY:

Stantec Consulting Ltd.

DATE RECEIVED: 2024. Jan. 16

TRIAL

MC (%)

DATE TESTED: 2024.Jan.30

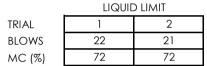
SUBMITTED BY: Stantec Consulting Ltd.

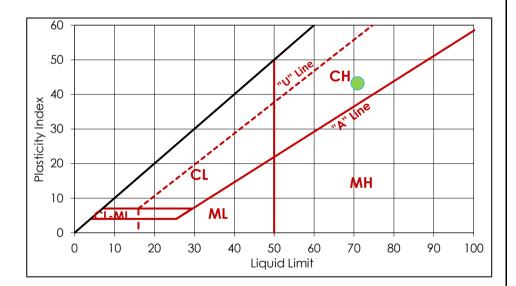
TESTED BY:

Larry Presado

MATERIAL IDENTIFICATION

CLIENT FIELD ID


BH-08, 755 mm


2984 STANTEC SAMPLE NO.

PLASTIC LIMIT 2 LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI

AS REC'D MC (%)

28 43 30.75

COMMENTS No comments.

REPORT DATE 2024.Jan.31 **REVIEWED BY**

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)

PROJECT

TO Dillon Consulting Ltd.

300 - 100 Innovation Drive Winnipea, Manitoba

R3T 6A8

SAMPLED BY:

TRIAL

BLOWS

MC (%)

123316892 PROJECT NO.

Investigation

Caleb Olfert **ATTN**

7 REPORT NO.

DATE SAMPLED: 2024.Jan.16

Stantec Consulting Ltd.

2

22

75

LIQUID LIMIT

22

74

DATE RECEIVED: 2024. Jan. 16

SUBMITTED BY: Stantec Consulting Ltd.

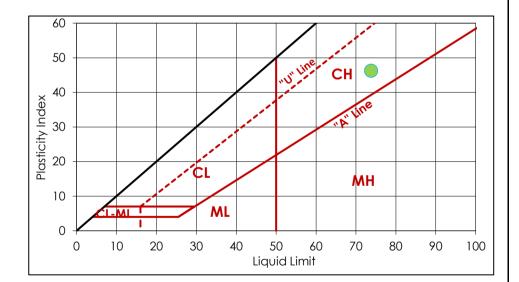
DATE TESTED: 2024.Jan.30

TESTED BY:

24-R-06 - Local Street Package - Geotechnical

Larry Presado

MATERIAL IDENTIFICATION


CLIENT FIELD ID BH-10, 735 mm

2985 STANTEC SAMPLE NO.

PLASTIC LIMIT TRIAL 2 MC (%)

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)

28 46 33.93

COMMENTS No comments.

REPORT DATE 2024.Jan.31 **REVIEWED BY**

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)

TO Dillon Consulting Ltd.

300 - 100 Innovation Drive Winnipea, Manitoba

R3T 6A8

Caleb Olfert **ATTN**

PROJECT

24-R-06 - Local Street Package - Geotechnical

Investigation

123316892 PROJECT NO.

REPORT NO.

DATE TESTED: 2024.Jan.31

SAMPLED BY:

TRIAL

BLOWS

MC (%)

DATE SAMPLED: 2024.Jan.17

Stantec Consulting Ltd.

2

28

SUBMITTED BY: Stantec Consulting Ltd.

DATE RECEIVED: 2024. Jan. 17

TESTED BY:

Larry Presado

MATERIAL IDENTIFICATION

CLIENT FIELD ID

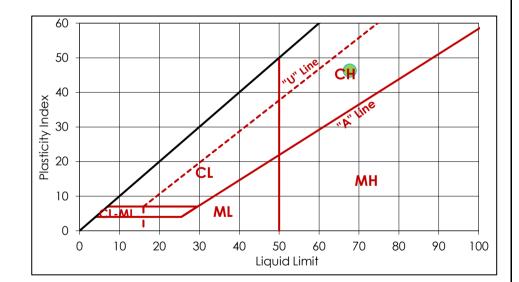
BH-11, 710 mm

LIQUID LIMIT

27

63

4000 STANTEC SAMPLE NO.


PLASTIC LIMIT

TRIAL 2 MC (%)

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI

AS REC'D MC (%)

68 21 46 31.60

COMMENTS No comments.

REPORT DATE 2024.Feb.01 **REVIEWED BY**

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD B - ONE-POINT)

TO Dillon Consulting Ltd.

300 - 100 Innovation Drive Winnipea, Manitoba

R3T 6A8

Caleb Olfert **ATTN**

PROJECT

24-R-06 - Local Street Package - Geotechnical

Investigation

123316892 PROJECT NO.

REPORT NO.

DATE SAMPLED: 2024.Jan.16

DATE RECEIVED: 2024. Jan. 16

TRIAL

MC (%)

DATE TESTED: 2024.Jan.30

SAMPLED BY:

Stantec Consulting Ltd.

SUBMITTED BY: Stantec Consulting Ltd.

TESTED BY:

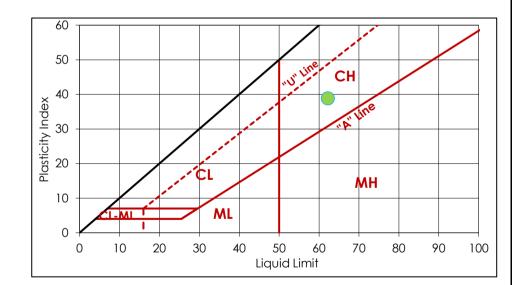
Larry Presado

MATERIAL IDENTIFICATION

CLIENT FIELD ID

BH-12, 775 mm

4001 STANTEC SAMPLE NO.


PLASTIC LIMIT

2

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI

AS REC'D MC (%)

LIQUID LIMIT TRIAL 2 **BLOWS** 22 22 63 63 MC (%)

COMMENTS No comments.

REPORT DATE 2024.Jan.31 **REVIEWED BY**

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Stantec 199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

TO Dillon Consulting Ltd. 300 - 100 Innovation Drive

Winnipeg, Manitoba

R3T 6A8

Caleb Olfert ATTN

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

PROJECT NO. 123316892

REPORT NO. 1

DATE SAMPLED: 2024.Jan.15

SAMPLED BY: Stantec Consulting Ltd.

DATE RECEIVED: 2024. Jan. 15

SUBMITTED BY: Stantec Consulting Ltd.

DATE TESTED: 2024.Jan.25

Larry Presado TESTED BY:

MATERIAL IDENTIFICATION

CLIENT FIELD ID

BH-01, 740 mm

STANTEC SAMPLE NO. 2967

	100 111		***					
	90							
	80 #							
8%	70							
i. Bu	60 #							
Percent Passing (%)	50 #							
0 + -	40 #							
erce	30 #							
	20 #							
	10 #							
	ο Ш							
	100)	10	1	0.	.1	0.01	0.001
	Particle Size (mm)							

Sieve Size (mm)	% Passing
50.0	100.0
40.0	100.0
25.0	100.0
20.0	100.0
16.0	100.0
12.5	100.0
9.5	100.0
4.75	100.0
2.36	100.0
2.00	100.0
1.18	100.0
0.600	99.8
0.300	99.5
0.150	99.1
0.075	98.6
0.005	75.1
0.002	64.9
0.001	58.4

Gravel		Sand		Silt	Clay	Colloids
	Coarse	Medium	Fine			
0.0	0.0	0.3	1.1	33.7	64.9	58.4

COMMENTS

No comments.

REPORT DATE 2024.Jan.29 **REVIEWED BY**

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Stantec 199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

TO Dillon Consulting Ltd. 300 - 100 Innovation Drive

Winnipeg, Manitoba

R3T 6A8

Caleb Olfert ATTN

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

123316892 PROJECT NO.

REPORT NO.

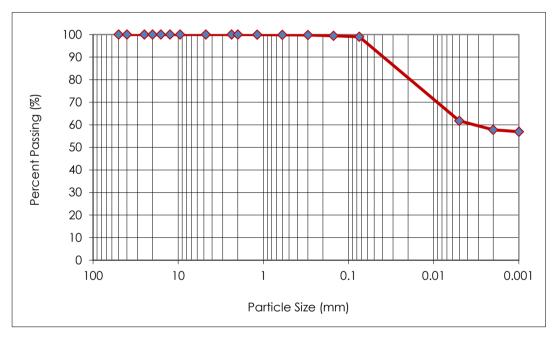
DATE SAMPLED: 2024.Jan.15

SAMPLED BY: Stantec Consulting Ltd.

DATE RECEIVED: 2024. Jan. 15

DATE TESTED: 2024.Jan.25

SUBMITTED BY: Stantec Consulting Ltd. TESTED BY:


Larry Presado

MATERIAL IDENTIFICATION

CLIENT FIELD ID

BH-02, 780 mm

STANTEC SAMPLE NO. 2968

50.0 100.0 40.0 100.0 25.0 100.0 20.0 100.0 16.0 100.0 12.5 100.0 9.5 100.0 4.75 100.0
25.0 100.0 20.0 100.0 16.0 100.0 12.5 100.0 9.5 100.0 4.75 100.0
20.0 100.0 16.0 100.0 12.5 100.0 9.5 100.0 4.75 100.0
16.0 100.0 12.5 100.0 9.5 100.0 4.75 100.0
12.5 100.0 9.5 100.0 4.75 100.0
9.5 100.0 4.75 100.0
4.75 100.0
2.36 100.0
2.00 100.0
1.18 100.0
0.600 99.9
0.300 99.8
0.150 99.5
0.075 99.0
0.005 61.8
0.002 57.8
0.001 57.0

Gravel		Sand		Silt	Clay	Colloids
	Coarse	Medium	Fine			
0.0	0.0	0.2	0.8	41.2	57.8	57.0

COMMENTS

No comments.

REPORT DATE 2024.Jan.29 **REVIEWED BY**

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Stantec 199 Henlow Bay, Winnipeg, MB R3Y 1G4
Tel: (204) 488-6999

ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

TO Dillon Consulting Ltd. 300 - 100 Innovation Drive

Winnipeg, Manitoba

R3T 6A8

ATTN Caleb Olfert

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

PROJECT NO. 123316892

REPORT NO. 3

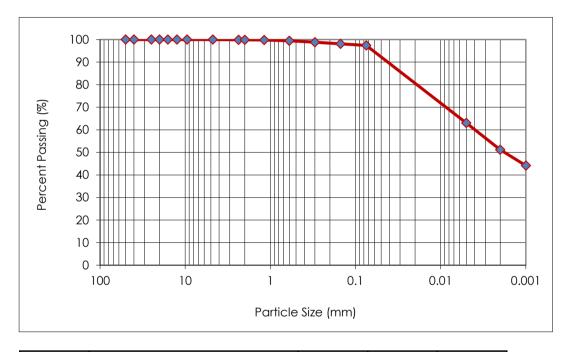
DATE SAMPLED: 2024.Jan.15

SAMPLED BY: Stantec Consulting Ltd.

DATE RECEIVED: 2024.Jan.15

SUBMITTED BY: Stantec Consulting Ltd.

DATE TESTED: 2024.Jan.25


Larry Presado

. TESTED BY: Lo

MATERIAL IDENTIFICATION

CLIENT FIELD ID BH-04, 780 mm

STANTEC SAMPLE NO. 2969

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
99.9
99.9
99.8
99.5
98.8
98.1
97.4
63.1
51.2
44.1

Gravel		Sand		Silt	Clay	Colloids
	Coarse	Medium	Fine			
0.0	0.1	0.8	1.7	46.2	51.2	44.1

COMMENTS

No comments.

REPORT DATE 2024.Jan.29

REVIEWED BY

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Stantec 199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

TO Dillon Consulting Ltd. 300 - 100 Innovation Drive

Winnipeg, Manitoba

R3T 6A8

Caleb Olfert ATTN

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

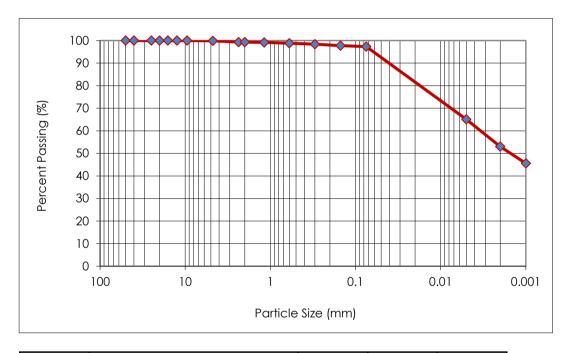
PROJECT NO. 123316892

REPORT NO.

DATE SAMPLED: 2024.Jan.15

SAMPLED BY: Stantec Consulting Ltd.

DATE RECEIVED: 2024. Jan. 15


SUBMITTED BY: Stantec Consulting Ltd.

DATE TESTED: 2024.Jan.25

TESTED BY: Larry Presado

MATERIAL IDENTIFICATION

CLIENT FIELD ID BH-05, 745 mm STANTEC SAMPLE NO. 2970

% Passing		
100.0		
100.0		
100.0		
100.0		
100.0		
100.0		
100.0		
99.9		
99.3		
99.3		
99.2		
98.8		
98.4		
97.8		
97.3		
65.1		
53.0		
45.6		

Gravel		Sand		Silt	Clay	Colloids
	Coarse	Medium	Fine			
0.1	0.6	0.7	1.3	44.3	53.0	45.6

COMMENTS

No comments.

REPORT DATE 2024.Jan.29 **REVIEWED BY**

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Stantec 199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

PROJECT

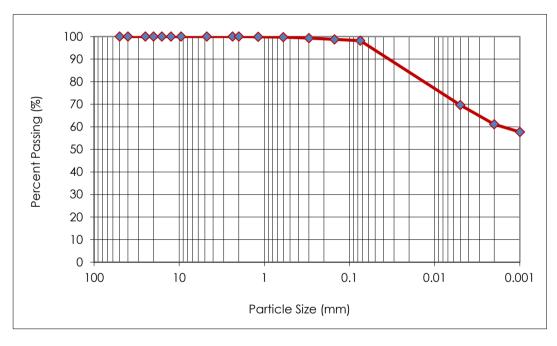
TO Dillon Consulting Ltd. 300 - 100 Innovation Drive

Winnipeg, Manitoba

R3T 6A8

123316892 PROJECT NO.

Caleb Olfert ATTN REPORT NO.


DATE SAMPLED: 2024.Jan.15 DATE RECEIVED: 2024. Jan. 15 DATE TESTED: 2024.Jan.25 SAMPLED BY: Stantec Consulting Ltd. SUBMITTED BY: Stantec Consulting Ltd. TESTED BY: Larry Presado

MATERIAL IDENTIFICATION

CLIENT FIELD ID BH-07, 765 mm STANTEC SAMPLE NO. 2971

24-R-06 - Local Streets Package -

Geotechnical Investigation

% Passing		
100.0		
100.0		
100.0		
100.0		
100.0		
100.0		
100.0		
100.0		
100.0		
100.0		
99.9		
99.7		
99.3		
98.8		
98.2		
69.6		
61.1		
57.7		

Cravel		Sand		Silt	Clay	Colloids
Gravel	Coarse	Medium	Fine	SIII		
0.0	0.0	0.5	1.3	37.1	61.1	57.7

COMMENTS No comments.

REPORT DATE 2024.Jan.29 **REVIEWED BY**

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Stantec 199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

TO Dillon Consulting Ltd. 300 - 100 Innovation Drive

Winnipeg, Manitoba

R3T 6A8

Caleb Olfert ATTN

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

PROJECT NO. 123316892

REPORT NO.

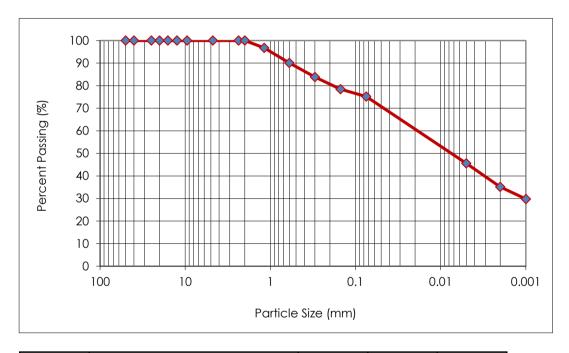
DATE SAMPLED: 2024.Jan.16

SAMPLED BY: Stantec Consulting Ltd.

DATE RECEIVED: 2024. Jan. 16

SUBMITTED BY: Stantec Consulting Ltd.

DATE TESTED: 2024.Jan.18


Larry Presado TESTED BY:

MATERIAL IDENTIFICATION

CLIENT FIELD ID

BH-08, 755 mm

STANTEC SAMPLE NO. 2984

Sieve Size (mm)	% Passing
50.0	100.0
40.0	100.0
25.0	100.0
20.0	100.0
16.0	100.0
12.5	100.0
9.5	100.0
4.75	100.0
2.36	100.0
2.00	100.0
1.18	96.8
0.600	90.1
0.300	83.8
0.150	78.5
0.075	75.2
0.005	45.6
0.002	35.2
0.001	29.8

Gravel		Sand		Silt	Clay	Colloids
	Coarse	Medium	Fine			
0.0	0.0	13.6	11.2	40.0	35.2	29.8

COMMENTS

No comments.

REPORT DATE 2024.Jan.22 **REVIEWED BY**

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Stantec 199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

TO Dillon Consulting Ltd. 300 - 100 Innovation Drive

Winnipeg, Manitoba

R3T 6A8

Caleb Olfert ATTN

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

PROJECT NO. 123316892

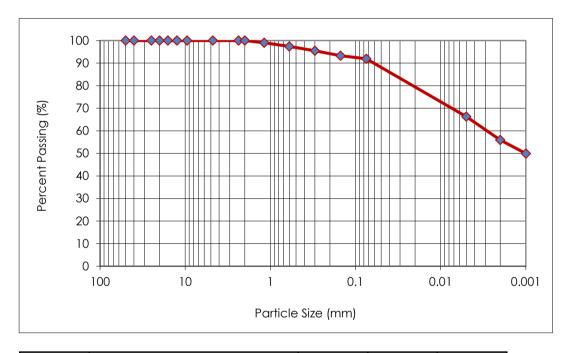
7 REPORT NO.

DATE SAMPLED: 2024.Jan.16

SAMPLED BY: Stantec Consulting Ltd.

DATE RECEIVED: 2024. Jan. 16

SUBMITTED BY: Stantec Consulting Ltd.


DATE TESTED: 2024.Jan.18

TESTED BY:

Larry Presado

MATERIAL IDENTIFICATION

CLIENT FIELD ID BH-10, 735 mm STANTEC SAMPLE NO. 2985

Gravel	Sand			Silt	Clay	Colloids
	Coarse	Medium	Fine	SIII	Cidy	Colloids
0.0	0.0	3.7	4.4	35.9	56.0	49.9

COMMENTS

No comments.

REPORT DATE 2024.Jan.22 **REVIEWED BY**

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Stantec 199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

TO Dillon Consulting Ltd. 300 - 100 Innovation Drive

Winnipeg, Manitoba

R3T 6A8

Caleb Olfert

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

123316892 PROJECT NO.

REPORT NO.

DATE SAMPLED: 2024.Jan.17

ATTN

SAMPLED BY: Stantec Consulting Ltd.

DATE RECEIVED: 2024. Jan. 17

SUBMITTED BY: Stantec Consulting Ltd.

DATE TESTED: 2024.Jan.23

TESTED BY:

Larry Presado

MATERIAL IDENTIFICATION

CLIENT FIELD ID

BH-11, 710 mm

STANTEC SAMPLE NO.

4000

_	
Sieve Size (mm)	% Passing
50.0	100.0
40.0	100.0
25.0	100.0
20.0	100.0
16.0	100.0
12.5	100.0
9.5	100.0
4.75	100.0
2.36	99.9
2.00	99.8
1.18	99.4
0.600	98.8
0.300	98.3
0.150	97.3
0.075	91.1

45.9

38.2

34.1

	100 T	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	***			<u> </u>		
	90 #							
	80 #							
(%)	70 #							
ing	60 #							
Percent Passing (%)	50 #							
entl	40 #							
erce	30 #							
	20 #							
	10 #							
	0 ↓							
	100)	10	1		0.1	0.01	0.001
				Part	icle Size ((mm)		

Craval	Cravel Sand		Silt	Clay	Colloids	
Gravel	Coarse	Medium	Fine	3111	Cidy	Colloids
0.0	0.2	1.3	7.4	52.9	38.2	34.1

COMMENTS

No comments.

REPORT DATE 2024.Jan.25 **REVIEWED BY**

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

0.005

0.002

0.001

Stantec 199 Henlow Bay, Winnipeg, MB R3Y 1G4 Tel: (204) 488-6999

ASTM D7928 - PARTICLE-SIZE DISTRIBUTION OF FINE-GRAINED SOILS USING THE SEDIMENTATION ANALYSIS

TO Dillon Consulting Ltd. 300 - 100 Innovation Drive

Winnipeg, Manitoba

R3T 6A8

Caleb Olfert ATTN

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

123316892 PROJECT NO.

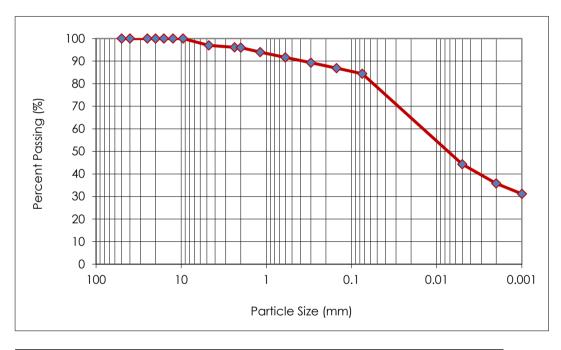
REPORT NO.

DATE SAMPLED: 2024.Jan.17

SAMPLED BY: Stantec Consulting Ltd.

DATE RECEIVED: 2024. Jan. 17

DATE TESTED: 2024.Jan.23


SUBMITTED BY: Stantec Consulting Ltd. TESTED BY: Larry Presado

MATERIAL IDENTIFICATION

CLIENT FIELD ID

BH-12, 775 mm

STANTEC SAMPLE NO. 4001

Sieve Size (mm)	% Passing
50.0	100.0
40.0	100.0
25.0	100.0
20.0	100.0
16.0	100.0
12.5	100.0
9.5	100.0
4.75	97.0
2.36	96.2
2.00	96.0
1.18	94.0
0.600	91.6
0.300	89.3
0.150	86.9
0.075	84.4
0.005	44.3
0.002	35.8
0.001	31.2

Gravel	Sand		Silt	Clay	Colloids	
	Coarse	Medium	Fine	SIII	Clay	Colloids
3.0	1.0	5.7	5.9	48.6	35.8	31.2

COMMENTS

No comments.

REPORT DATE 2024.Jan.25 **REVIEWED BY**

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

PROCTOR TEST REPORT

Dillon Consulting Ltd. 300 - 100 Innovation Dr. Winnipeg, MB R3T 6A8

CLIENT Dillon Consulting Ltd. C.C.

ATTN: Ali Campbell

PROJECT 24-R-06 - Local Streets Package

PROJECT NO. 123316892

PROCTOR NO. DATE SAMPLED DATE RECEIVED 2024.Jan.15 2024.Jan.15 DATE TESTED 2024.Jan.19

INSITU MOISTURE 36.7 % COMPACTION STANDARD Standard Proctor, ASTM

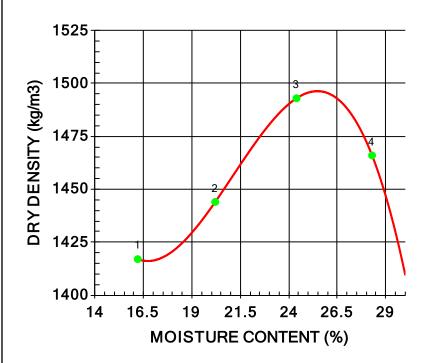
TESTED BY Donald Eliazar

MATERIAL IDENTIFICATION

MAJOR COMPONENT Backfill

Fat Clay (CH) SIZE **DESCRIPTION**

SUPPLIER Existing Materials SOURCE Kanata Street - BH-01, 0.740 m


D698

COMPACTION PROCEDURE A: 101.6mm Mold,

Passing 4.75mm

RAMMER TYPE Manual **PREPARATION** Moist OVERSIZE CORRECTION METHOD None

RETAINED 4.75mm SCREEN N/A %

TRIAL NUMBER	WET DENSITY (kg/m³)	DRY DENSITY (kg/m³)	moisture Content (%)
1	1646	1417	16.2
2	1736	1444	20.2
3	1857	1493	24.4
4	1881	1466	28.3

	MAXIMUM DRY DENSITY (kg/m³)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	1500	25.5
OVERSIZE CORRECTED		

COMMENTS

Stantec Sample No. 2967.

Page 1 of 1 2024.Jan.22 Stantec Consulting Ltd.

REVIEWED BY:

PROCTOR TEST REPORT

Dillon Consulting Ltd. 300 - 100 Innovation Dr. Winnipeg, MB R3T 6A8

CLIENT Dillon Consulting Ltd. C.C.

ATTN: Ali Campbell

PROJECT 24-R-06 - Local Streets Package

PROJECT NO. 123316892

PROCTOR NO. DATE SAMPLED DATE RECEIVED 2024.Jan.15 2024.Jan.15 DATE TESTED 2024.Jan.22

INSITU MOISTURE 46.2 % COMPACTION STANDARD Standard Proctor, ASTM

TESTED BY Donald Eliazar

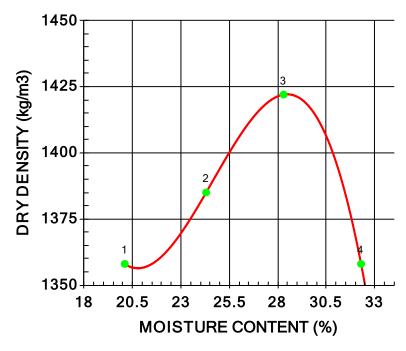
MATERIAL IDENTIFICATION

MAJOR COMPONENT Subgrade

Fat Clay (CH) SIZE

DESCRIPTION SUPPLIER Existing Materials

SOURCE Kanata Street - BH-02, 0.780 m


D698

COMPACTION PROCEDURE A: 101.6mm Mold,

Passing 4.75mm Manual

RAMMER TYPE **PREPARATION** Moist OVERSIZE CORRECTION METHOD None

RETAINED 4.75mm SCREEN N/A %

TRIAL NUMBER	WET DENSITY (kg/m³)	DRY DENSITY (kg/m³)	MOISTURE CONTENT (%)
1	1631	1358	20.1
2	1722	1385	24.3
3	1824	1422	28.3
4	1796	1358	32.3

	MAXIMUM DRY DENSITY (kg/m³)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	1420	28.5
OVERSIZE CORRECTED		

COMMENTS

Stantec Sample No. 2968.

REVIEWED BY: Page 1 of 1 2024.Jan.23 Stantec Consulting Ltd.

PROCTOR TEST REPORT

Dillon Consulting Ltd. 300 - 100 Innovation Dr. Winnipeg, MB R3T 6A8

CLIENT Dillon Consulting Ltd. C.C.

ATTN: Ali Campbell PROJECT 24-R-06 - Local Streets Package

PROJECT NO. 123316892

PROCTOR NO. DATE SAMPLED DATE RECEIVED 2024.Jan.15 2024.Jan.15 DATE TESTED 2024.Jan.23

INSITU MOISTURE 33.5 % COMPACTION STANDARD Standard Proctor, ASTM

TESTED BY Donald Eliazar

MATERIAL IDENTIFICATION

MAJOR COMPONENT Backfill

Fat Clay (CH) SIZE

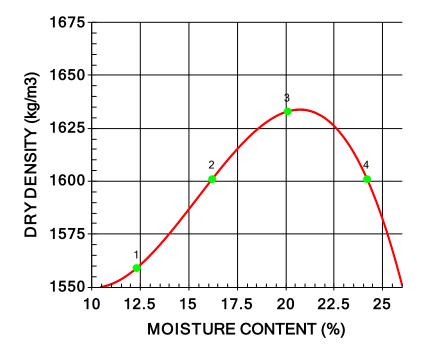
DESCRIPTION SUPPLIER Existing Materials

SOURCE Kanata Street - BH-04, 0.780 m

COMPACTION PROCEDURE

RAMMER TYPE

PREPARATION OVERSIZE CORRECTION METHOD RETAINED 4.75mm SCREEN


D698

A: 101.6mm Mold,

Passing 4.75mm Manual

Moist None

N/A %

TRIAL NUMBER	WET DENSITY (kg/m³)	DRY DENSITY (kg/m³)	MOISTURE CONTENT (%)
1	1751	1559	12.3
2	1860	1601	16.2
3	1961	1633	20.1
4	1989	1601	24.2

	MAXIMUM DRY DENSITY (kg/m³)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	1630	20.5
OVERSIZE CORRECTED		

COMMENTS

Stantec Sample No. 2969.

Page 1 of 1 2024.Jan.24

Stantec Consulting Ltd.

REVIEWED BY:

PROCTOR TEST REPORT

Dillon Consulting Ltd. 300 - 100 Innovation Dr. Winnipeg, MB R3T 6A8

CLIENT Dillon Consulting Ltd. C.C.

ATTN: Ali Campbell

PROJECT 24-R-06 - Local Streets Package

PROJECT NO. 123316892

PROCTOR NO. DATE SAMPLED DATE RECEIVED 2024.Jan.15 2024.Jan.15 DATE TESTED 2024.Jan.23

INSITU MOISTURE 27.9 % COMPACTION STANDARD Standard Proctor, ASTM

TESTED BY Pervez Safdar

MATERIAL IDENTIFICATION

MAJOR COMPONENT Backfill

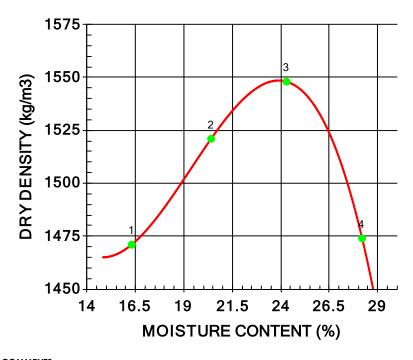
Fat Clay (CH) SIZE **DESCRIPTION**

SUPPLIER Existing Materials SOURCE Wabasha Street - BH-05, 0.745 m

COMPACTION PROCEDURE

RAMMER TYPE **PREPARATION**

OVERSIZE CORRECTION METHOD RETAINED 4.75mm SCREEN


D698

A: 101.6mm Mold,

Passing 4.75mm

Manual Moist None

N/A %

TRIAL NUMBER	WET DENSITY (kg/m³)	DRY DENSITY (kg/m³)	MOISTURE CONTENT (%)
1	1711	1471	16.3
2	1831	1521	20.4
3	1924	1548	24.3
4	1890	1474	28.2

	MAXIMUM DRY DENSITY (kg/m³)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	1550	24.0
OVERSIZE CORRECTED		

COMMENTS

Stantec Sample No. 2970.

Page 1 of 1 2024.Jan.24

Stantec Consulting Ltd.

REVIEWED BY:

PROCTOR TEST REPORT

Dillon Consulting Ltd. 300 - 100 Innovation Dr. Winnipeg, MB R3T 6A8

CLIENT Dillon Consulting Ltd. C.C.

ATTN: Ali Campbell PROJECT 24-R-06 - Local Streets Package

PROJECT NO. 123316892

PROCTOR NO. DATE SAMPLED DATE RECEIVED 2024.Jan.15 2024.Jan.15 DATE TESTED 2024.Jan.23

INSITU MOISTURE 33.9 % COMPACTION STANDARD Standard Proctor, ASTM

TESTED BY Donald Eliazar

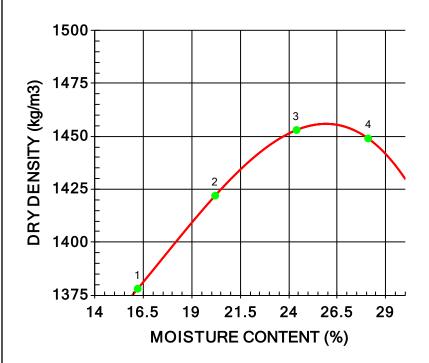
MATERIAL IDENTIFICATION

MAJOR COMPONENT Backfill

Fat Clay (CH) SIZE **DESCRIPTION**

SUPPLIER Existing Materials SOURCE Wabasha Street - BH-07, 0.765 m

COMPACTION PROCEDURE


RAMMER TYPE **PREPARATION** OVERSIZE CORRECTION METHOD D698

A: 101.6mm Mold,

Passing 4.75mm Manual

Moist None

RETAINED 4.75mm SCREEN N/A %

TRIAL NUMBER	WET DENSITY (kg/m³)	DRY DENSITY (kg/m³)	MOISTURE CONTENT (%)
1	1601	1378	16.2
2	1709	1422	20.2
3	1807	1453	24.4
4	1856	1449	28.1

	MAXIMUM DRY DENSITY (kg/m³)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	1460	26.0
OVERSIZE CORRECTED		

COMMENTS

Stantec Sample No. 2971.

Page 1 of 1 REVIEWED BY: 2024.Jan.24 Stantec Consulting Ltd.

PROCTOR TEST REPORT

Dillon Consulting Ltd. 300 - 100 Innovation Dr. Winnipeg, MB R3T 6A8

CLIENT Dillon Consulting Ltd. C.C.

ATTN: Ali Campbell

PROJECT 24-R-06 - Local Streets Package

PROJECT NO. 123316892

PROCTOR NO. DATE SAMPLED DATE RECEIVED 2024.Jan.16 2024.Jan.16 DATE TESTED 2024.Jan.26

INSITU MOISTURE 39.0 % COMPACTION STANDARD Standard Proctor, ASTM

TESTED BY Donald Eliazar

MATERIAL IDENTIFICATION

MAJOR COMPONENT Subgrade

SIZE

DESCRIPTION Fat Clay with sand (CH) SUPPLIER Existing Material

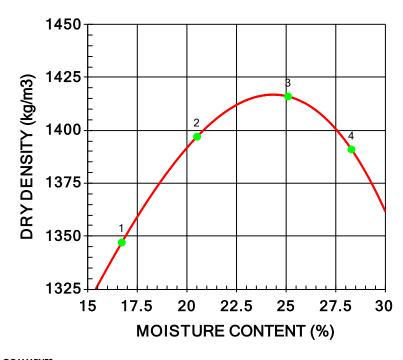
SOURCE Wynford Alley, BH-08, 0.755 m

COMPACTION PROCEDURE

RAMMER TYPE

PREPARATION

OVERSIZE CORRECTION METHOD RETAINED 4.75mm SCREEN


D698

A: 101.6mm Mold,

Passing 4.75mm

Automatic Dry

None N/A %

TRIAL NUMBER	WET DENSITY (kg/m³)	DRY DENSITY (kg/m³)	MOISTURE CONTENT (%)
1	1572	1347	16.7
2	1683	1397	20.5
3	1771	1416	25.1
4	1785	1391	28.3

	MAXIMUM DRY DENSITY (kg/m³)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	1420	24.5
OVERSIZE CORRECTED		

COMMENTS

Stantec Sample no. 2984.

REVIEWED BY: Page 1 of 1 2024.Jan.26 Stantec Consulting Ltd.

PROCTOR TEST REPORT

Dillon Consulting Ltd. 300 - 100 Innovation Dr. Winnipeg, MB R3T 6A8

CLIENT Dillon Consulting Ltd. C.C.

ATTN: Ali Campbell

PROJECT 24-R-06 - Local Streets Package

PROJECT NO. 123316892

PROCTOR NO. DATE SAMPLED DATE RECEIVED 2024.Jan.16 2024.Jan.16 DATE TESTED 2024.Jan.26

INSITU MOISTURE 31.5 % COMPACTION STANDARD Standard Proctor, ASTM

TESTED BY Donald Eliazar

MATERIAL IDENTIFICATION

MAJOR COMPONENT Subgrade

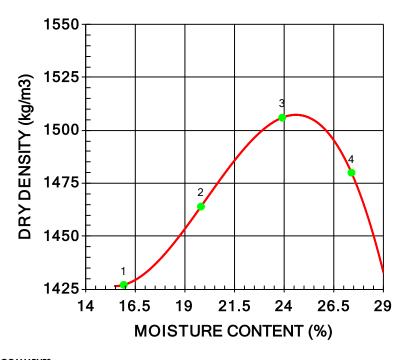
Fat Clay (CH) SIZE

DESCRIPTION Existing Materials SUPPLIER

SOURCE Wynford Alley, BH-10, 0.735 m

COMPACTION PROCEDURE

RETAINED 4.75mm SCREEN


RAMMER TYPE **PREPARATION** OVERSIZE CORRECTION METHOD

D698 A: 101.6mm Mold,

Passing 4.75mm

Manual Moist

None N/A %

TRIAL NUMBER	WET DENSITY (kg/m³)	DRY DENSITY (kg/m³)	MOISTURE CONTENT (%)
1	1654	1427	15.9
2	1754	1464	19.8
3	1866	1506	23.9
4	1886	1480	27.4

	MAXIMUM DRY DENSITY (kg/m³)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	1510	24.5
OVERSIZE CORRECTED		

COMMENTS

Stantec Sample No. 2985.

Page 1 of 1

2024.Jan.29

Stantec Consulting Ltd.

REVIEWED BY:

PROCTOR TEST REPORT

Dillon Consulting Ltd. 300 - 100 Innovation Dr. Winnipeg, MB R3T 6A8

CLIENT Dillon Consulting Ltd. C.C.

ATTN: Ali Campbell

PROJECT 24-R-06 - Local Streets Package

PROJECT NO. 123316892

PROCTOR NO. DATE SAMPLED DATE RECEIVED 2024.Jan.17 2024.Jan.17 DATE TESTED 2024.Feb.05

RAMMER TYPE

RETAINED 4.75mm SCREEN

INSITU MOISTURE 27.8 % COMPACTION STANDARD Standard Proctor, ASTM

TESTED BY Donald Eliazar

MATERIAL IDENTIFICATION

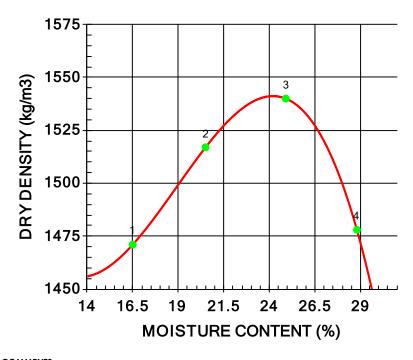
MAJOR COMPONENT Subgrade

Fat Clay (CH) SIZE **DESCRIPTION**

SUPPLIER Existing Materials

SOURCE Lilian Ave - BH-11, 0.710 m

D698


COMPACTION PROCEDURE A: 101.6mm Mold,

Passing 4.75mm

Manual

PREPARATION Moist OVERSIZE CORRECTION METHOD None

N/A %

TRIAL NUMBER	WET DENSITY (kg/m³)	DRY DENSITY (kg/m³)	MOISTURE CONTENT (%)
1	1714	1471	16.5
2	1828	1517	20.5
3	1923	1540	24.9
4	1904	1478	28.8

	MAXIMUM DRY DENSITY (kg/m³)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	1540	24.0
OVERSIZE CORRECTED		

COMMENTS

Stantec Sample No. 4000.

REVIEWED BY: Page 1 of 1 2024.Feb.08 Stantec Consulting Ltd.

PROCTOR TEST REPORT

Dillon Consulting Ltd. 300 - 100 Innovation Dr. Winnipeg, MB R3T 6A8

CLIENT Dillon Consulting Ltd. C.C.

ATTN: Ali Campbell PROJECT 24-R-06 - Local Streets Package

PROJECT NO. 123316892

PROCTOR NO. DATE SAMPLED DATE RECEIVED 2024.Jan.17 2024.Jan.17 DATE TESTED 2024.Feb.05

INSITU MOISTURE COMPACTION STANDARD Standard Proctor, ASTM 36.6 %

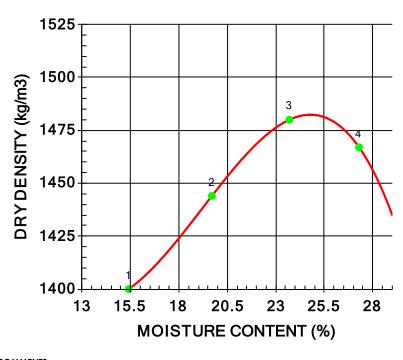
TESTED BY Donald Eliazar

MATERIAL IDENTIFICATION

MAJOR COMPONENT Subgrade

Fat Clay with Sand (CH) SIZE

DESCRIPTION


SUPPLIER Existing Materials

SOURCE Lilian Ave - BH-12, 0.775 m

COMPACTION PROCEDURE

RAMMER TYPE Manual Moist

PREPARATION OVERSIZE CORRECTION METHOD RETAINED 4.75mm SCREEN

TRIAL NUMBER	WET DENSITY (kg/m³)	DRY DENSITY (kg/m³)	moisture Content (%)	
1	1616	1400	15.4	
2	1729	1444	19.7	
3	1831	1480	23.7	
4	1867	1467	27.3	

D698

None

N/A %

A: 101.6mm Mold,

Passing 4.75mm

	MAXIMUM DRY DENSITY (kg/m³)	OPTIMUM MOISTURE CONTENT (%)
CALCULATED	1480	25.0
OVERSIZE CORRECTED		

COMMENTS

Stantec Sample No. 4001.

Page 1 of 1 REVIEWED BY: 2024.Feb.08 Stantec Consulting Ltd.

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

TO Dillon Consulting Ltd.

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

123316892

Winnipea, Manitoba

300 - 100 Innovation Drive

R3T 6A8 PROJECT NO.

ATTN Ali Campbell REPORT NO. 1

DATE SAMPLED: 2024.Jan.15 DATE RECEIVED: 2024.Jan.15 DATE TESTED: 2024.Jan.25 SAMPLED BY: Stantec Consulting Ltd. SUBMITTED BY: Stantec Consulting Ltd. TESTED BY: Donald Eliazar

MATERIAL IDENTIFICATION Subgrade Existing Material MATERIAL USE **SUPPLIER** 4.75 mm Existing Material MAX. NOMINAL SIZE **SOURCE** BH-01, 0.740 m MATERIAL TYPE Fat Clay (CH) SAMPLE LOCATION SPECIFICATION ID Not Applicable STANTEC SAMPLE NO. 2967 IMMERSION PERIOD 96 ± 2 hr TARGET MAX. DRY DENSITY 1500 kg/m³ Soaked TARGET OPTIMUM MOISTURE 25.5 % CONDITION OF SAMPLE 4.54 kg SURCHARGE MASS 1426 kg/m³ +19 mm OVERSIZE 0 % AS-COMPACTED DRY DENSITY 25.5 % **SWELL OF SAMPLE** 4.64 % AS-COMPACTED MOISTURE POST-TEST MOISTURE 39.0 % AS-COMPACTED % COMPACTION 95 % 500 **CBR VALUE AT 2.54 mm** 450 ᢆ **PENETRATION** ¥ 400 1.6 Plunger 350 300 CBR VALUE AT 5.08 mm **PENETRATION** 250 O 1.4 200 Pressure 150 100 50 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

COMMENTS

Sample prepared to 95% of the maximum dry density at the optimum moisture content as determined from ASTM D698.

Penetration (mm)

REPORT DATE 2024.Feb.12

REVIEWED BY Jas

Jason Thompson, C.E.T.

Principal - Manager of Materials Testing Services

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

TO Dillon Consulting Ltd.

R3T 6A8

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

Existing Material

Existing Material

BH-02, 0.780 m

Winnipea, Manitoba

300 - 100 Innovation Drive

PROJECT NO.

123316892

2

ATTN Ali Campbell

MATERIAL IDENTIFICATION

MAX. NOMINAL SIZE

MATERIAL USE

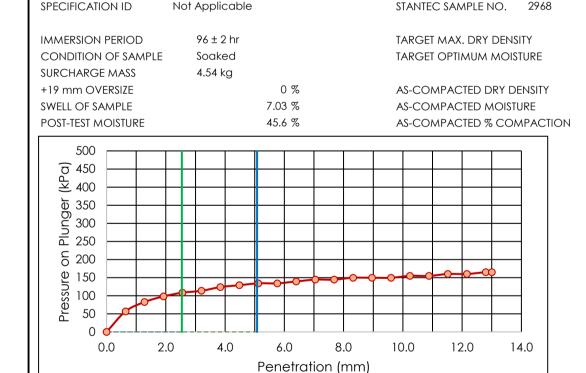
MATERIAL TYPE

Subgrade

Fat Clay (CH)

4.75 mm

REPORT NO.


SUPPLIER

SOURCE

SAMPLE LOCATION

DATE SAMPLED: 2024.Jan.15 DATE TESTED: 2024.Jan.25 DATE RECEIVED: 2024.Jan.15

Stantec Consulting Ltd. Donald Eliazar SAMPLED BY: SUBMITTED BY: Stantec Consulting Ltd. TESTED BY:

CBR VALUE AT 2.54 mm PENETRATION 1.6

1420 kg/m³

 1350 kg/m^3

28.5 %

28.4 %

95 %

CBR VALUE AT 5.08 mm **PENETRATION** 1.3

COMMENTS

Sample prepared to 95% of the maximum dry density at the optimum moisture content as determined from ASTM D698.

REPORT DATE 2024.Feb.12 **REVIEWED BY**

Jason Thompson, C.E.T.

Principal - Manager of Materials Testing Services

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

TO Dillon Consulting Ltd.

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

Existing Material

Existing Material

BH-04, 0.780 m

2969

Winnipea, Manitoba

300 - 100 Innovation Drive

PROJECT NO.

123316892

ATTN Ali Campbell

MATERIAL IDENTIFICATION

MAX. NOMINAL SIZE

MATERIAL USE

MATERIAL TYPE

SPECIFICATION ID

Subgrade

Fat Clay (CH)

Not Applicable

4.75 mm

R3T 6A8

3 REPORT NO.

SUPPLIER

SOURCE

SAMPLE LOCATION

STANTEC SAMPLE NO.

DATE SAMPLED: 2024.Jan.15 DATE TESTED: 2024.Jan.29 DATE RECEIVED: 2024.Jan.15

Stantec Consulting Ltd. SAMPLED BY: SUBMITTED BY: Stantec Consulting Ltd. TESTED BY: Donald Eliazar

IMMERSION PERIOD 96 ± 2 hr TARGET MAX. DRY DENSITY Soaked TARGET OPTIMUM MOISTURE CONDITION OF SAMPLE 4.54 kg SURCHARGE MASS +19 mm OVERSIZE 0 % AS-COMPACTED DRY DENSITY **SWELL OF SAMPLE** 1.83 % AS-COMPACTED MOISTURE POST-TEST MOISTURE 24.8 % AS-COMPACTED % COMPACTION 500 0 450 ¥ 400 Plunger 350 300 250 0 200 Pressure 150 100 50 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 Penetration (mm)

CBR VALUE AT 2.54 mm PENETRATION 4.3

1630 kg/m³

 1548 kg/m^3

20.5 %

20.5 %

95 %

CBR VALUE AT 5.08 mm **PENETRATION** 3.6

COMMENTS

Sample prepared to 95% of the maximum dry density at the optimum moisture content as determined from ASTM D698.

REPORT DATE 2024.Feb.12 **REVIEWED BY** Jason Thompson, C.E.T.

Principal - Manager of Materials Testing Services

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

TO Dillon Consulting Ltd.

R3T 6A8

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

123316892

300 - 100 Innovation Drive Winnipeg, Manitoba

PROJECT NO.

ATTN Ali Campbell REPORT NO. 4

DATE SAMPLED: 2024.Jan.15 DATE RECEIVED: 2024.Jan.15 DATE TESTED: 2024.Jan.29 SAMPLED BY: Stantec Consulting Ltd. SUBMITTED BY: Stantec Consulting Ltd. TESTED BY: Donald Eliazar

MATERIAL IDENTIFICATION Subgrade Existing Material MATERIAL USE **SUPPLIER** 4.75 mm Existing Material MAX. NOMINAL SIZE **SOURCE** BH-05, 0.745 m MATERIAL TYPE Fat Clay (CH) SAMPLE LOCATION SPECIFICATION ID Not Applicable STANTEC SAMPLE NO. 2970 IMMERSION PERIOD 96 ± 2 hr TARGET MAX. DRY DENSITY 1550 kg/m³ Soaked TARGET OPTIMUM MOISTURE 24.0 % CONDITION OF SAMPLE 4.54 kg SURCHARGE MASS 1467 kg/m³ +19 mm OVERSIZE 0 % AS-COMPACTED DRY DENSITY **SWELL OF SAMPLE** 3.78 % AS-COMPACTED MOISTURE 24.4 % POST-TEST MOISTURE 33.6 % AS-COMPACTED % COMPACTION 95 % 500 **CBR VALUE AT 2.54 mm** 0 450 **PENETRATION** ¥ 400 2.2 Plunger 350 300 CBR VALUE AT 5.08 mm **PENETRATION** 250 O 2.0 200 Pressure 150 100 50 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

COMMENTS

Sample prepared to 95% of the maximum dry density at the optimum moisture content as determined from ASTM D698.

Penetration (mm)

REPORT DATE 2024.Feb.12

REVIEWED BY Jason Thompson, C.E.T.

Principal - Manager of Materials Testing Services

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

TO Dillon Consulting Ltd.

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

Winnipea, Manitoba

300 - 100 Innovation Drive

Ali Campbell

PROJECT NO.

123316892

5

REPORT NO.

MATERIAL TYPE

SPECIFICATION ID

R3T 6A8

DATE SAMPLED: 2024.Jan.15

DATE RECEIVED: 2024.Jan.15

DATE TESTED: 2024.Jan.29

SAMPLED BY:

ATTN

Stantec Consulting Ltd.

SUBMITTED BY: Stantec Consulting Ltd.

SUPPLIER

TESTED BY:

Donald Eliazar

MATERIAL IDENTIFICATION

Subgrade MATERIAL USE 4.75 mm MAX. NOMINAL SIZE

Fat Clay (CH)

Not Applicable

SOURCE SAMPLE LOCATION Existing Material Existing Material

BH-07, 0.765 m

STANTEC SAMPLE NO. 2971

IMMERSION PERIOD 96 ± 2 hr TARGET MAX. DRY DENSITY

1460 kg/m³

CONDITION OF SAMPLE

Soaked

TARGET OPTIMUM MOISTURE

26.0 %

SURCHARGE MASS

4.54 kg

0 %

AS-COMPACTED DRY DENSITY

1387 kg/m³

+19 mm OVERSIZE **SWELL OF SAMPLE**

5.06 %

AS-COMPACTED MOISTURE

26.1 %

95 %

POST-TEST MOISTURE

38.4 %

AS-COMPACTED % COMPACTION

CBR VALUE AT 2.54 mm PENETRATION

1.6

CBR VALUE AT 5.08 mm **PENETRATION**

1.3

500 0 450 ¥ 400 Plunger 350 300 250 O 200 Pressure 150 100 50 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 Penetration (mm)

COMMENTS

Sample prepared to 95% of the maximum dry density at the optimum moisture content as determined from ASTM D698.

REPORT DATE 2024.Feb.12 **REVIEWED BY**

Jason Thompson, C.E.T.

Principal - Manager of Materials Testing Services

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

TO Dillon Consulting Ltd.

PROJECT

24-R-06 - Local Streets Package -

300 - 100 Innovation Drive

Geotechnical Investigation

Winnipea, Manitoba R3T 6A8

PROJECT NO.

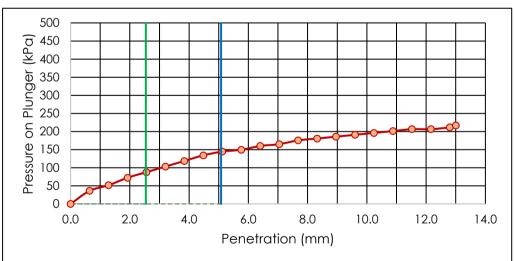
123316892

ATTN Ali Campbell REPORT NO.

DATE SAMPLED: 2024.Jan.16 DATE TESTED: 2024.Feb.06 DATE RECEIVED: 2024.Jan.16

Stantec Consulting Ltd. SAMPLED BY: SUBMITTED BY: Stantec Consulting Ltd. TESTED BY: Donald Eliazar

MATERIAL IDENTIFICATION


Existing Material MATERIAL USE Subgrade **SUPPLIER** 4.75 mm Existing Material MAX. NOMINAL SIZE **SOURCE** Fat CLAY with sand (CH) BH-08, 0.755 m MATERIAL TYPE SAMPLE LOCATION 2984

SPECIFICATION ID Not Applicable STANTEC SAMPLE NO.

IMMERSION PERIOD 96 ± 2 hr TARGET MAX. DRY DENSITY 1420 kg/m³ Soaked TARGET OPTIMUM MOISTURE 24.5 % CONDITION OF SAMPLE

4.54 kg SURCHARGE MASS

 1350 kg/m^3 +19 mm OVERSIZE 0 % AS-COMPACTED DRY DENSITY **SWELL OF SAMPLE** 7.78 % AS-COMPACTED MOISTURE 24.4 % POST-TEST MOISTURE 44.3 % AS-COMPACTED % COMPACTION 95 %

CBR VALUE AT 2.54 mm PENETRATION 1.3

CBR VALUE AT 5.08 mm **PENETRATION** 1.4

COMMENTS

Sample prepared to 95% of the maximum dry density at the optimum moisture content as determined from ASTM D698.

REPORT DATE 2024.Feb.12 REVIEWED BY Jason Thompson, C.E.T.

Principal - Manager of Materials Testing Services

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

TO Dillon Consulting Ltd.

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

Existing Material

300 - 100 Innovation Drive Winnipeg, Manitoba

PROJECT NO.

123316892

R3T 6A8

SUPPLIER

ATTN Ali Campbell

MATERIAL IDENTIFICATION

Subgrade

MATERIAL USE

7 REPORT NO.

DATE SAMPLED: 2024.Jan.16 DATE RECEIVED: 2024.Jan.16 DATE TESTED: 2024.Feb.15 Stantec Consulting Ltd. SUBMITTED BY: Stantec Consulting Ltd. Donald Eliazar SAMPLED BY: TESTED BY:

MAX. NOMINAL SIZE 4.75 mm Existing Material **SOURCE** MATERIAL TYPE Fat Clay (CH) BH-10, 0.735 m SAMPLE LOCATION SPECIFICATION ID Not Applicable STANTEC SAMPLE NO. 2985 96 ± 2 hr IMMERSION PERIOD TARGET MAX. DRY DENSITY 1510 kg/m³ Soaked 24.5 % CONDITION OF SAMPLE TARGET OPTIMUM MOISTURE SURCHARGE MASS 4.54 kg 1435 kg/m^3 +19 mm OVERSIZE 0 % AS-COMPACTED DRY DENSITY 24.5 % **SWELL OF SAMPLE** 3.94 % AS-COMPACTED MOISTURE POST-TEST MOISTURE 40.5 % AS-COMPACTED % COMPACTION 95 % 500 (kPa) 450 400 2.5 Plunger 350 300 250 0 2.1 200 Pressure 150 100 50

CBR VALUE AT 2.54 mm PENETRATION

CBR VALUE AT 5.08 mm **PENETRATION**

COMMENTS

0

0.0

2.0

4.0

Sample prepared to 95% of the maximum dry density at the optimum moisture content as determined from ASTM D698.

8.0

6.0

Penetration (mm)

REPORT DATE 2024.Feb.20 **REVIEWED BY**

12.0

14.0

Jason Thompson, C.E.T.

Principal - Manager of Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

10.0

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

TO Dillon Consulting Ltd.

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

Winnipeg, Manitoba

300 - 100 Innovation Drive

PROJECT NO.

123316892

R3T 6A8

ATTN Ali Campbell REPORT NO. 8

DATE SAMPLED: 2024.Jan.17 DATE RECEIVED: 2024.Jan.17 Stantec Consulting Ltd. SAMPLED BY:

SUBMITTED BY: Stantec Consulting Ltd.

DATE TESTED: 2024.Feb.19

Donald Eliazar

MATERIAL IDENTIFICATION

SPECIFICATION ID

IMMERSION PERIOD

CONDITION OF SAMPLE

MATERIAL USE Subgrade MAX. NOMINAL SIZE 4.75 mm MATERIAL TYPE Fat Clay (CH)

Not Applicable

96 ± 2 hr

Soaked

SUPPLIER SOURCE

Existing Material Existing Material

TESTED BY:

BH-11, 0.710 m

SAMPLE LOCATION

4000

STANTEC SAMPLE NO.

TARGET MAX. DRY DENSITY TARGET OPTIMUM MOISTURE 1540 kg/m³

 1462 kg/m^3

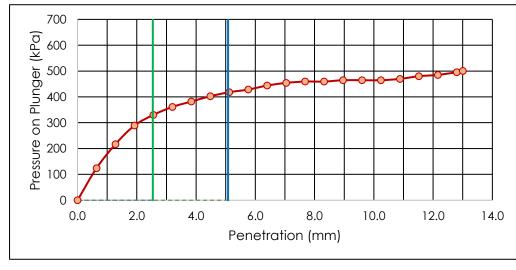
24.0 %

SURCHARGE MASS 4.54 kg

0 % +19 mm OVERSIZE

SWELL OF SAMPLE 1.51 % POST-TEST MOISTURE 30.4 % AS-COMPACTED DRY DENSITY AS-COMPACTED MOISTURE

AS-COMPACTED % COMPACTION


95 % **CBR VALUE AT 2.54 mm**

24.1 %

PENETRATION 4.8

CBR VALUE AT 5.08 mm **PENETRATION**

4.2

COMMENTS

Sample prepared to 95% of the maximum dry density at the optimum moisture content as determined from ASTM D698.

REPORT DATE 2024.Feb.26 **REVIEWED BY**

Jason Thompson, C.E.T.

Principal - Manager of Materials Testing Services

199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999

ASTM D1883 - CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOILS

TO Dillon Consulting Ltd.

PROJECT

24-R-06 - Local Streets Package -

Geotechnical Investigation

Winnipeg, Manitoba

300 - 100 Innovation Drive

PROJECT NO.

123316892

R3T 6A8

ATTN

REPORT NO.

9

DATE SAMPLED: 2024.Jan.17

DATE RECEIVED: 2024.Jan.17

DATE TESTED: 2024.Feb.19

Stantec Consulting Ltd. SAMPLED BY:

Ali Campbell

SUBMITTED BY: Stantec Consulting Ltd.

SUPPLIER

Donald Eliazar TESTED BY:

MATERIAL IDENTIFICATION

MATERIAL USE Subgrade MAX. NOMINAL SIZE 4.75 mm Fat CLAY with sand (CH)

SOURCE

Existing Material Existing Material

MATERIAL TYPE SPECIFICATION ID Not Applicable SAMPLE LOCATION

BH-12, 0.775 m

STANTEC SAMPLE NO.

4001

IMMERSION PERIOD

96 ± 2 hr

TARGET MAX. DRY DENSITY

1480 kg/m³

CONDITION OF SAMPLE

Soaked

TARGET OPTIMUM MOISTURE

25.0 %

SURCHARGE MASS

4.54 kg

AS-COMPACTED DRY DENSITY

 1407 kg/m^3

+19 mm OVERSIZE

0 %

AS-COMPACTED MOISTURE

25.0 %

SWELL OF SAMPLE

3.02 %

95 %

POST-TEST MOISTURE

37.1 %

AS-COMPACTED % COMPACTION

CBR VALUE AT 2.54 mm

PENETRATION

3.5

CBR VALUE AT 5.08 mm

PENETRATION 3.1

700 Pressure on Plunger (kPa) 600 500 400 300 200 100 0 8.0 0.0 2.0 4.0 6.0 10.0 12.0 14.0 Penetration (mm)

COMMENTS

Sample prepared to 95% of the maximum dry density at the optimum moisture content as determined from ASTM D698.

REPORT DATE 2024.Feb.26 **REVIEWED BY**

Jason Thompson, C.E.T.

Principal - Manager of Materials Testing Services

Table 2 - Compressive Strength Test Data

Street	Core Diameter (mm)	Length	L/D	Correction	Peak Load	Compressive Strength (MPa)			
		(mm)	(mm)	Ratio	Factor	(kN)	Measured	Corrected	
Champlain St	BH-14	75.45	150.50	1.995	0.9996	215.19	48.13	48.11	
Champlain St	BH-16	75.60	171.34	2.266	1.0000	210.35	46.86	46.86	
Dumoulin St	BH-19	76.09	142.27	1.870	0.9896	290.85	63.96	63.30	
Dumoulin St	BH-22	87.98	176.16	2.002	1.0000	313.85	51.63	51.63	
McMahon Pl	BH-23	88.24	182.08	2.063	1.0000	322.08	52.67	52.67	
McMahon Pl	BH-24	88.36	165.51	1.873	0.9898	390.89	63.75	63.10	
Howard Kendel Pl	BH-25	88.25	146.52	1.660	0.9728	383.2	62.65	60.94	
Howard Kendel Pl	BH-26	88.45	134.46	1.520	0.9616	367.63	59.83	57.53	
Kern Dr	BH-28	88.05	173.71	1.973	0.9978	302.6	49.70	49.59	
Kern Dr	BH-30	88.27	171.36	1.941	0.9953	343.16	56.08	55.81	
Baywater PI	BH-32	75.85	92.35	1.218	0.9223	149.23	33.03	30.46	
Baywater PI	BH-33	75.82	142.71	1.882	0.9906	133.84	29.64	29.36	
Courtwood PI	BH-34	75.79	113.32	1.495	0.9594	146.07	32.38	31.06	
Courtwood PI	BH-35	Concrete core sample crumbled; unsuitable for testing.							
Roanoke St	BH-36	88.37	108.55	1.230	0.9252	335.38	54.79	50.69	
Roanoke St	BH-37	75.83	143.27	1.621	0.9697	293.97	47.93	46.48	
Melrose Ave	BH-38	75.78	139.02	1.833	0.9866	216.57	47.95	47.31	
Melrose Ave	BH-39	88.37	172.02	2.270	1.0000	142.34	31.56	31.56	